
Tell us about your PDF experience.

Explore various aspects of .NET Aspire, including getting started, storage, database, messaging, caching,
frameworks, deployment, and troubleshooting.

O V E R V I E W
.NET Aspire overview

https://learn.microsoft.com/en-us/dotnet/aspire/whats-new/
https://learn.microsoft.com/en-us/samples/dotnet/aspire-samples/aspire-volume-mount/
https://aka.ms/learn-pdf-feedback

ｃ .NET Aspire setup and
tooling

ｐ .NET Aspire service
discovery

ｐ .NET Aspire and launch
profiles

ｉ .NET Aspire service defaults
ｉ .NET Aspire dashboard
ｅ .NET Aspire local

networking

ｓ Persist volume mount
sample

ｃ Azure Cosmos DB with EF
Core

ｃ SQL Database
ｃ SQL Database with EF Core
ｃ Entity Framework Core

migrations
ｃ MySqlConnector Database
ｃ MongoDB Database

Messaging integrations
ｇ Implement Messaging with

.NET Aspire
ｅ Azure Event Hubs
ｅ Azure Service Bus
ｅ Azure Web PubSub
ｃ RabbitMQ
ｃ Apache Kafka
ｃ NATs

Caching integrations
ｇ Improve app caching with

.NET Aspire
ｅ Stack Exchange Redis

caching overview
ｃ Redis caching
ｃ Redis output caching
ｃ Redis distributed caching

Framework
integrations
ｅ Use Orleans with .NET

Aspire
ｓ Orleans voting sample
ｅ Use Dapr with .NET Aspire
ｓ Dapr integration sample

Deployment
ｅ Overview
｀ Deploy to Azure Container

Apps
｀ Deploy using the Azure

Developer CLI
ｃ Integrate with Application

Insights
ｉ .NET Aspire deployment

manifest format

Troubleshooting
ｃ Allow unsecure transport
ｃ Unable to install workload
ｃ Untrusted localhost

certificate
ｃ The specified name is

already in use
ｃ Container runtime appears

to be unhealthy
ｃ The connection string is

missing
ｉ Ask questions on Discord
ｉ Stack Overflow — .NET

Aspire

Training
ｄ Introduction to .NET Aspire
ｄ Create a .NET Aspire

project
ｄ Use telemetry in a .NET

Aspire project
ｄ Use databases in a .NET

Aspire project
ｄ Improve performance with

a cache in a .NET Aspire
project

ｄ Send messages with
RabbitMQ in a .NET Aspire
project

https://learn.microsoft.com/en-us/samples/dotnet/aspire-samples/aspire-volume-mount/
https://learn.microsoft.com/en-us/samples/dotnet/aspire-samples/orleans-voting-sample-app-on-aspire/
https://github.com/CommunityToolkit/Aspire/tree/main/examples/dapr
https://aka.ms/aspire/discord
https://stackoverflow.com/questions/tagged/dotnet-aspire
https://learn.microsoft.com/en-us/training/modules/introduction-dotnet-aspire
https://learn.microsoft.com/en-us/training/modules/create-aspire-applications
https://learn.microsoft.com/en-us/training/modules/use-telemetry-dotnet-aspire
https://learn.microsoft.com/en-us/training/modules/use-databases-dotnet-aspire-app/
https://learn.microsoft.com/en-us/training/modules/improve-performance-cache-aspire/
https://learn.microsoft.com/en-us/training/modules/send-messages-rabbitmq-dotnet-aspire-app/

Learn about .NET extensions, including logging, dependency injection, configuration, and more. All of
which are fundamental in .NET Aspire.

Find community resources for .NET, including webcasts, shows, open-source projects, and more.

.NET extensions

Fundamentals
Logging
Dependency injection
Configuration
Make HTTP requests

Telemetry
.NET observability with
OpenTelemetry
Networking telemetry
.NET SDK telemetry

Resiliency
Introduction to resilient app
dev
Build resilient HTTP apps
Implement resiliency in a
cloud-native ASP.NET Core
microservice

Observability
.NET app health checks in C#
App health checks in ASP.NET
Core
Diagnostic tools in .NET
Diagnostic resource
monitoring in .NET

.NET community resources

.NET

.NET documentation

.NET Aspire samples browser
ASP.NET documentation
Azure documentation
C# documentation
.NET Discord
Official .NET Aspire Collection

Webcasts and shows
Azure Friday
The Cloud Native Show
On .NET
On .NET Live
.NET Community Standup
Welcome to .NET Aspire

Open source
.NET Aspire
.NET Aspire samples
.NET samples
.NET Platform
.NET Runtime
ASP.NET Core

Community

https://learn.microsoft.com/en-us/dotnet/core/extensions/logging
https://learn.microsoft.com/en-us/dotnet/core/extensions/dependency-injection
https://learn.microsoft.com/en-us/dotnet/core/extensions/configuration
https://learn.microsoft.com/en-us/dotnet/fundamentals/networking/http/httpclient
https://learn.microsoft.com/en-us/dotnet/core/diagnostics/observability-with-otel
https://learn.microsoft.com/en-us/dotnet/core/diagnostics/observability-with-otel
https://learn.microsoft.com/en-us/dotnet/fundamentals/networking/networking-telemetry
https://learn.microsoft.com/en-us/dotnet/core/tools/telemetry
https://learn.microsoft.com/en-us/dotnet/core/resilience
https://learn.microsoft.com/en-us/dotnet/core/resilience
https://learn.microsoft.com/en-us/dotnet/core/resilience/http-resilience
https://learn.microsoft.com/en-us/training/modules/microservices-resiliency-aspnet-core
https://learn.microsoft.com/en-us/training/modules/microservices-resiliency-aspnet-core
https://learn.microsoft.com/en-us/training/modules/microservices-resiliency-aspnet-core
https://learn.microsoft.com/en-us/dotnet/core/diagnostics/diagnostic-health-checks
https://learn.microsoft.com/en-us/aspnet/core/host-and-deploy/health-checks
https://learn.microsoft.com/en-us/aspnet/core/host-and-deploy/health-checks
https://learn.microsoft.com/en-us/dotnet/core/diagnostics
https://learn.microsoft.com/en-us/dotnet/core/diagnostics/diagnostic-resource-monitoring
https://learn.microsoft.com/en-us/dotnet/core/diagnostics/diagnostic-resource-monitoring
https://learn.microsoft.com/en-us/dotnet
https://learn.microsoft.com/en-us/samples/browse/?expanded=dotnet&terms=aspire
https://learn.microsoft.com/en-us/aspnet
https://learn.microsoft.com/en-us/azure
https://learn.microsoft.com/en-us/dotnet/csharp
https://aka.ms/aspire/discord
https://aka.ms/aspire/discord
https://learn.microsoft.com/en-us/collections/2203hjxnnrop11
https://azure.microsoft.com/resources/videos/azure-friday
https://azure.microsoft.com/resources/videos/azure-friday
https://learn.microsoft.com/en-us/shows/the-cloud-native-show
https://learn.microsoft.com/en-us/shows/on-net
https://dotnet.microsoft.com/live/on-dotnet-live
https://dotnet.microsoft.com/live/on-dotnet-live
https://dotnet.microsoft.com/platform/community/standup
https://dotnet.microsoft.com/platform/community/standup
https://www.youtube.com/playlist?list=PLdo4fOcmZ0oUfIayQMrRqaSL55Rkck-GD
https://www.youtube.com/playlist?list=PLdo4fOcmZ0oUfIayQMrRqaSL55Rkck-GD
https://github.com/dotnet/aspire
https://github.com/dotnet/aspire
https://github.com/dotnet/aspire-samples
https://github.com/dotnet/aspire-samples
https://github.com/dotnet/samples
https://github.com/dotnet/samples
https://github.com/dotnet
https://github.com/dotnet
https://github.com/dotnet/runtime
https://github.com/dotnet/runtime
https://github.com/dotnet/aspnetcore
https://github.com/dotnet/aspnetcore
https://x.com/intent/follow?screen_name=dotnet
https://x.com/intent/follow?screen_name=dotnet

Search the .NET API and language reference documentation.

Are you interested in contributing to the .NET Aspire docs? For more information, see our contributor guide.
Interested in the official support policy, see .NET Aspire Support Policy .

Follow @dotnet on 𝕏
Follow @dotnet on Mastodon
.NET Foundation
We Are .NET
.NET Aspire YouTube playlist
.NET Aspire on YouTube

API and language reference

.NET Aspire API reference
API reference documentation
for .NET Aspire

.NET API reference
API reference documentation
for .NET

ASP.NET Core API
reference
API reference documentation
for ASP.NET Core

https://learn.microsoft.com/en-us/contribute/dotnet/dotnet-contribute
https://dotnet.microsoft.com/platform/support/policy/aspire
https://dotnet.microsoft.com/platform/support/policy/aspire
https://x.com/intent/follow?screen_name=dotnet
https://x.com/intent/follow?screen_name=dotnet
https://dotnet.social/@dotnet
https://dotnet.social/@dotnet
https://dotnetfoundation.org/
https://dotnetfoundation.org/
https://www.wearedotnet.io/
https://www.wearedotnet.io/
https://www.youtube.com/playlist?list=PLdo4fOcmZ0oWTWWbWXqhn2w8NM3sQ_qDz
https://www.youtube.com/playlist?list=PLdo4fOcmZ0oWTWWbWXqhn2w8NM3sQ_qDz
https://www.youtube.com/results?search_query=.NET+Aspire
https://www.youtube.com/results?search_query=.NET+Aspire
https://learn.microsoft.com/en-us/dotnet/api?view=dotnet-aspire-9.1&preserve-view=true
https://learn.microsoft.com/en-us/dotnet/api?view=net-9.0&preserve-view=true
https://learn.microsoft.com/en-us/dotnet/api?view=aspnetcore-9.0&preserve-view=true
https://learn.microsoft.com/en-us/dotnet/api?view=aspnetcore-9.0&preserve-view=true

.NET Aspire overview
Article • 01/26/2025

.NET Aspire is a set of tools, templates, and packages for building observable,
production ready apps. .NET Aspire is delivered through a collection of NuGet packages
that bootstrap or improve specific challenges with modern app development. Today's
apps generally consume a large number of services, such as databases, messaging, and
caching, many of which are supported via .NET Aspire Integrations. For information on
support, see the .NET Aspire Support Policy.

.NET Aspire improves the experience of building apps that have a variety of projects and
resources. With dev-time productivity enhancements that emulate deployed scenarios,
you can quickly develop interconnected apps. Designed for flexibility, .NET Aspire allows
you to replace or extend parts with your preferred tools and workflows. Key features
include:

Dev-Time Orchestration: .NET Aspire provides features for running and connecting
multi-project applications, container resources, and other dependencies for local
development environments.
Integrations: .NET Aspire integrations are NuGet packages for commonly used
services, such as Redis or Postgres, with standardized interfaces ensuring they
connect consistently and seamlessly with your app.
Tooling: .NET Aspire comes with project templates and tooling experiences for
Visual Studio, Visual Studio Code, and the .NET CLI to help you create and interact
with .NET Aspire projects.

In .NET Aspire, "orchestration" primarily focuses on enhancing the local development
experience by simplifying the management of your app's configuration and
interconnections. It's important to note that .NET Aspire's orchestration isn't intended to

Why .NET Aspire?

Dev-time orchestration

https://dotnet.microsoft.com/platform/support/policy/aspire
https://learn.microsoft.com/en-us/dotnet/core/tools/

replace the robust systems used in production environments, such as Kubernetes.
Instead, it's a set of abstractions that streamline the setup of service discovery,
environment variables, and container configurations, eliminating the need to deal with
low-level implementation details. With .NET Aspire, your code has a consistent
bootstrapping experience on any dev machine without the need for complex manual
steps, making it easier to manage during the development phase.

.NET Aspire orchestration assists with the following concerns:

App composition: Specify the .NET projects, containers, executables, and cloud
resources that make up the application.
Service discovery and connection string management: The app host injects the
right connection strings, network configurations, and service discovery information
to simplify the developer experience.

For example, using .NET Aspire, the following code creates a local Redis container
resource, waits for it to become available, and then configures the appropriate
connection string in the "frontend" project with a few helper method calls:

C#

For more information, see .NET Aspire orchestration overview.

// Create a distributed application builder given the command line
arguments.
var builder = DistributedApplication.CreateBuilder(args);

// Add a Redis server to the application.
var cache = builder.AddRedis("cache");

// Add the frontend project to the application and configure it to use the
// Redis server, defined as a referenced dependency.
builder.AddProject<Projects.MyFrontend>("frontend")
 .WithReference(cache)
 .WaitFor(cache);

） Important

The call to AddRedis creates a new Redis container in your local dev environment.
If you'd rather use an existing Redis instance, you can use the
AddConnectionString method to reference an existing connection string. For more
information, see Reference existing resources.

.NET Aspire integrations

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.redisbuilderextensions.addredis
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.parameterresourcebuilderextensions.addconnectionstring

.NET Aspire integrations are NuGet packages designed to simplify connections to
popular services and platforms, such as Redis or PostgreSQL. .NET Aspire integrations
handle cloud resource setup and interaction for you through standardized patterns,
such as adding health checks and telemetry. Integrations are two-fold - "hosting"
integrations represents the service you're connecting to, and "client" integrations
represents the client or consumer of that service. In other words, for many hosting
packages there's a corresponding client package that handles the service connection
within your code.

Each integration is designed to work with the .NET Aspire app host, and their
configurations are injected automatically by referencing named resources. In other
words, if Example.ServiceFoo references Example.ServiceBar, Example.ServiceFoo inherits
the integration's required configurations to allow them to communicate with each other
automatically.

For example, consider the following code using the .NET Aspire Service Bus integration:

C#

The AddAzureServiceBusClient method handles the following concerns:

Registers a ServiceBusClient as a singleton in the DI container for connecting to
Azure Service Bus.
Applies ServiceBusClient configurations either inline through code or through
configuration.
Enables corresponding health checks, logging, and telemetry specific to the Azure
Service Bus usage.

A full list of available integrations is detailed on the .NET Aspire integrations overview
page.

.NET Aspire provides a set of project templates and tooling experiences for Visual
Studio, Visual Studio Code, and the .NET CLI. These templates are designed to help you
create and interact with .NET Aspire projects, or add .NET Aspire into your existing
codebase. The templates include a set of opinionated defaults to help you get started
quickly - for example, it has boilerplate code for turning on health checks and logging in
.NET apps. These defaults are fully customizable, so you can edit and adapt them to suit
your needs.

builder.AddAzureServiceBusClient("servicebus");

Project templates and tooling

https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.aspireservicebusextensions.addazureservicebusclient
https://learn.microsoft.com/en-us/dotnet/api/azure.messaging.servicebus.servicebusclient
https://learn.microsoft.com/en-us/dotnet/api/azure.messaging.servicebus.servicebusclient
https://learn.microsoft.com/en-us/dotnet/core/tools/

.NET Aspire templates also include boilerplate extension methods that handle common
service configurations for you:

C#

For more information on what AddServiceDefaults does, see .NET Aspire service
defaults.

When added to your Program.cs file, the preceding code handles the following
concerns:

OpenTelemetry: Sets up formatted logging, runtime metrics, built-in meters, and
tracing for ASP.NET Core, gRPC, and HTTP. For more information, see .NET Aspire
telemetry.
Default health checks: Adds default health check endpoints that tools can query to
monitor your app. For more information, see .NET app health checks in C#.
Service discovery: Enables service discovery for the app and configures HttpClient
accordingly.

builder.AddServiceDefaults();

Next steps
Quickstart: Build your first .NET Aspire project

https://learn.microsoft.com/en-us/dotnet/core/diagnostics/diagnostic-health-checks
https://learn.microsoft.com/en-us/dotnet/api/system.net.http.httpclient

Quickstart: Build your first .NET Aspire
solution
Article • 11/07/2024

Cloud-native apps often require connections to various services such as databases,
storage and caching solutions, messaging providers, or other web services. .NET Aspire
is designed to streamline connections and configurations between these types of
services. This quickstart shows how to create a .NET Aspire Starter Application template
solution.

In this quickstart, you explore the following tasks:

To work with .NET Aspire, you need the following installed locally:

.NET 8.0 or .NET 9.0
An OCI compliant container runtime, such as:

Docker Desktop or Podman . For more information, see Container runtime.
An Integrated Developer Environment (IDE) or code editor, such as:

Visual Studio 2022 version 17.9 or higher (Optional)
Visual Studio Code (Optional)

C# Dev Kit: Extension (Optional)
JetBrains Rider with .NET Aspire plugin (Optional)

For more information, see .NET Aspire setup and tooling, and .NET Aspire SDK.

To create a new .NET Aspire Starter Application, you can use either Visual Studio, Visual
Studio Code, or the .NET CLI.

Create a basic .NET app that is set up to use .NET Aspire.＂

Add and configure a .NET Aspire integration to implement caching at project
creation time.

＂

Create an API and use service discovery to connect to it.＂

Orchestrate communication between a front end UI, a back end API, and a local
Redis cache.

＂

Prerequisites

Create the .NET Aspire template

https://dotnet.microsoft.com/download/dotnet/8.0
https://dotnet.microsoft.com/download/dotnet/8.0
https://dotnet.microsoft.com/download/dotnet/9.0
https://dotnet.microsoft.com/download/dotnet/9.0
https://www.docker.com/products/docker-desktop
https://www.docker.com/products/docker-desktop
https://podman.io/
https://podman.io/
https://visualstudio.microsoft.com/vs/
https://visualstudio.microsoft.com/vs/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://marketplace.visualstudio.com/items?itemName=ms-dotnettools.csdevkit
https://marketplace.visualstudio.com/items?itemName=ms-dotnettools.csdevkit
https://blog.jetbrains.com/dotnet/2024/02/19/jetbrains-rider-and-the-net-aspire-plugin/
https://blog.jetbrains.com/dotnet/2024/02/19/jetbrains-rider-and-the-net-aspire-plugin/

Visual Studio provides .NET Aspire templates that handle some initial setup
configurations for you. Complete the following steps to create a project for this
quickstart:

1. At the top of Visual Studio, navigate to File > New > Project.

2. In the dialog window, search for Aspire and select .NET Aspire Starter App. Select
Next.

3. On the Configure your new project screen:

Enter a Project Name of AspireSample.
Leave the rest of the values at their defaults and select Next.

4. On the Additional information screen:

Make sure .NET 9.0 (Standard Term Support) is selected.



https://learn.microsoft.com/en-us/dotnet/aspire/docs/media/aspire-templates.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/media/aspire-templates.png#lightbox

Ensure that Use Redis for caching (requires a supported container runtime)
is checked and select Create.
Optionally, you can select Create a tests project. For more information, see
Write your first .NET Aspire test.

Visual Studio creates a new solution that is structured to use .NET Aspire.

For more information on the available templates, see .NET Aspire templates.

The sample app includes a frontend Blazor app that communicates with a Minimal API
project. The API project is used to provide fake weather data to the frontend. The
frontend app is configured to use service discovery to connect to the API project. The
API project is configured to use output caching with Redis. The sample app is now ready
for testing. You want to verify the following conditions:

Weather data is retrieved from the API project using service discovery and
displayed on the weather page.
Subsequent requests are handled via the output caching configured by the .NET
Aspire Redis integration.

In Visual Studio, set the AspireSample.AppHost project as the startup project by right-
clicking on the project in the Solution Explorer and selecting Set as Startup Project. It
might already have been automatically set as the startup project. Once set, press F5 or (
Ctrl + F5 to run without debugging) to run the app.

1. The app displays the .NET Aspire dashboard in the browser. You look at the
dashboard in more detail later. For now, find the webfrontend project in the list of
resources and select the project's localhost endpoint.

The home page of the webfrontend app displays "Hello, world!"

2. Navigate from the home page to the weather page in the using the left side
navigation. The weather page displays weather data. Make a mental note of some
of the values represented in the forecast table.

Test the app locally



https://learn.microsoft.com/en-us/dotnet/aspire/docs/get-started/media/aspire-dashboard-webfrontend.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/get-started/media/aspire-dashboard-webfrontend.png#lightbox

3. Continue occasionally refreshing the page for 10 seconds. Within 10 seconds, the
cached data is returned. Eventually, a different set of weather data appears, since
the data is randomly generated and the cache is updated.

🤓 Congratulations! You created and ran your first .NET Aspire solution! To stop the
app, close the browser window.

To stop the app in Visual Studio, select the Stop Debugging from the Debug menu.

Next, investigate the structure and other features of your new .NET Aspire solution.

When you run a .NET Aspire project, a dashboard launches that you use to monitor
various parts of your app. The dashboard resembles the following screenshot:

Visit each page using the left navigation to view different information about the .NET
Aspire resources:

Resources: Lists basic information for all of the individual .NET projects in your
.NET Aspire project, such as the app state, endpoint addresses, and the
environment variables that were loaded in.



Explore the .NET Aspire dashboard



https://learn.microsoft.com/en-us/dotnet/aspire/docs/get-started/media/weather-page.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/get-started/media/weather-page.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/get-started/media/aspire-dashboard.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/get-started/media/aspire-dashboard.png#lightbox

Console: Displays the console output from each of the projects in your app.

Structured: Displays structured logs in table format. These logs support basic
filtering, free-form search, and log level filtering as well. You should see logs from
the apiservice and the webfrontend . You can expand the details of each log entry
by selecting the View button on the right end of the row.

Traces: Displays the traces for your application, which can track request paths
through your apps. Locate a request for /weather and select View on the right side
of the page. The dashboard should display the request in stages as it travels
through the different parts of your app.

Metrics: Displays various instruments and meters that are exposed and their
corresponding dimensions for your app. Metrics conditionally expose filters based
on their available dimensions.



https://learn.microsoft.com/en-us/dotnet/aspire/docs/get-started/media/aspire-dashboard-trace.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/get-started/media/aspire-dashboard-trace.png#lightbox

For more information, see .NET Aspire dashboard overview.

The solution consists of the following projects:

AspireSample.ApiService: An ASP.NET Core Minimal API project is used to provide
data to the front end. This project depends on the shared
AspireSample.ServiceDefaults project.
AspireSample.AppHost: An orchestrator project designed to connect and
configure the different projects and services of your app. The orchestrator should
be set as the Startup project, and it depends on the AspireSample.ApiService and
AspireSample.Web projects.
AspireSample.ServiceDefaults: A .NET Aspire shared project to manage
configurations that are reused across the projects in your solution related to
resilience, service discovery, and telemetry.



Understand the .NET Aspire solution structure

https://learn.microsoft.com/en-us/dotnet/core/resilience/http-resilience
https://learn.microsoft.com/en-us/dotnet/aspire/docs/get-started/media/aspire-dashboard-metrics.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/get-started/media/aspire-dashboard-metrics.png#lightbox

AspireSample.Web: An ASP.NET Core Blazor App project with default .NET Aspire
service configurations, this project depends on the AspireSample.ServiceDefaults
project. For more information, see .NET Aspire service defaults.

Your AspireSample directory should resemble the following structure:

Directory

└───📂 AspireSample
 ├───📂 AspireSample.ApiService
 │ ├───📂 Properties
 │ │ └─── launchSettings.json
 │ ├─── appsettings.Development.json
 │ ├─── appsettings.json
 │ ├─── AspireSample.ApiService.csproj
 │ └─── Program.cs
 ├───📂 AspireSample.AppHost
 │ ├───📂 Properties
 │ │ └─── launchSettings.json
 │ ├─── appsettings.Development.json
 │ ├─── appsettings.json
 │ ├─── AspireSample.AppHost.csproj
 │ └─── Program.cs
 ├───📂 AspireSample.ServiceDefaults
 │ ├─── AspireSample.ServiceDefaults.csproj
 │ └─── Extensions.cs
 ├───📂 AspireSample.Web
 │ ├───📂 Components
 │ │ ├───📂 Layout
 │ │ │ ├─── MainLayout.razor
 │ │ │ ├─── MainLayout.razor.css
 │ │ │ ├─── NavMenu.razor
 │ │ │ └─── NavMenu.razor.css
 │ │ ├───📂 Pages
 │ │ │ ├─── Counter.razor
 │ │ │ ├─── Error.razor
 │ │ │ ├─── Home.razor
 │ │ │ └─── Weather.razor
 │ │ ├─── _Imports.razor
 │ │ ├─── App.razor
 │ │ └─── Routes.razor
 │ ├───📂 Properties
 │ │ └─── launchSettings.json
 │ ├───📂 wwwroot
 │ │ ├───📂 bootstrap
 │ │ │ ├─── bootstrap.min.css
 │ │ │ └─── bootstrap.min.css.map
 │ │ ├─── app.css
 │ │ └─── favicon.png
 │ ├─── appsettings.Development.json
 │ ├─── appsettings.json
 │ ├─── AspireSample.Web.csproj
 │ ├─── Program.cs

Each project in an .NET Aspire solution plays a role in the composition of your app. The
*.Web project is a standard ASP.NET Core Blazor App that provides a front end UI. For
more information, see What's new in ASP.NET Core 9.0: Blazor. The *.ApiService project
is a standard ASP.NET Core Minimal API template project. Both of these projects depend
on the *.ServiceDefaults project, which is a shared project that's used to manage
configurations that are reused across projects in your solution.

The two projects of interest in this quickstart are the *.AppHost and *.ServiceDefaults
projects detailed in the following sections.

The *.AppHost project is responsible for acting as the orchestrator, and sets the
IsAspireHost property of the project file to true :

XML

 │ └─── WeatherApiClient.cs
 └─── AspireSample.sln

Explore the starter projects

.NET Aspire host project

<Project Sdk="Microsoft.NET.Sdk">

 <Sdk Name="Aspire.AppHost.Sdk" Version="9.1.0" />

 <PropertyGroup>
 <OutputType>Exe</OutputType>
 <TargetFramework>net9.0</TargetFramework>
 <ImplicitUsings>enable</ImplicitUsings>
 <Nullable>enable</Nullable>
 <IsAspireHost>true</IsAspireHost>
 <UserSecretsId>2aa31fdb-0078-4b71-b953-d23432af8a36</UserSecretsId>
 </PropertyGroup>

 <ItemGroup>
 <ProjectReference
Include="..\AspireSample.ApiService\AspireSample.ApiService.csproj" />
 <ProjectReference Include="..\AspireSample.Web\AspireSample.Web.csproj"
/>
 </ItemGroup>

 <ItemGroup>
 <PackageReference Include="Aspire.Hosting.AppHost" Version="9.1.0" />
 <PackageReference Include="Aspire.Hosting.Redis" Version="9.1.0" />
 </ItemGroup>

https://learn.microsoft.com/en-us/aspnet/core/release-notes/aspnetcore-9.0?view=aspnetcore-9.0&preserve-view=true#blazor

For more information, see .NET Aspire orchestration overview and .NET Aspire SDK.

Consider the Program.cs file of the AspireSample.AppHost project:

C#

If you've used either the .NET Generic Host or the ASP.NET Core Web Host before, the
app host programming model and builder pattern should be familiar to you. The
preceding code:

Creates an IDistributedApplicationBuilder instance from calling
DistributedApplication.CreateBuilder().
Calls AddRedis with the name "cache" to add a Redis server to the app, assigning
the returned value to a variable named cache , which is of type
IResourceBuilder<RedisResource> .
Calls AddProject given the generic-type parameter with the project's details,
adding the AspireSample.ApiService project to the application model. This is one
of the fundamental building blocks of .NET Aspire, and it's used to configure
service discovery and communication between the projects in your app. The name
argument "apiservice" is used to identify the project in the application model,
and used later by projects that want to communicate with it.
Calls AddProject again, this time adding the AspireSample.Web project to the
application model. It also chains multiple calls to WithReference passing the cache
and apiService variables. The WithReference API is another fundamental API of
.NET Aspire, which injects either service discovery information or connection string
configuration into the project being added to the application model. Additionally,

</Project>

var builder = DistributedApplication.CreateBuilder(args);

var cache = builder.AddRedis("cache");

var apiService = builder.AddProject<Projects.AspireSample_ApiService>
("apiservice");

builder.AddProject<Projects.AspireSample_Web>("webfrontend")
 .WithExternalHttpEndpoints()
 .WithReference(cache)
 .WaitFor(cache)
 .WithReference(apiService)
 .WaitFor(apiService);

builder.Build().Run();

https://learn.microsoft.com/en-us/dotnet/core/extensions/generic-host
https://learn.microsoft.com/en-us/aspnet/core/fundamentals/host/web-host
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.idistributedapplicationbuilder
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.distributedapplication.createbuilder#aspire-hosting-distributedapplication-createbuilder
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.redisbuilderextensions.addredis
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.projectresourcebuilderextensions.addproject
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.resourcebuilderextensions.withreference

calls to the WaitFor API are used to ensure that the cache and apiService
resources are available before the AspireSample.Web project is started. For more
information, see .NET Aspire orchestration: Waiting for resources.

Finally, the app is built and run. The DistributedApplication.Run() method is responsible
for starting the app and all of its dependencies. For more information, see .NET Aspire
orchestration overview.

The *.ServiceDefaults project is a shared project that's used to manage configurations
that are reused across the projects in your solution. This project ensures that all
dependent services share the same resilience, service discovery, and OpenTelemetry
configuration. A shared .NET Aspire project file contains the IsAspireSharedProject
property set as true :

XML

 Tip

The call to AddRedis creates a local Redis container for the app to use. If you'd
rather simply point to an existing Redis instance, you can use the
AddConnectionString method to reference an existing connection string. For more
information, see Reference existing resources.

.NET Aspire service defaults project

<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>
 <TargetFramework>net9.0</TargetFramework>
 <ImplicitUsings>enable</ImplicitUsings>
 <Nullable>enable</Nullable>
 <IsAspireSharedProject>true</IsAspireSharedProject>
 </PropertyGroup>

 <ItemGroup>
 <FrameworkReference Include="Microsoft.AspNetCore.App" />

 <PackageReference Include="Microsoft.Extensions.Http.Resilience"
Version="9.3.0" />
 <PackageReference Include="Microsoft.Extensions.ServiceDiscovery"
Version="9.1.0" />
 <PackageReference Include="OpenTelemetry.Exporter.OpenTelemetryProtocol"
Version="1.11.2" />
 <PackageReference Include="OpenTelemetry.Extensions.Hosting"
Version="1.11.2" />
 <PackageReference Include="OpenTelemetry.Instrumentation.AspNetCore"

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.distributedapplication.run#aspire-hosting-distributedapplication-run
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.redisbuilderextensions.addredis

The service defaults project exposes an extension method on the
IHostApplicationBuilder type, named AddServiceDefaults . The service defaults project
from the template is a starting point, and you can customize it to meet your needs. For
more information, see .NET Aspire service defaults.

.NET Aspire provides orchestration features to assist with configuring connections and
communication between the different parts of your app. The AspireSample.AppHost
project added the AspireSample.ApiService and AspireSample.Web projects to the
application model. It also declared their names as "webfrontend" for Blazor front end,
"apiservice" for the API project reference. Additionally, a Redis server resource labeled
"cache" was added. These names are used to configure service discovery and
communication between the projects in your app.

The front end app defines a typed HttpClient that's used to communicate with the API
project.

C#

Version="1.11.1" />
 <PackageReference Include="OpenTelemetry.Instrumentation.Http"
Version="1.11.1" />
 <PackageReference Include="OpenTelemetry.Instrumentation.Runtime"
Version="1.11.1" />
 </ItemGroup>

</Project>

Orchestrate service communication

namespace AspireSample.Web;

public class WeatherApiClient(HttpClient httpClient)
{
 public async Task<WeatherForecast[]> GetWeatherAsync(
 int maxItems = 10,
 CancellationToken cancellationToken = default)
 {
 List<WeatherForecast>? forecasts = null;

 await foreach (var forecast in
 httpClient.GetFromJsonAsAsyncEnumerable<WeatherForecast>(
 "/weatherforecast", cancellationToken))
 {
 if (forecasts?.Count >= maxItems)
 {
 break;
 }

https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.ihostapplicationbuilder
https://learn.microsoft.com/en-us/dotnet/api/system.net.http.httpclient

The HttpClient is configured to use service discovery. Consider the following code from
the Program.cs file of the AspireSample.Web project:

C#

 if (forecast is not null)
 {
 forecasts ??= [];
 forecasts.Add(forecast);
 }
 }

 return forecasts?.ToArray() ?? [];
 }
}

public record WeatherForecast(DateOnly Date, int TemperatureC, string?
Summary)
{
 public int TemperatureF => 32 + (int)(TemperatureC / 0.5556);
}

using AspireSample.Web;
using AspireSample.Web.Components;

var builder = WebApplication.CreateBuilder(args);

// Add service defaults & Aspire client integrations.
builder.AddServiceDefaults();
builder.AddRedisOutputCache("cache");

// Add services to the container.
builder.Services.AddRazorComponents()
 .AddInteractiveServerComponents();

builder.Services.AddHttpClient<WeatherApiClient>(client =>
 {
 // This URL uses "https+http://" to indicate HTTPS is preferred over
HTTP.
 // Learn more about service discovery scheme resolution at
https://aka.ms/dotnet/sdschemes.
 client.BaseAddress = new("https+http://apiservice");
 });

var app = builder.Build();

if (!app.Environment.IsDevelopment())
{
 app.UseExceptionHandler("/Error", createScopeForErrors: true);
 // The default HSTS value is 30 days. You may want to change this for
production scenarios, see https://aka.ms/aspnetcore-hsts.
 app.UseHsts();
}

The preceding code:

Calls AddServiceDefaults , configuring the shared defaults for the app.
Calls AddRedisOutputCache with the same connectionName that was used when
adding the Redis container "cache" to the application model. This configures the
app to use Redis for output caching.
Calls AddHttpClient and configures the HttpClient.BaseAddress to be
"https+http://apiservice" . This is the name that was used when adding the API
project to the application model, and with service discovery configured, it
automatically resolves to the correct address to the API project.

For more information, see Make HTTP requests with the HttpClient class.

.NET Aspire integrations overview
Service discovery in .NET Aspire
.NET Aspire service defaults
Health checks in .NET Aspire
.NET Aspire telemetry
Troubleshoot untrusted localhost certificate in .NET Aspire

app.UseHttpsRedirection();

app.UseAntiforgery();

app.UseOutputCache();

app.MapStaticAssets();

app.MapRazorComponents<App>()
 .AddInteractiveServerRenderMode();

app.MapDefaultEndpoints();

app.Run();

See also

Next steps
Tutorial: Add .NET Aspire to an existing .NET app

https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.aspireredisoutputcacheextensions.addredisoutputcache
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.httpclientfactoryservicecollectionextensions.addhttpclient
https://learn.microsoft.com/en-us/dotnet/api/system.net.http.httpclient.baseaddress#system-net-http-httpclient-baseaddress
https://learn.microsoft.com/en-us/dotnet/fundamentals/networking/http/httpclient
https://learn.microsoft.com/en-us/dotnet/fundamentals/networking/http/httpclient

Tutorial: Add .NET Aspire to an existing
.NET app
Article • 03/03/2025

If you have existing microservices and .NET web app, you can add .NET Aspire to it and
get all the included features and benefits. In this article, you add .NET Aspire
orchestration to a simple, preexisting .NET 9 project. You learn how to:

To work with .NET Aspire, you need the following installed locally:

.NET 8.0 or .NET 9.0
An OCI compliant container runtime, such as:

Docker Desktop or Podman . For more information, see Container runtime.
An Integrated Developer Environment (IDE) or code editor, such as:

Visual Studio 2022 version 17.9 or higher (Optional)
Visual Studio Code (Optional)

C# Dev Kit: Extension (Optional)
JetBrains Rider with .NET Aspire plugin (Optional)

For more information, see .NET Aspire setup and tooling, and .NET Aspire SDK.

Let's start by obtaining the code for the solution:

1. Open a command prompt and change directories to where you want to store the
code.

2. To clone to .NET 9 example solution, use the following git clone command:

Bash

Understand the structure of the existing microservices app.＂

Enroll existing projects in .NET Aspire orchestration.＂

Understand the changes enrollment makes in the projects.＂

Start the .NET Aspire project.＂

Prerequisites

Get started

git clone https://github.com/MicrosoftDocs/mslearn-dotnet-cloudnative-

https://dotnet.microsoft.com/download/dotnet/8.0
https://dotnet.microsoft.com/download/dotnet/8.0
https://dotnet.microsoft.com/download/dotnet/9.0
https://dotnet.microsoft.com/download/dotnet/9.0
https://www.docker.com/products/docker-desktop
https://www.docker.com/products/docker-desktop
https://podman.io/
https://podman.io/
https://visualstudio.microsoft.com/vs/
https://visualstudio.microsoft.com/vs/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://marketplace.visualstudio.com/items?itemName=ms-dotnettools.csdevkit
https://marketplace.visualstudio.com/items?itemName=ms-dotnettools.csdevkit
https://blog.jetbrains.com/dotnet/2024/02/19/jetbrains-rider-and-the-net-aspire-plugin/
https://blog.jetbrains.com/dotnet/2024/02/19/jetbrains-rider-and-the-net-aspire-plugin/

This article uses a .NET 9 solution with three projects:

Data Entities: This project is an example class library. It defines the Product class
used in the Web App and Web API.
Products: This example Web API returns a list of products in the catalog and their
properties.
Store: This example Blazor Web App displays the product catalog to website
visitors.

Open and start debugging the project to examine its default behavior:

1. Start Visual Studio and then select File > Open > Project/Solution.

2. Navigate to the top level folder of the solution you cloned, select eShopLite.sln,
and then select Open.

3. In the Solution Explorer, right-click the eShopLite solution, and then select
Configure Startup Projects.

4. Select Multiple startup projects.

5. In the Action column, select Start for both the Products and Store projects.

6. Select OK.

7. To start debugging the solution, press F5 or select Start.

8. Two pages open in the browser:

A page displays products in JSON format from a call to the Products Web API.
A page displays the homepage of the website. In the menu on the left, select
Products to see the catalog obtained from the Web API.

9. To stop debugging, close the browser.

Now, let's enroll the Store project, which implements the web user interface, in .NET
Aspire orchestration:

devops.git eShopLite

Explore the sample app

Add .NET Aspire to the Store web app

1. In Visual Studio, in the Solution Explorer, right-click the Store project, select Add,
and then select .NET Aspire Orchestrator Support.

2. In the Add .NET Aspire Orchestrator Support dialog, select OK.

You should now have two new projects, both added to the solution:

eShopLite.AppHost: An orchestrator project designed to connect and configure
the different projects and services of your app. The orchestrator is set as the
Startup project, and it depends on the eShopLite.Store project.
eShopLite.ServiceDefaults: A .NET Aspire shared project to manage configurations
that are reused across the projects in your solution related to resilience, service
discovery, and telemetry.

In the eShopLite.AppHost project, open the Program.cs file. Notice this line of code,
which registers the Store project in the .NET Aspire orchestration:

C#

builder.AddProject<Projects.Store>("store");

https://learn.microsoft.com/en-us/dotnet/core/resilience/http-resilience

For more information, see AddProject.

To add the Products project to .NET Aspire:

1. In Visual Studio, in the Solution Explorer, right-click the Products project, select
Add, and then select .NET Aspire Orchestrator Support.

2. A dialog indicating that .NET Aspire Orchestrator project already exists, select OK.

In the eShopLite.AppHost project, open the Program.cs file. Notice this line of code,
which registers the Products project in the .NET Aspire orchestration:

C#

Also notice that the eShopLite.AppHost project, now depends on both the Store and
Products projects.

At this point, both projects are part of .NET Aspire orchestration, but the Store project
needs to rely on the Products backend address through .NET Aspire's service discovery.
To enable service discovery, open the Program.cs file in eShopLite.AppHost project and
update the code so that the builder adds a reference to the Products project:

C#

builder.AddProject<Projects.Products>("products");

Service Discovery

var builder = DistributedApplication.CreateBuilder(args);

var products = builder.AddProject<Projects.Products>("products");

builder.AddProject<Projects.Store>("store")
 .WithExternalHttpEndpoints()
 .WithReference(products);

builder.Build().Run();

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.projectresourcebuilderextensions.addproject

The preceding code expresses that the Store project depends on the Products project.
For more information, see .NET Aspire app host: Reference resources. This reference is
used to discover the address of the Products project at run time. Additionally, the Store
project is configured to use external HTTP endpoints. If you later choose to deploy this
app, you'd need the call to WithExternalHttpEndpoints to ensure that it's public to the
outside world.

Next, update the appsettings.json in the Store project with the following JSON:

JSON

The addresses for both the endpoints now uses the "products" name that was added to
the orchestrator in the app host. These names are used to discover the address of the
Products project.

Let's start the solution and examine the new behavior that .NET Aspire provides.

1. In Visual Studio, to start debugging, press F5 Visual Studio builds the projects.
2. If the Start Docker Desktop dialog appears, select Yes. Visual Studio starts the

Docker engine and creates the necessary containers. When the deployment is
complete, the .NET Aspire dashboard is displayed.

3. In the dashboard, select the endpoint for the products project. A new browser tab
appears and displays the product catalog in JSON format.

4. In the dashboard, select the endpoint for the store project. A new browser tab
appears and displays the home page for the web app.

{
 "DetailedErrors": true,
 "Logging": {
 "LogLevel": {
 "Default": "Information",
 "Microsoft.AspNetCore": "Warning"
 }
 },
 "AllowedHosts": "*",
 "ProductEndpoint": "http://products",
 "ProductEndpointHttps": "https://products"
}

Explore the enrolled app

７ Note

Notice that the eShopLite.AppHost project is the new startup project.

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.resourcebuilderextensions.withexternalhttpendpoints

5. In the menu on the left, select Products. The product catalog is displayed.
6. To stop debugging, close the browser.

Congratulations, you added .NET Aspire orchestration to your pre-existing web app. You
can now add .NET Aspire integrations and use the .NET Aspire tooling to streamline your
cloud-native web app development.

.NET Aspire setup and tooling
Article • 03/15/2025

.NET Aspire includes tooling to help you create and configure cloud-native apps. The
tooling includes useful starter project templates and other features to streamline getting
started with .NET Aspire for Visual Studio, Visual Studio Code, and CLI workflows. In the
sections ahead, you learn how to work with .NET Aspire tooling and explore the
following tasks:

To work with .NET Aspire, you need the following installed locally:

.NET 8.0 or .NET 9.0 .
An OCI compliant container runtime, such as:

Docker Desktop or Podman . For more information, see Container runtime.
An Integrated Developer Environment (IDE) or code editor, such as:

Visual Studio 2022 version 17.9 or higher (Optional)
Visual Studio Code (Optional)

C# Dev Kit: Extension (Optional)
JetBrains Rider with .NET Aspire plugin (Optional)

Visual Studio 2022 17.9 or higher includes the latest .NET Aspire SDK by default when
you install the Web & Cloud workload. If you have an earlier version of Visual Studio
2022, you can either upgrade to Visual Studio 2022 17.9 or you can install the .NET
Aspire SDK using the following steps:

To install the .NET Aspire workload in Visual Studio 2022, use the Visual Studio installer.

1. Open the Visual Studio Installer.

Install .NET Aspire and its dependencies＂

Create starter project templates using Visual Studio, Visual Studio Code, or the .NET
CLI

＂

Install .NET Aspire integrations＂

Work with the .NET Aspire dashboard＂

Install .NET Aspire prerequisites

 Tip

Alternatively, you can develop .NET Aspire solutions using GitHub Codespaces or
Dev Containers.

https://dotnet.microsoft.com/download/dotnet/8.0
https://dotnet.microsoft.com/download/dotnet/8.0
https://dotnet.microsoft.com/download/dotnet/9.0
https://dotnet.microsoft.com/download/dotnet/9.0
https://www.docker.com/products/docker-desktop
https://www.docker.com/products/docker-desktop
https://podman.io/
https://podman.io/
https://visualstudio.microsoft.com/vs/
https://visualstudio.microsoft.com/vs/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://marketplace.visualstudio.com/items?itemName=ms-dotnettools.csdevkit
https://marketplace.visualstudio.com/items?itemName=ms-dotnettools.csdevkit
https://blog.jetbrains.com/dotnet/2024/02/19/jetbrains-rider-and-the-net-aspire-plugin/
https://blog.jetbrains.com/dotnet/2024/02/19/jetbrains-rider-and-the-net-aspire-plugin/

2. Select Modify next to Visual Studio 2022.

3. Select the ASP.NET and web development workload.

4. On the Installation details panel, select .NET Aspire SDK.

5. Select Modify to install the .NET Aspire integration.

.NET Aspire provides a set of solution and project templates. These templates are
available in your favorite .NET developer integrated environment. You can use these
templates to create full .NET Aspire solutions, or add individual projects to existing .NET
Aspire solutions.

To install the .NET Aspire templates in Visual Studio, you need to manually install them
unless you're using Visual Studio 17.12 or later. For Visual Studio 17.9 to 17.11, follow
these steps:

1. Open Visual Studio.
2. Go to Tools > NuGet Package Manager > Package Manager Console.
3. Run the following command to install the templates:

.NET CLI



.NET Aspire templates

Install the .NET Aspire templates

dotnet new install Aspire.ProjectTemplates

https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/media/setup-tooling/web-workload-with-aspire.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/media/setup-tooling/web-workload-with-aspire.png#lightbox

For Visual Studio 17.12 or later, the .NET Aspire templates are installed automatically.

The .NET Aspire templates are installed automatically when you install Visual Studio 17.9
or later. To see what .NET Aspire templates are available, select File > New > Project in
Visual Studio, and search for "Aspire" in the search bar (Alt + S). You'll see a list of
available .NET Aspire project templates:

For more information, see .NET Aspire templates.

.NET Aspire projects are designed to run in containers. You can use either Docker
Desktop or Podman as your container runtime. Docker Desktop is the most common
container runtime. Podman is an open-source daemonless alternative to Docker, that
can build and run Open Container Initiative (OCI) containers. If your host environment
has both Docker and Podman installed, .NET Aspire defaults to using Docker. You can
instruct .NET Aspire to use Podman instead, by setting the
DOTNET_ASPIRE_CONTAINER_RUNTIME environment variable to podman :

PowerShell

List the .NET Aspire templates



Container runtime

Windows

https://www.docker.com/products/docker-desktop/
https://www.docker.com/products/docker-desktop/
https://podman.io/docs/installation
https://podman.io/docs/installation
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/media/vs-create-dotnet-aspire-proj.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/media/vs-create-dotnet-aspire-proj.png#lightbox

For more information, see Install Podman on Windows .

.NET Aspire templates that expose the app host project also include a useful developer
dashboard that's used to monitor and inspect various aspects of your app, such as logs,
traces, and environment configurations. This dashboard is designed to improve the local
development experience and provides an overview of the overall state and structure of
your app.

The .NET Aspire dashboard is only visible while the app is running and starts
automatically when you start the *.AppHost project. Visual Studio and Visual Studio
Code launch both your app and the .NET Aspire dashboard for you automatically in your
browser. If you start the app using the .NET CLI, copy and paste the dashboard URL from
the output into your browser, or hold Ctrl and select the link (if your terminal supports
hyperlinks).

The left navigation provides links to the different parts of the dashboard, each of which
you explore in the following sections.

The .NET Aspire dashboard is also available in a standalone mode. For more information,
see Standalone .NET Aspire dashboard.

[System.Environment]::SetEnvironmentVariable("DOTNET_ASPIRE_CONTAINER_RU
NTIME", "podman", "User")

.NET Aspire dashboard





Visual Studio tooling

https://podman.io/docs/installation#installing-on-mac--windows
https://podman.io/docs/installation#installing-on-mac--windows
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/dotnet-run-login-url.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/dotnet-run-login-url.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/get-started/media/aspire-dashboard.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/get-started/media/aspire-dashboard.png#lightbox

Visual Studio provides additional features for working with .NET Aspire integrations and
the App Host orchestrator project. Not all of these features are currently available in
Visual Studio Code or through the CLI.

You add .NET Aspire integrations to your app like any other NuGet package using Visual
Studio. However, Visual Studio also provides UI options to add .NET Aspire integrations
directly.

1. In Visual Studio, right select on the project you want to add an .NET Aspire
integration to and select Add > .NET Aspire package....

Add an integration package



https://learn.microsoft.com/en-us/dotnet/aspire/docs/media/visual-studio-add-aspire-package.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/media/visual-studio-add-aspire-package.png#lightbox

2. The package manager opens with search results preconfigured (populating filter
criteria) for .NET Aspire integrations, allowing you to easily browse and select the
desired integration.

For more information on .NET Aspire integrations, see .NET Aspire integrations overview.

.NET Aspire hosting packages are used to configure various resources and dependencies
an app may depend on or consume. Hosting packages are differentiated from other
integration packages in that they're added to the *.AppHost project. To add a hosting
package to your app, follow these steps:

1. In Visual Studio, right select on the *.AppHost project and select Add > .NET Aspire
package....



Add hosting packages

https://learn.microsoft.com/en-us/dotnet/aspire/docs/media/visual-studio-add-aspire-comp-nuget.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/media/visual-studio-add-aspire-comp-nuget.png#lightbox

2. The package manager opens with search results preconfigured (populating filter
criteria) for .NET Aspire hosting packages, allowing you to easily browse and select
the desired package.





https://learn.microsoft.com/en-us/dotnet/aspire/docs/media/visual-studio-add-aspire-hosting-package.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/media/visual-studio-add-aspire-hosting-package.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/media/visual-studio-add-aspire-hosting-nuget.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/media/visual-studio-add-aspire-hosting-nuget.png#lightbox

You can add .NET Aspire orchestration projects to an existing app using the following
steps:

1. In Visual Studio, right select on an existing project and select Add > .NET Aspire
Orchestrator Support...

2. A dialog window opens with a summary of the *.AppHost and *.ServiceDefaults
projects that are added to your solution.

Add orchestration projects



https://learn.microsoft.com/en-us/dotnet/aspire/docs/media/visual-studio-add-aspire-orchestrator.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/media/visual-studio-add-aspire-orchestrator.png#lightbox

3. Select OK and the following changes are applied:

The *.AppHost and *.ServiceDefaults orchestration projects are added to your
solution.
A call to builder.AddServiceDefaults will be added to the Program.cs file of
your original project.
A reference to your original project will be added to the Program.cs file of the
*.AppHost project.

For more information on .NET Aspire orchestration, see .NET Aspire orchestration
overview.

Visual Studio provides the option to Enlist in Aspire orchestration during the new
project workflow. Select this option to have Visual Studio create *.AppHost and
*.ServiceDefaults projects alongside your selected project template.

Enlist in orchestration

When you're using Visual Studio, and you select the .NET Aspire Start Application
template, you have the option to include a test project. This test project is an xUnit
project that includes a sample test that you can use as a starting point for your tests.

For more information, see Write your first .NET Aspire test.



Create test project



https://learn.microsoft.com/en-us/dotnet/aspire/docs/media/aspire-enlist-orchestration.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/media/aspire-enlist-orchestration.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/media/setup-tooling/create-test-projects-template.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/media/setup-tooling/create-test-projects-template.png#lightbox

Unable to install .NET Aspire workload
Use Dev Proxy with .NET Aspire project

See also

https://learn.microsoft.com/en-us/microsoft-cloud/dev/dev-proxy/how-to/use-dev-proxy-with-dotnet-aspire

.NET Aspire SDK
Article • 02/25/2025

The .NET Aspire SDK is intended for *.AppHost projects, which serve as the .NET Aspire
orchestrator. These projects are designated using the
<IsAspireHost>true</IsAspireHost> property, as well as specifying the
Aspire.AppHost.Sdk in the project file. The SDK provides a set of features that simplify
the development of .NET Aspire apps.

The 📦 Aspire.AppHost.Sdk is an additive MSBuild project SDK for building .NET
Aspire apps. The Aspire.AppHost.Sdk is defined with a top-level Project/Sdk :

XML

The preceding example project defines the top-level SDK as Microsoft.NET.Sdk and the
Aspire.AppHost.Sdk as an additive SDK. The IsAspireHost property is set to true to
indicate that this project is an .NET Aspire app host. The project also references the
Aspire.Hosting.AppHost package which brings in a number of Aspire-related
dependencies.

Overview

<Project Sdk="Microsoft.NET.Sdk">

 <Sdk Name="Aspire.AppHost.Sdk" Version="9.1.0" />

 <PropertyGroup>
 <OutputType>Exe</OutputType>
 <TargetFramework>net9.0</TargetFramework>
 <IsAspireHost>true</IsAspireHost>
 <!-- Omitted for brevity -->
 </PropertyGroup>

 <ItemGroup>
 <PackageReference Include="Aspire.Hosting.AppHost" Version="9.1.0"
/>
 </ItemGroup>

 <!-- Omitted for brevity -->
</Project>

SDK Features

https://www.nuget.org/packages/Aspire.AppHost.Sdk
https://www.nuget.org/packages/Aspire.AppHost.Sdk
https://learn.microsoft.com/en-us/visualstudio/msbuild/how-to-use-project-sdk

The .NET Aspire SDK provides several key features.

Each ProjectReference in the .NET Aspire app host project isn't treated as standard
project references. Instead, they enable the app host to execute these projects as part of
its orchestration. Each project reference triggers a generator to create a class that
represents the project as an IProjectMetadata. This metadata is used to populate the
named projects in the generated Projects namespace. When you call the
Aspire.Hosting.ProjectResourceBuilderExtensions.AddProject API, the Projects
namespace is used to reference the project—passing the generated class as a generic-
type parameter.

The .NET Aspire SDK dynamically adds references to the .NET Aspire dashboard and
other app host dependencies, such as the developer control plane (DCP) packages.
These dependencies are specific to the platform that the app host is built on.

When the app host project runs, the orchestrator relies on these dependencies to
provide the necessary functionality to the app host. For more information, see .NET
Aspire orchestration overview.

Project references

 Tip

If you need to reference a project in the tranditional way within the app host, set
the IsAspireProjectResource attribute on the ProjectReference element to false ,
as shown in the following example:

XML

<ProjectReference Include="..\MyProject\MyProject.csproj"
IsAspireProjectResource="false" />

Orchestrator dependencies

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.iprojectmetadata
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.projectresourcebuilderextensions.addproject

.NET Aspire templates
Article • 03/15/2025

There are a number of .NET Aspire project templates available to you. You can use these
templates to create full .NET Aspire solutions, or add individual projects to existing .NET
Aspire solutions.

The .NET Aspire templates are available in the 📦 Aspire.ProjectTemplates NuGet
package.

The .NET Aspire templates allow you to create new apps pre-configured with the .NET
Aspire solutions structure and default settings. These projects also provide a unified
debugging experience across the different resources of your app.

.NET Aspire templates are available in two categories: solution templates and project
templates. Solution templates create a new .NET Aspire solution with multiple projects,
while project templates create individual projects that can be added to an existing .NET
Aspire solution.

The following .NET Aspire solution templates are available, assume the solution is
named AspireSample:

.NET Aspire Empty App: A minimal .NET Aspire project that includes the following:
AspireSample.AppHost: An orchestrator project designed to connect and
configure the different projects and services of your app.
AspireSample.ServiceDefaults: A .NET Aspire shared project to manage
configurations that are reused across the projects in your solution related to
resilience, service discovery, and telemetry.

.NET Aspire Starter App: In addition to the .AppHost and .ServiceDefaults
projects, the .NET Aspire Starter App also includes the following:

AspireSample.ApiService: An ASP.NET Core Minimal API project is used to
provide data to the frontend. This project depends on the shared
AspireSample.ServiceDefaults project.
AspireSample.Web: An ASP.NET Core Blazor App project with default .NET
Aspire service configurations, this project depends on the
AspireSample.ServiceDefaults project.

Available templates

Solution templates

https://www.nuget.org/packages/Aspire.ProjectTemplates
https://www.nuget.org/packages/Aspire.ProjectTemplates
https://learn.microsoft.com/en-us/dotnet/core/resilience/http-resilience
https://learn.microsoft.com/en-us/aspnet/core/fundamentals/minimal-apis
https://learn.microsoft.com/en-us/aspnet/core/blazor

AspireSample.Test: Either an MSTest, NUnit, or xUnit test project with project
references to the AspireSample.AppHost and an example WebTests.cs file
demonstrating an integration test.

The following .NET Aspire project templates are available:

.NET Aspire App Host: A standalone .AppHost project that can be used to
orchestrate and manage the different projects and services of your app.

.NET Aspire Test projects: These project templates are used to create test projects
for your .NET Aspire app, and they're intended to represent functional and
integration tests. The test projects include the following templates:

MSTest: A project that contains MSTest integration of a .NET Aspire AppHost
project.
NUnit: A project that contains NUnit integration of a .NET Aspire AppHost
project.

https://learn.microsoft.com/en-us/dotnet/aspire/fundamentals/testing
https://learn.microsoft.com/en-us/dotnet/core/resilience/http-resilience
https://github.com/dotnet/aspire-samples
https://github.com/dotnet/aspire-samples

Follow the prompts to configure your project or solution from the template, and then
select Create.

.NET Aspire SDK

.NET Aspire setup and tooling
Testing in .NET Aspire



See also

https://learn.microsoft.com/en-us/dotnet/aspire/fundamentals/testing
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/media/vs-create-dotnet-aspire-proj.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/media/vs-create-dotnet-aspire-proj.png#lightbox

.NET Aspire and GitHub Codespaces
Article • 02/25/2025

GitHub Codespaces offers a cloud-hosted development environment based on Visual
Studio Code. It can be accessed directly from a web browser or through Visual Studio
Code locally, where Visual Studio Code acts as a client connecting to a cloud-hosted
backend. With .NET Aspire 9.1, comes logic to better support GitHub Codespaces
including:

Automatically configure port forwarding with the correct protocol.
Automatically translate URLs in the .NET Aspire dashboard.

Before .NET Aspire 9.1 it was still possible to use .NET Aspire within a GitHub Codespace,
however more manual configuration was required.

GitHub Codespaces builds upon Visual Studio Code and the Dev Containers
specification . In addition to supporting GitHub Codespaces, .NET Aspire 9.1 enhances
support for using Visual Studio Code and locally hosted Dev Containers. While the
experiences are similar, there are some differences. For more information, see .NET
Aspire and Visual Studio Code Dev Containers.

To configure GitHub Codespaces for .NET Aspire, use the .devcontainer/devcontainer.json
file in your repository. The simplest way to get started is by creating a new repository
from our template repository . Consider the following steps:

1. Create a new repository using our template.

GitHub Codespaces vs. Dev Containers

Quick start using template repository

https://github.com/features/codespaces
https://github.com/features/codespaces
https://containers.dev/implementors/spec/
https://containers.dev/implementors/spec/
https://containers.dev/implementors/spec/
https://github.com/dotnet/aspire-devcontainer
https://github.com/dotnet/aspire-devcontainer
https://github.com/new?template_name=aspire-devcontainer&template_owner=dotnet
https://github.com/new?template_name=aspire-devcontainer&template_owner=dotnet

Once you provide the details and select Create repository, the repository is
created and shown in GitHub.

2. From the new repository, select on the Code button and select the Codespaces tab
and then select Create codespace on main.



https://learn.microsoft.com/en-us/dotnet/aspire/docs/get-started/media/new-repository-from-template.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/get-started/media/new-repository-from-template.png#lightbox

After you select Create codespace on main, you navigate to a web-based version
of Visual Studio Code. Before you use the Codespace, the containerized
development environment needs to be prepared. This process happens
automatically on the server and you can review progress by selecting the Building
codespace link on the notification in the bottom right of the browser window.

When the container image has finished being built the Terminal prompt appears
which signals that the environment is ready to be interacted with.

At this point, the .NET Aspire templates have been installed and the ASP.NET Core
developer certificate has been added and accepted.

3. Create a new .NET Aspire project using the starter template.







https://learn.microsoft.com/en-us/dotnet/aspire/docs/get-started/media/create-codespace-from-repository.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/get-started/media/create-codespace-from-repository.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/get-started/media/building-codespace-image.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/get-started/media/building-codespace-image.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/get-started/media/codespace-terminal.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/get-started/media/codespace-terminal.png#lightbox

.NET CLI

This results in many files and folders being created in the repository, which are
visible in the Explorer panel on the left side of the window.

4. Launch the app host via the HelloAspire.AppHost/Program.cs file, by selecting the
Run project button near the top-right corner of the Tab bar.

dotnet new aspire-starter --name HelloAspire





https://learn.microsoft.com/en-us/dotnet/aspire/docs/get-started/media/codespaces-explorer-panel.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/get-started/media/codespaces-explorer-panel.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/get-started/media/codespace-launch-apphost.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/get-started/media/codespace-launch-apphost.png#lightbox

After a few moments the Debug Console panel is displayed, and it includes a link
to the .NET Aspire dashboard exposed on a GitHub Codespaces endpoint with the
authentication token.

5. Open the .NET Aspire dashboard by selecting the dashboard URL in the Debug
Console. This opens the .NET Aspire dashboard in a separate tab within your
browser.

You notice on the dashboard that all HTTP/HTTPS endpoints defined on resources
have had their typical localhost address translated to a unique fully qualified
subdomain on the app.github.dev domain.

Traffic to each of these endpoints is automatically forwarded to the underlying
process or container running within the Codespace. This includes development
time tools such as PgAdmin and Redis Insight.





７ Note

In addition to the authentication token embedded within the URL of the
dashboard link of the Debug Console, endpoints also require authentication
via your GitHub identity to avoid port forwarded endpoints being accessible
to everyone. For more information on port forwarding in GitHub Codespaces,
see Forwarding ports in your codespace .

https://learn.microsoft.com/en-us/dotnet/aspire/docs/get-started/media/codespaces-debug-console.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/get-started/media/codespaces-debug-console.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/get-started/media/codespaces-translated-urls.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/get-started/media/codespaces-translated-urls.png#lightbox
https://docs.github.com/codespaces/developing-in-a-codespace/forwarding-ports-in-your-codespace?tool=webui
https://docs.github.com/codespaces/developing-in-a-codespace/forwarding-ports-in-your-codespace?tool=webui

6. Commit changes to the GitHub repository.

GitHub Codespaces doesn't automatically commit your changes to the branch
you're working on in GitHub. You have to use the Source Control panel to stage
and commit the changes and push them back to the repository.

Working in a GitHub Codespace is similar to working with Visual Studio Code on
your own machine. You can checkout different branches and push changes just like
you normally would. In addition, you can easily spin up multiple Codespaces
simultaneously if you want to quickly work on another branch without disrupting
your existing debug session. For more information, see Developing in a
codespace .

7. Clean up your Codespace.

GitHub Codespaces are temporary development environments and while you
might use one for an extended period of time, they should be considered a
disposable resource that you recreate as needed (with all of the
customization/setup contained within the devcontainer.json and associated
configuration files).

To delete your GitHub Codespace, visit the GitHub Codespaces page. This shows
you a list of all of your Codespaces. From here you can perform management
operations on each Codespace, including deleting them.

GitHub charges for the use of Codespaces. For more information, see Managing
the cost of GitHub Codespaces in your organization .

The preceding walkthrough demonstrates the streamlined process of creating a GitHub
Codespace using the .NET Aspire Devcontainer template. If you already have an existing
repository and wish to utilize Devcontainer functionality with .NET Aspire, add a
devcontainer.json file to the .devcontainer folder within your repository:

７ Note

.NET Aspire supports the use of Dev Containers in Visual Studio Code
independent of GitHub Codespaces. For more information on how to use Dev
Containers locally, see .NET Aspire and Dev Containers in Visual Studio
Code.

Manually configuring devcontainer.json

https://docs.github.com/codespaces/developing-in-a-codespace/developing-in-a-codespace?tool=webui
https://docs.github.com/codespaces/developing-in-a-codespace/developing-in-a-codespace?tool=webui
https://docs.github.com/codespaces/developing-in-a-codespace/developing-in-a-codespace?tool=webui
https://docs.github.com/codespaces/managing-codespaces-for-your-organization/choosing-who-owns-and-pays-for-codespaces-in-your-organization
https://docs.github.com/codespaces/managing-codespaces-for-your-organization/choosing-who-owns-and-pays-for-codespaces-in-your-organization
https://docs.github.com/codespaces/managing-codespaces-for-your-organization/choosing-who-owns-and-pays-for-codespaces-in-your-organization

Directory

The template repository contains a copy of the devcontainer.json file that you can use
as a starting point, which should be sufficient for .NET Aspire. The following JSON
represents the latest version of the .devcontainer/devcontainer.json file from the
template:

JSON

└───📂 .devcontainer
 └─── devcontainer.json

// For format details, see https://aka.ms/devcontainer.json. For config
options, see the
// README at:
https://github.com/devcontainers/templates/tree/main/src/dotnet
{
 "name": ".NET Aspire",
 // Or use a Dockerfile or Docker Compose file. More info:
https://containers.dev/guide/dockerfile
 "image": "mcr.microsoft.com/devcontainers/dotnet:9.0-bookworm",
 "features": {
 "ghcr.io/devcontainers/features/docker-in-docker:2": {},
 "ghcr.io/devcontainers/features/powershell:1": {},
 },

 "hostRequirements": {
 "cpus": 8,
 "memory": "32gb",
 "storage": "64gb"
 },

 // Use 'forwardPorts' to make a list of ports inside the container
available locally.
 // "forwardPorts": [5000, 5001],
 // "portsAttributes": {
 // "5001": {
 // "protocol": "https"
 // }
 // }

 // Use 'postCreateCommand' to run commands after the container is
created.
 // "postCreateCommand": "dotnet restore",
 "onCreateCommand": "dotnet new install Aspire.ProjectTemplates::9.1.0 --
force",
 "postStartCommand": "dotnet dev-certs https --trust",
 "customizations": {
 "vscode": {
 "extensions": [
 "ms-dotnettools.csdevkit",
 "GitHub.copilot-chat",

https://github.com/dotnet/aspire-devcontainer
https://github.com/dotnet/aspire-devcontainer

Creating a GitHub Codespace can take some time as it prepares the underlying
container image. To expedite this process, you can utilize prebuilds to significantly
reduce the creation time to approximately 30-60 seconds (exact timing might vary). For
more information on GitHub Codespaces prebuilds, see GitHub Codespaces prebuilds .

 "GitHub.copilot"
]
 }
 }
 // Configure tool-specific properties.
 // "customizations": {},

 // Uncomment to connect as root instead. More info: https://aka.ms/dev-
containers-non-root.
 // "remoteUser": "root"
}

Speed up Codespace creation

https://docs.github.com/codespaces/prebuilding-your-codespaces/about-github-codespaces-prebuilds
https://docs.github.com/codespaces/prebuilding-your-codespaces/about-github-codespaces-prebuilds

.NET Aspire and Visual Studio Code Dev
Containers
Article • 02/25/2025

The Dev Containers Visual Studio Code extension provides a way for development
teams to develop within a containerized environment where all dependencies are
preconfigured. With .NET Aspire 9.1, there's added logic to better support working with
.NET Aspire within a Dev Container environment by automatically configuring port
forwarding.

Before .NET Aspire 9.1, it possible to use .NET Aspire within a Dev Container, however
more manual configuration was required.

Using Dev Containers in Visual Studio Code is similar to using GitHub Codespaces. With
the release of .NET Aspire 9.1, support for both Dev Containers in Visual Studio Code
and GitHub Codespaces was enhanced. Although the experiences are similar, there are
some differences. For more information on using .NET Aspire with GitHub Codespaces,
see .NET Aspire and GitHub Codespaces.

To configure Dev Containers in Visual Studio Code, use the
_.devcontainer/devcontainer.json file in your repository. The simplest way to get started
is by creating a new repository from our template repository . Consider the following
steps:

1. Create a new repository using our template.

Dev Containers vs. GitHub Codespaces

Quick start using template repository

https://marketplace.visualstudio.com/items?itemName=ms-vscode-remote.remote-containers
https://marketplace.visualstudio.com/items?itemName=ms-vscode-remote.remote-containers
https://github.com/dotnet/aspire-devcontainer
https://github.com/dotnet/aspire-devcontainer
https://github.com/new?template_name=aspire-devcontainer&template_owner=dotnet
https://github.com/new?template_name=aspire-devcontainer&template_owner=dotnet

Once you provide the details and select Create repository, the repository is
created and shown in GitHub.

2. Clone the repository to your local developer workstation using the following
command:

.NET CLI

3. Open the repository in Visual Studio Code. After a few moments Visual Studio
Code detects the .devcontainer/devcontainer.json file and prompt to open the
repository inside a container. Select whichever option is most appropriate for your
workflow.



git clone https://github.com/<org>/<username>/<repository>

https://learn.microsoft.com/en-us/dotnet/aspire/docs/get-started/media/new-repository-from-template.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/get-started/media/new-repository-from-template.png#lightbox

After a few moments, the list of files become visible and the local build of the dev
container will be completed.

4. Open a new terminal window in Visual Studio Code (Ctrl + Shift + `) and create a
new .NET Aspire project using the dotnet command-line.

.NET CLI

After a few moments, the project will be created and initial dependencies restored.

5. Open the ProjectName.AppHost/Program.cs file in the editor and select the run
button on the top right corner of the editor window.

Visual Studio Code builds and starts the .NET Aspire app host and automatically
opens the .NET Aspire Dashboard. Because the endpoints hosted in the container





dotnet new aspire-starter -n HelloAspire



https://learn.microsoft.com/en-us/dotnet/aspire/docs/get-started/media/reopen-in-container.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/get-started/media/reopen-in-container.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/get-started/media/devcontainer-build-completed.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/get-started/media/devcontainer-build-completed.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/get-started/media/vscode-run-button.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/get-started/media/vscode-run-button.png#lightbox

are using a self-signed certificate the first time, you access an endpoint for a
specific Dev Container you're presented with a certificate error.

The certificate error is expected. Once you've confirmed that the URL being
requested corresponds to the dashboard in the Dev Container you can ignore this
warning.

.NET Aspire automatically configures forwarded ports so that when you select on
the endpoints in the .NET Aspire dashboard they're tunneled to processes and
nested containers within the Dev Container.

6. Commit changes to the GitHub repository

After successfully creating the .NET Aspire project and verifying that it launches
and you can access the dashboard, it's a good idea to commit the changes to the
repository.

https://learn.microsoft.com/en-us/dotnet/aspire/docs/get-started/media/browser-certificate-error.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/get-started/media/browser-certificate-error.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/get-started/media/aspire-dashboard-in-devcontainer.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/get-started/media/aspire-dashboard-in-devcontainer.png#lightbox

The preceding walkthrough demonstrates the streamlined process of creating a Dev
Container using the .NET Aspire Dev Container template. If you already have an existing
repository and wish to utilize Dev Container functionality with .NET Aspire, add a
devcontainer.json file to the .devcontainer folder within your repository:

Directory

The template repository contains a copy of the devcontainer.json file that you can use
as a starting point, which should be sufficient for .NET Aspire. The following JSON
represents the latest version of the .devcontainer/devcontainer.json file from the
template:

JSON

└───📂 .devcontainer
 └─── devcontainer.json

// For format details, see https://aka.ms/devcontainer.json. For config
options, see the
// README at:
https://github.com/devcontainers/templates/tree/main/src/dotnet
{
 "name": ".NET Aspire",
 // Or use a Dockerfile or Docker Compose file. More info:
https://containers.dev/guide/dockerfile
 "image": "mcr.microsoft.com/devcontainers/dotnet:9.0-bookworm",
 "features": {
 "ghcr.io/devcontainers/features/docker-in-docker:2": {},
 "ghcr.io/devcontainers/features/powershell:1": {},
 },

 "hostRequirements": {
 "cpus": 8,
 "memory": "32gb",
 "storage": "64gb"
 },

 // Use 'forwardPorts' to make a list of ports inside the container
available locally.
 // "forwardPorts": [5000, 5001],
 // "portsAttributes": {
 // "5001": {
 // "protocol": "https"
 // }
 // }

 // Use 'postCreateCommand' to run commands after the container is
created.
 // "postCreateCommand": "dotnet restore",
 "onCreateCommand": "dotnet new install Aspire.ProjectTemplates::9.1.0 --

https://github.com/dotnet/aspire-devcontainer
https://github.com/dotnet/aspire-devcontainer

force",
 "postStartCommand": "dotnet dev-certs https --trust",
 "customizations": {
 "vscode": {
 "extensions": [
 "ms-dotnettools.csdevkit",
 "GitHub.copilot-chat",
 "GitHub.copilot"
]
 }
 }
 // Configure tool-specific properties.
 // "customizations": {},

 // Uncomment to connect as root instead. More info: https://aka.ms/dev-
containers-non-root.
 // "remoteUser": "root"
}

What's new in .NET Aspire 9.1
Article • 02/25/2025

📢 .NET Aspire 9.1 is the next minor version release of .NET Aspire; it supports both:

.NET 8.0 Long Term Support (LTS) or

.NET 9.0 Standard Term Support (STS).

As always, we focused on highly requested features and pain points from the
community. Our theme for 9.1 was "polish, polish, polish"—so you see quality of life
fixes throughout the whole platform. Some highlights from this release are resource
relationships in the dashboard, support for working in GitHub Codespaces, and
publishing resources as a Dockerfile.

If you have feedback, questions, or want to contribute to .NET Aspire, collaborate with
us on GitHub or join us on Discord to chat with team members.

Whether you're new to .NET Aspire or have been with us since the preview, it's
important to note that .NET Aspire releases out-of-band from .NET releases. While major
versions of .NET Aspire align with .NET major versions, minor versions are released more
frequently. For more details on .NET and .NET Aspire version support, see:

.NET support policy : Definitions for LTS and STS.

.NET Aspire support policy : Important unique product life cycle details.

Moving between minor releases of .NET Aspire is simple:

1. In your app host project file (that is, MyApp.AppHost.csproj), update the 📦
Aspire.AppHost.Sdk NuGet package to version 9.1.0 :

XML

７ Note

You're able to use .NET Aspire 9.1 with either .NET 8 or .NET 9!

⬆ Upgrade to .NET Aspire 9.1

<Project Sdk="Microsoft.NET.Sdk">

 <Sdk Name="Aspire.AppHost.Sdk" Version="9.1.0" />

 <!-- Omitted for brevity -->

https://github.com/dotnet/aspire
https://github.com/dotnet/aspire
https://github.com/dotnet/aspire
https://discord.com/invite/h87kDAHQgJ
https://discord.com/invite/h87kDAHQgJ
https://discord.com/invite/h87kDAHQgJ
https://dotnet.microsoft.com/platform/support/policy
https://dotnet.microsoft.com/platform/support/policy
https://dotnet.microsoft.com/platform/support/policy/aspire
https://dotnet.microsoft.com/platform/support/policy/aspire
https://www.nuget.org/packages/Aspire.AppHost.Sdk
https://www.nuget.org/packages/Aspire.AppHost.Sdk
https://www.nuget.org/packages/Aspire.AppHost.Sdk

For more information, see .NET Aspire SDK.

2. Check for any NuGet package updates, either using the NuGet Package Manager
in Visual Studio or the Update NuGet Package command in VS Code.

3. Update to the latest .NET Aspire templates by running the following .NET
command line:

.NET CLI

If your app host project file doesn't have the Aspire.AppHost.Sdk reference, you might
still be using .NET Aspire 8. To upgrade to 9.0, you can follow the documentation from
last release.

The onboarding experience for .NET Aspire is improved with 9.1. The team worked on
creating a GitHub Codespaces template that installs all the necessary dependencies for
.NET Aspire, making it easier to get started, including the templates and the ASP.NET
Core developer certificate. Additionally, there's support for Dev Containers. For more
information, see:

.NET Aspire and GitHub Codespaces

.NET Aspire and Visual Studio Code Dev Containers

With every release of .NET Aspire, the dashboard gets more powerful and customizable,
this release is no exception. The following features were added to the dashboard in .NET
Aspire 9.1:

</Project>

dotnet new update

７ Note

The dotnet new update command updates all of your templates to the latest
version.

🌱 Improved onboarding experience

🔧 Dashboard UX and customization

The dashboard now supports "parent" and "child" resource relationships. For instance,
when you create a Postgres instance with multiple databases, these databases are
nested under the same instance on the Resource page.

For more information, see Explore the .NET Aspire dashboard.

The dashboard defaults to the language set in your browser. This release introduces the
ability to override this setting and change the dashboard language independently from
the browser language. Consider the following screen capture that demonstrates the
addition of the language dropdown in the dashboard:

🧩 Resource relationships



🔤 Localization overrides

https://learn.microsoft.com/en-us/dotnet/aspire/docs/whats-new/media/dashboard-parentchild.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/whats-new/media/dashboard-parentchild.png#lightbox

New buttons were added to the Console logs, Structured logs, Traces and Metrics
pages to clear data. There's also a "Remove all" button in the settings popup to remove
everything with one action.

Now you use this feature to reset the dashboard to a blank slate, test your app, view
only the relevant logs and telemetry, and repeat.

We 💜 love the developer community and thrive on its feedback, collaboration, and
contributions. This feature is a community contribution from @Daluur . Join us in



🗑 Clear logs and telemetry from the dashboard



https://github.com/Daluur
https://github.com/Daluur
https://learn.microsoft.com/en-us/dotnet/aspire/docs/whats-new/media/dashboard-language.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/whats-new/media/dashboard-language.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/whats-new/media/dashboard-remove-telemetry.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/whats-new/media/dashboard-remove-telemetry.png#lightbox

celebrating their contribution by using the feature!

You can now filter what you see in the Resource page by Resource type, State, and
Health state. Consider the following screen capture, which demonstrates the addition of
the filter options in the dashboard:

When you select a resource in the dashboard, the details pane now displays new data
points, including References, Back references, and Volumes with their mount types. This
enhancement provides a clearer and more comprehensive view of your resources,
improving the overall user experience by making relevant details more accessible.

 Tip

If you're interested in contributing to .NET Aspire, look for issues labeled with good
first issue and follow the contributor guide .

🔢 New filtering



📝 More resource details

https://github.com/dotnet/aspire/issues?q=is%3Aissue%20state%3Aopen%20label%3A%22good%20first%20issue%22
https://github.com/dotnet/aspire/issues?q=is%3Aissue%20state%3Aopen%20label%3A%22good%20first%20issue%22
https://github.com/dotnet/aspire/issues?q=is%3Aissue%20state%3Aopen%20label%3A%22good%20first%20issue%22
https://github.com/dotnet/aspire/blob/main/docs/contributing.md
https://github.com/dotnet/aspire/blob/main/docs/contributing.md
https://learn.microsoft.com/en-us/dotnet/aspire/docs/whats-new/media/dashboard-filter.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/whats-new/media/dashboard-filter.png#lightbox

For more information, see .NET Aspire dashboard: Resources page.

You can now set the DOTNET_DASHBOARD_CORS_ALLOWED_ORIGINS environment variable to
allow the dashboard to receive telemetry from other browser apps, such as if you have
resources running on custom localhost domains.

For more information, see .NET Aspire app host: Dashboard configuration.

The console log page has two new options. You're now able to download your logs so
you can view them in your own diagnostics tools. Plus, you can turn timestamps on or
off to reduce visual clutter when needed.



🛡 CORS support for custom local domains

฀ Flexibility with console logs

https://learn.microsoft.com/en-us/dotnet/aspire/docs/whats-new/media/dashboard-resourcedetails.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/whats-new/media/dashboard-resourcedetails.png#lightbox

For more information, see .NET Aspire dashboard: Console logs page.

Several new features in .NET Aspire 9.1 enhance and streamline the following popular
tasks:

▶ Resource commands, such as Start and Stop buttons, are now available on the
Console logs page.
🔍 Single selection to open in the text visualizer.
🔗 URLs within logs are now automatically clickable, with commas removed from
endpoints.

Additionally, the 🖱 scroll position resets when switching between different resources—
this helps to visually reset the current resource view.

For more details on the latest dashboard enhancements, check out James Newton-King
on Bluesky , where he's been sharing new features daily.

In .NET Aspire 9.1, several improvements to streamline your local development
experience were an emphasis. These enhancements are designed to provide greater



🎨 Various UX improvements

⚙ Local development enhancements

https://bsky.app/profile/james.newtonking.com
https://bsky.app/profile/james.newtonking.com
https://bsky.app/profile/james.newtonking.com
https://bsky.app/profile/james.newtonking.com
https://learn.microsoft.com/en-us/dotnet/aspire/docs/whats-new/media/consolelogs-download.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/whats-new/media/consolelogs-download.png#lightbox

flexibility, better integration with Docker, and more efficient resource management.
Here are some of the key updates:

You can now tell resources not to start with the rest of your app by using
WithExplicitStart on the resource in your app host. Then, you can start it whenever
you're ready from inside the dashboard.

For more information, see Configure explicit resource start.

The PublishAsDockerfile() feature was introduced for all projects and executable
resources. This enhancement allows for complete customization of the Docker container
and Dockerfile used during the publish process.

While this API was available in previous versions, it couldn't be used with
ProjectResource or ExecutableResource types.

In 9.1, we addressed a persistent issue where Docker networks created by .NET Aspire
would remain active even after the application was stopped. This bug, tracked in .NET
Aspire GitHub issue #6504 , is resolved. Now, Docker networks are properly cleaned
up, ensuring a more efficient and tidy development environment.

Several users reported issues (#6693 , #6704 , #7095) with restarting the .NET
Aspire app host, including reconciliation errors and "address already in use" messages.

This release introduces a more robust approach to managing socket addresses, ensuring
only one instance of each address is used at a time. Additionally, improvements were
made to ensure proper project restarts and resource releases, preventing hanging
issues. These changes enhance the stability and reliability of the app host, especially
during development and testing.

▶ Start resources on demand

🐳 Better Docker integration

🧹 Cleaning up Docker networks

✅ Socket address issues fixed

🔌 Integration updates

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.resourcebuilderextensions.withexplicitstart
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.projectresource
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.executableresource
https://github.com/dotnet/aspire/issues/6504
https://github.com/dotnet/aspire/issues/6504
https://github.com/dotnet/aspire/issues/6504
https://github.com/dotnet/aspire/issues/6693
https://github.com/dotnet/aspire/issues/6693
https://github.com/dotnet/aspire/issues/6704
https://github.com/dotnet/aspire/issues/6704
https://github.com/dotnet/aspire/issues/7095
https://github.com/dotnet/aspire/issues/7095

.NET Aspire continues to excel through its integrations with various platforms. This
release includes numerous updates to existing integrations and details about ownership
migrations, enhancing the overall functionality and user experience.

This release also focused on improving various Azure integrations:

We're excited to bring new emulators for making local development easier. The
following integrations got new emulators in this release:

Azure Service Bus
Azure Cosmos DB Linux-based (preview)
Azure SignalR

C#

These new emulators work side-by-side with the existing emulators for:

Azure Storage
Azure Event Hubs
Azure Cosmos DB

Along with support for the new emulator, Cosmos DB added the following features.

Previously, the Cosmos DB integration used access keys and a Key Vault secret to
connect to the service. .NET Aspire 9.1 added support for using more secure

☁ Azure updates

🆕 New emulators

var serviceBus = builder.AddAzureServiceBus("servicebus")
 .RunAsEmulator();

#pragma warning disable ASPIRECOSMOSDB001
var cosmosDb = builder.AddAzureCosmosDB("cosmosdb")
 .RunAsPreviewEmulator();

var signalr = builder.AddAzureSignalR("signalr",
AzureSignalRServiceMode.Serverless)
 .RunAsEmulator();

🌌 Cosmos DB

🔒 Support for Entra ID authentication by default

https://learn.microsoft.com/en-us/azure/azure-signalr/signalr-howto-emulator

authentication using managed identities by default. If you need to keep using access
key authentication, you can get back to the previous behavior by calling
WithAccessKeyAuthentication.

You can define a Cosmos DB database and containers in the app host and these
resources are available when you run the application in both the emulator and in Azure.
This allows you to define these resources up front and no longer need to create them
from the application, which might not have permission to create them.

For example API usage to add database and containers, see the following related
articles:

.NET Aspire Azure Cosmos DB integration

.NET Aspire Cosmos DB Entity Framework Core integration

The AzureCosmosDBResource was modified to support consumption in Azure Functions
applications that uses the Cosmos DB trigger. A Cosmos DB resource can be initialized
and added as a reference to an Azure Functions resource with the following code:

C#

The resource can be used in the Azure Functions trigger as follows:

C#

💽 Support for modeling Database and Containers in the app host

⚡ Support for Cosmos DB-based triggers in Azure Functions

var cosmosDb = builder.AddAzureCosmosDB("cosmosdb")
 .RunAsEmulator();
var database = cosmosDb.AddCosmosDatabase("mydatabase");
database.AddContainer("mycontainer", "/id");

var funcApp =
builder.AddAzureFunctionsProject<Projects.AzureFunctionsEndToEnd_Functions>
("funcapp")
 .WithReference(cosmosDb)
 .WaitFor(cosmosDb);

public class MyCosmosDbTrigger(ILogger<MyCosmosDbTrigger> logger)
{
 [Function(nameof(MyCosmosDbTrigger))]
 public void Run([CosmosDBTrigger(
 databaseName: "mydatabase",
 containerName: "mycontainer",

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azurecosmosextensions.withaccesskeyauthentication
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azurecosmosdbresource

For more information using Azure Functions with .NET Aspire, see .NET Aspire Azure
Functions integration (Preview).

Similar to Cosmos DB, the Service Bus and Event Hubs integrations now allow you to
define Azure Service Bus queues, topics, subscriptions, and Azure Event Hubs instances
and consumer groups directly in your app host code. This enhancement simplifies your
application logic by enabling the creation and management of these resources outside
the application itself.

For more information, see the following updated articles:

.NET Aspire Azure Service Bus integration

.NET Aspire Azure Event Hubs integration

There's consistent feedback about making it easier to connect to existing Azure
resources in .NET Aspire. With 9.1, you can now easily connect to an existing Azure
resource either directly by string name, or with app model parameters which can be
changed at deployment time. For example to connect to an Azure Service Bus account,
we can use the following code:

C#

The preceding code reads the name and resource group from the parameters, and
connects to the existing resource when the application is run or deployed. For more

 CreateLeaseContainerIfNotExists = true,
 Connection = "cosmosdb")] IReadOnlyList<Document> input)
 {
 logger.LogInformation(
 "C# cosmosdb trigger function processed: {Count} messages",
 input.Count);
 }
}

🚚 Service Bus and Event Hubs

♻ Working with existing resources

var existingServiceBusName = builder.AddParameter("serviceBusName");
var existingServiceBusResourceGroup =
builder.AddParameter("serviceBusResourceGroup");

var serviceBus = builder.AddAzureServiceBus("messaging")
 .AsExisting(existingServiceBusName,
existingServiceBusResourceGroup);

information, see use existing Azure resources.

Experimental support for configuring custom domains in Azure Container Apps (ACA)
was added. For example:

C#

For more information, see .NET Aspire diagnostics overview.

OpenAI now supports the 📦 Microsoft.Extensions.AI NuGet package.
RabbitMQ updated to version 7, and MongoDB to version 3. These updates
introduced breaking changes, leading to the release of new packages with version-
specific suffixes. The original packages continue to use the previous versions, while
the new packages are as follows:
📦 Aspire.RabbitMQ.Client.v7 NuGet package. For more information, see the
.NET Aspire RabbitMQ client integration documentation.
📦 Aspire.MongoDB.Driver.v3 NuGet package. For more information, see the
.NET Aspire MongoDB client integration documentation.

Dapr migrated to the CommunityToolkit to facilitate faster innovation.
Numerous other integrations received updates, fixes, and new features. For
detailed information, refer to our GitHub release notes .

The 📦 Aspire.Hosting.AWS NuGet package and source code migrated under Amazon
Web Services (AWS)) ownership . This migration happened as part of .NET Aspire 9.0,
we're just restating that change here.

🌍 Azure Container Apps

#pragma warning disable ASPIREACADOMAINS001

var customDomain = builder.AddParameter("customDomain");
var certificateName = builder.AddParameter("certificateName");

builder.AddProject<Projects.AzureContainerApps_ApiService>("api")
 .WithExternalHttpEndpoints()
 .PublishAsAzureContainerApp((infra, app) =>
 {
 app.ConfigureCustomDomain(customDomain, certificateName);
 });

➕ Even more integration updates

🧪 Testing in .NET Aspire

https://www.nuget.org/packages/Microsoft.Extensions.AI
https://www.nuget.org/packages/Microsoft.Extensions.AI
https://www.nuget.org/packages/Aspire.RabbitMQ.Client.v7
https://www.nuget.org/packages/Aspire.RabbitMQ.Client.v7
https://www.nuget.org/packages/Aspire.MongoDB.Driver.v3
https://www.nuget.org/packages/Aspire.MongoDB.Driver.v3
https://github.com/CommunityToolkit/Aspire/tree/main/src/CommunityToolkit.Aspire.Hosting.Dapr
https://github.com/CommunityToolkit/Aspire/tree/main/src/CommunityToolkit.Aspire.Hosting.Dapr
https://github.com/dotnet/aspire/releases
https://github.com/dotnet/aspire/releases
https://www.nuget.org/packages/Aspire.Hosting.AWS
https://www.nuget.org/packages/Aspire.Hosting.AWS
https://github.com/aws/integrations-on-dotnet-aspire-for-aws
https://github.com/aws/integrations-on-dotnet-aspire-for-aws
https://github.com/aws/integrations-on-dotnet-aspire-for-aws

.NET Aspire 9.1 simplifies writing cross-functional integration tests with a robust
approach. The app host allows you to create, evaluate, and manage containerized
environments seamlessly within a test run. This functionality supports popular testing
frameworks like xUnit, NUnit, and MSTest, enhancing your testing capabilities and
efficiency.

Now, you're able to disable port randomization or enable the dashboard. For more
information, see .NET Aspire testing overview. Additionally, you can now Pass arguments
to your app host.

Some of these enhancements were introduced as a result of stability issues that were
reported, such as .NET Aspire GitHub issue #6678 —where some resources failed to
start do to "address in use" errors.

Significant improvements to the Azure Container Apps (ACA) deployment process are
included in .NET Aspire 9.1, enhancing both the azd CLI and app host options. One of
the most requested features—support for deploying npm applications to ACA—is now
implemented. This new capability allows npm apps to be deployed to ACA just like other
resources, streamlining the deployment process and providing greater flexibility for
developers.

We recognize there's more work to be done in the area of deployment. Future releases
will continue to address these opportunities for improvement. For more information on
deploying .NET Aspire to ACA, see Deploy a .NET Aspire project to Azure Container
Apps.

.NET Aspire is moving quickly, and with that comes breaking changes. Breaking are
categorized as either:

Binary incompatible: The assembly version has changed, and you need to
recompile your code.
Source incompatible: The source code has changed, and you need to change your
code.
Behavioral change: The code behaves differently, and you need to change your
code.

🚀 Deployment

⚠ Breaking changes

https://github.com/dotnet/aspire/issues/6678
https://github.com/dotnet/aspire/issues/6678

Typically APIs are decorated with the ObsoleteAttribute giving you a warning when you
compile, and an opportunity to adjust your code. For an overview of breaking changes
in .NET Aspire 9.1, see Breaking changes in .NET Aspire 9.1.

Follow the directions outlined in the Upgrade to .NET Aspire 9.1 section to make the
switch to 9.1 and take advantage of all these new features today! As always, we're
listening for your feedback on GitHub -and looking out for what you want to see in 9.2
☺ .

For a complete list of issues addressed in this release, see .NET Aspire GitHub repository
—9.1 milestone .

🎯 Upgrade today

https://learn.microsoft.com/en-us/dotnet/api/system.obsoleteattribute
https://learn.microsoft.com/en-us/dotnet/aspire/compatibility/9.1/
https://github.com/dotnet/aspire/issues
https://github.com/dotnet/aspire/issues
https://github.com/dotnet/aspire/issues?q=is%3Aissue%20state%3Aclosed%20milestone%3A9.1%20
https://github.com/dotnet/aspire/issues?q=is%3Aissue%20state%3Aclosed%20milestone%3A9.1%20
https://github.com/dotnet/aspire/issues?q=is%3Aissue%20state%3Aclosed%20milestone%3A9.1%20

Upgrade to .NET Aspire 9.0
Article • 11/12/2024

.NET Aspire 9.0 is now generally available. In this article, you learn the steps involved in
updating your existing .NET Aspire 8.x projects to .NET Aspire 9.0. There are a few ways
in which you can update your projects to .NET Aspire 9.0:

Manually upgrade your projects to .NET Aspire 9.0.
Use the Upgrade Assistant to upgrade your projects to .NET Aspire 9.0.

Before you upgrade your projects to .NET Aspire 9.0, ensure that you have the following
prerequisites:

Install the latest tooling.
Use the .NET Aspire SDK.

If you don't uninstall the .NET Aspire workload, and you're using the new .NET Aspire
SDK and templates, you see both .NET Aspire 8.0 and .NET Aspire 9.0 templates.

 Tip

If you're new to .NET Aspire, there's no reason to upgrade anything. For more
information, see .NET Aspire setup and tooling.

Prerequisites

７ Note

Feel free to uninstall the .NET Aspire workload as you'll no longer need it.

.NET CLI

For more information, see dotnet workload uninstall.

dotnet workload uninstall aspire

Manually upgrade to .NET Aspire 9.0

https://learn.microsoft.com/en-us/dotnet/core/tools/dotnet-workload-uninstall

To upgrade your projects to .NET Aspire 9.0, you need to update your project files. The
following steps guide you through the process:

Edit your app host project file to use the new .NET Aspire 9.0 SDK
(Aspire.AppHost.Sdk).
Update the NuGet packages in your project files to the latest versions.
Adjust your Program.cs file to use the new APIs and remove any obsolete APIs.

To upgrade your app host project to .NET Aspire 9.0, you need to update your project
file to use the new 📦 Aspire.AppHost.Sdk :

diff

.NET Aspire 9.0 runs on .NET 9.0, but you can also run it on .NET 8.0. In other words, just
because you're using the .NET Aspire SDK, and pointing to version 9.0 packages, you
can still target .NET 8.0. If you want to run your .NET Aspire 9.0 project on .NET 9.0, you
need to update the TargetFramework property in your project file:

diff

Edit your app host project file

<Project Sdk="Microsoft.NET.Sdk">

+ <Sdk Name="Aspire.AppHost.Sdk" Version="9.0.0" />

 <PropertyGroup>
 <OutputType>Exe</OutputType>
 <TargetFramework>net8.0</TargetFramework>
 <ImplicitUsings>enable</ImplicitUsings>
 <Nullable>enable</Nullable>
 <IsAspireHost>true</IsAspireHost>
 <UserSecretsId>0afc20a6-cd99-4bf7-aae1-1359b0d45189</UserSecretsId>
 </PropertyGroup>

 <ItemGroup>
 <PackageReference Include="Aspire.Hosting.AppHost" Version="8.0.0" />
 </ItemGroup>

</Project>

Optionally upgrade the target framework moniker (TFM)

<Project Sdk="Microsoft.NET.Sdk">

 <Sdk Name="Aspire.AppHost.Sdk" Version="9.0.0" />

https://www.nuget.org/packages/Aspire.AppHost.Sdk
https://www.nuget.org/packages/Aspire.AppHost.Sdk

For more information on TFMs, see Target frameworks in SDK-style projects: Latest
versions.

If you followed all of the preceding steps, your app host project file should look like this:

diff

The changes include the addition of the Aspire.AppHost.Sdk , the update of the
TargetFramework property to net9.0 , and the update of the Aspire.Hosting.AppHost

 <PropertyGroup>
 <OutputType>Exe</OutputType>
- <TargetFramework>net8.0</TargetFramework>
+ <TargetFramework>net9.0</TargetFramework>
 <ImplicitUsings>enable</ImplicitUsings>
 <Nullable>enable</Nullable>
 <IsAspireHost>true</IsAspireHost>
 <UserSecretsId>0afc20a6-cd99-4bf7-aae1-1359b0d45189</UserSecretsId>
 </PropertyGroup>

 <ItemGroup>
 <PackageReference Include="Aspire.Hosting.AppHost" Version="9.1.0" />
 </ItemGroup>

</Project>

Overall app host project differences

<Project Sdk="Microsoft.NET.Sdk">

+ <Sdk Name="Aspire.AppHost.Sdk" Version="9.0.0" />

 <PropertyGroup>
 <OutputType>Exe</OutputType>
- <TargetFramework>net8.0</TargetFramework>
+ <TargetFramework>net9.0</TargetFramework>
 <ImplicitUsings>enable</ImplicitUsings>
 <Nullable>enable</Nullable>
 <IsAspireHost>true</IsAspireHost>
 <UserSecretsId>0afc20a6-cd99-4bf7-aae1-1359b0d45189</UserSecretsId>
 </PropertyGroup>

 <ItemGroup>
- <PackageReference Include="Aspire.Hosting.AppHost" Version="8.0.0" />
+ <PackageReference Include="Aspire.Hosting.AppHost" Version="9.1.0" />
 </ItemGroup>

</Project>

https://learn.microsoft.com/en-us/dotnet/standard/frameworks#latest-versions
https://learn.microsoft.com/en-us/dotnet/standard/frameworks#latest-versions

package to version 9.0.0 .

With the introduction of .NET Aspire 9.0, there are some breaking changes. Some APIs
were originally marked as experimental (with the ExperimentalAttribute) and are now
removed, while other APIs are now attributed as ObsoleteAttribute with details on new
replacement APIs. You need to adjust your Program.cs file (and potentially other affected
APIs) to use the new APIs. If you're using the Upgrade Assistant to upgrade your
projects, it automatically adjusts your Program.cs file in most cases.

For the complete list of breaking changes in .NET Aspire 9.0, see Breaking changes in
.NET Aspire 9.0.

The Upgrade Assistant is a tool that helps upgrade targeted projects to the latest
version. If you're new to the Upgrade Assistant, there's two modalities to choose from:

The Visual Studio extension version.
The .NET CLI global tool version.

Regardless of how you install the Upgrade Assistant, you can use it to upgrade your
.NET Aspire 8.x projects to .NET Aspire 9.0.

To upgrade the .NET Aspire app host project to .NET Aspire 9.0 with Visual Studio, right-
click the project in Solution Explorer and select Upgrade.

The Upgrade Assistant displays a welcome package. Select the Aspire upgrades option:

Adjust your Program.cs file

Use the Upgrade Assistant

） Important

If the Upgrade Assistant isn't already installed, you'll be prompted to install it.

https://learn.microsoft.com/en-us/dotnet/api/system.diagnostics.codeanalysis.experimentalattribute
https://learn.microsoft.com/en-us/dotnet/api/system.obsoleteattribute
https://learn.microsoft.com/en-us/dotnet/aspire/compatibility/9.0/
https://learn.microsoft.com/en-us/dotnet/aspire/compatibility/9.0/
https://learn.microsoft.com/en-us/dotnet/core/porting/upgrade-assistant-overview
https://learn.microsoft.com/en-us/dotnet/core/porting/upgrade-assistant-install#visual-studio-extension
https://learn.microsoft.com/en-us/dotnet/core/porting/upgrade-assistant-install#net-global-tool

With the Aspire upgrades option selected, the Upgrade Assistant displays the selectable
upgrade target components. Leave all the options checked and select Upgrade
selection:

Finally, after selecting the components to upgrade, the Upgrade Assistant displays the
results of the upgrade process. If everything was successful, you see green check marks
next to each component:





https://learn.microsoft.com/en-us/dotnet/aspire/docs/get-started/media/upgrade-assistant-welcome-aspire.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/get-started/media/upgrade-assistant-welcome-aspire.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/get-started/media/upgrade-assistant-aspire-app-host-comps.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/get-started/media/upgrade-assistant-aspire-app-host-comps.png#lightbox

To take advantage of the latest updates in your .NET Aspire solution, update all NuGet
packages to version 9.0.0 .

With the app host project updated, your project file should look like this:

diff

https://learn.microsoft.com/en-us/dotnet/aspire/docs/get-started/media/upgrade-assistant-aspire-upgraded.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/get-started/media/upgrade-assistant-aspire-upgraded.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/get-started/media/visual-studio-update-nuget.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/get-started/media/visual-studio-update-nuget.png#lightbox

As with any upgrade, ensure that the app runs as expected and that all tests pass. Build
the solution and look for suggestions, warnings, or errors in the output window—
address anything that wasn't an issue before. If you encounter any issues, let us know by
filing a GitHub issue .

 <TargetFramework>net8.0</TargetFramework>
 <ImplicitUsings>enable</ImplicitUsings>
 <Nullable>enable</Nullable>
 <IsAspireHost>true</IsAspireHost>
 <UserSecretsId>0afc20a6-cd99-4bf7-aae1-1359b0d45189</UserSecretsId>
 </PropertyGroup>

 <ItemGroup>
- <PackageReference Include="Aspire.Hosting.AppHost" Version="8.0.0" />
+ <PackageReference Include="Aspire.Hosting.AppHost" Version="9.1.0" />
 </ItemGroup>

</Project>

 Tip

You'll want to also update the NuGet packages in your other projects to the latest
versions.

Verify the upgrade

https://github.com/dotnet/aspire/issues/new/choose
https://github.com/dotnet/aspire/issues/new/choose

.NET Aspire orchestration overview
Article • 03/14/2025

.NET Aspire provides APIs for expressing resources and dependencies within your
distributed application. In addition to these APIs, there's tooling that enables several
compelling scenarios. The orchestrator is intended for local development purposes and
isn't supported in production environments.

Before continuing, consider some common terminology used in .NET Aspire:

App model: A collection of resources that make up your distributed application
(DistributedApplication), defined within the Aspire.Hosting.ApplicationModel
namespace. For a more formal definition, see Define the app model.
App host/Orchestrator project: The .NET project that orchestrates the app model,
named with the *.AppHost suffix (by convention).
Resource: A resource is a dependent part of an application, such as a .NET project,
container, executable, database, cache, or cloud service. It represents any part of
the application that can be managed or referenced.
Integration: An integration is a NuGet package for either the app host that models
a resource or a package that configures a client for use in a consuming app. For
more information, see .NET Aspire integrations overview.
Reference: A reference defines a connection between resources, expressed as a
dependency using the WithReference API. For more information, see Reference
resources or Reference existing resources.

.NET Aspire empowers you to seamlessly build, provision, deploy, configure, test, run,
and observe your distributed applications. All of these capabilities are achieved through
the utilization of an app model that outlines the resources in your .NET Aspire solution
and their relationships. These resources encompass projects, executables, containers,

７ Note

.NET Aspire's orchestration is designed to enhance your local development
experience by simplifying the management of your cloud-native app's
configuration and interconnections. While it's an invaluable tool for development,
it's not intended to replace production environment systems like Kubernetes,
which are specifically designed to excel in that context.

Define the app model

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.distributedapplication
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.resourcebuilderextensions.withreference

and external services and cloud resources that your app depends on. Within every .NET
Aspire solution, there's a designated App host project, where the app model is precisely
defined using methods available on the IDistributedApplicationBuilder. This builder is
obtained by invoking DistributedApplication.CreateBuilder.

C#

The app host project handles running all of the projects that are part of the .NET Aspire
project. In other words, it's responsible for orchestrating all apps within the app model.
The project itself is a .NET executable project that references the 📦
Aspire.Hosting.AppHost NuGet package, sets the IsAspireHost property to true , and
references the .NET Aspire SDK:

XML

// Create a new app model builder
var builder = DistributedApplication.CreateBuilder(args);

// TODO:
// Add resources to the app model
// Express dependencies between resources

builder.Build().Run();

App host project

<Project Sdk="Microsoft.NET.Sdk">

 <Sdk Name="Aspire.AppHost.Sdk" Version="9.1.0" />

 <PropertyGroup>
 <OutputType>Exe</OutputType>
 <TargetFramework>net9.0</TargetFramework>
 <IsAspireHost>true</IsAspireHost>
 <!-- Omitted for brevity -->
 </PropertyGroup>

 <ItemGroup>
 <PackageReference Include="Aspire.Hosting.AppHost" Version="9.1.0"
/>
 </ItemGroup>

 <!-- Omitted for brevity -->

</Project>

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.idistributedapplicationbuilder
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.distributedapplication.createbuilder
https://www.nuget.org/packages/Aspire.Hosting.AppHost
https://www.nuget.org/packages/Aspire.Hosting.AppHost
https://www.nuget.org/packages/Aspire.Hosting.AppHost

The following code describes an app host Program with two project references and a
Redis cache:

C#

The preceding code:

Creates a new app model builder using the CreateBuilder method.
Adds a Redis cache resource named "cache" using the AddRedis method.
Adds a project resource named "apiservice" using the AddProject method.
Adds a project resource named "webfrontend" using the AddProject method.

Specifies that the project has external HTTP endpoints using the
WithExternalHttpEndpoints method.
Adds a reference to the cache resource and waits for it to be ready using the
WithReference and WaitFor methods.
Adds a reference to the apiservice resource and waits for it to be ready using
the WithReference and WaitFor methods.

Builds and runs the app model using the Build and Run methods.

The example code uses the .NET Aspire Redis hosting integration.

To help visualize the relationship between the app host project and the resources it
describes, consider the following diagram:

var builder = DistributedApplication.CreateBuilder(args);

var cache = builder.AddRedis("cache");

var apiservice = builder.AddProject<Projects.AspireApp_ApiService>
("apiservice");

builder.AddProject<Projects.AspireApp_Web>("webfrontend")
 .WithExternalHttpEndpoints()
 .WithReference(cache)
 .WaitFor(cache)
 .WithReference(apiService)
 .WaitFor(apiService);

builder.Build().Run();

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.distributedapplication.createbuilder
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.redisbuilderextensions.addredis
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.projectresourcebuilderextensions.addproject
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.projectresourcebuilderextensions.addproject
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.resourcebuilderextensions.withexternalhttpendpoints
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.resourcebuilderextensions.withreference
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.resourcebuilderextensions.waitfor
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.resourcebuilderextensions.withreference
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.resourcebuilderextensions.waitfor
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.distributedapplicationbuilder.build
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.distributedapplication.run

Each resource must be uniquely named. This diagram shows each resource and the
relationships between them. The container resource is named "cache" and the project
resources are named "apiservice" and "webfrontend". The web frontend project
references the cache and API service projects. When you're expressing references in this
way, the web frontend project is saying that it depends on these two resources, the
"cache" and "apiservice" respectively.

.NET Aspire projects are made up of a set of resources. The primary base resource types
in the 📦 Aspire.Hosting.AppHost NuGet package are described in the following
table:

Method Resource type Description

AddProject ProjectResource A .NET project, for example, an ASP.NET Core web app.

AddContainer ContainerResource A container image, such as a Docker image.

AddExecutable ExecutableResource An executable file, such as a Node.js app.

AddParameter ParameterResource A parameter resource that can be used to express external
parameters.

Project resources represent .NET projects that are part of the app model. When you add
a project reference to the app host project, the .NET Aspire SDK generates a type in the
Projects namespace for each referenced project. For more information, see .NET Aspire
SDK: Project references.

To add a project to the app model, use the AddProject method:



Built-in resource types

ﾉ Expand table

https://www.nuget.org/packages/Aspire.Hosting.AppHost
https://www.nuget.org/packages/Aspire.Hosting.AppHost
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.projectresourcebuilderextensions.addproject
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.projectresource
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.containerresourcebuilderextensions.addcontainer
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.containerresource
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.executableresourcebuilderextensions.addexecutable
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.executableresource
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.parameterresourcebuilderextensions.addparameter
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.parameterresource
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.projectresourcebuilderextensions.addproject
https://learn.microsoft.com/en-us/dotnet/aspire/docs/media/app-host-resource-diagram.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/media/app-host-resource-diagram.png#lightbox

C#

Projects can be replicated and scaled out by adding multiple instances of the same
project to the app model. To configure replicas, use the WithReplicas method:

C#

The preceding code adds three replicas of the "apiservice" project resource to the app
model. For more information, see .NET Aspire dashboard: Resource replicas.

Project, executable and container resources are automatically started with your
distributed application by default. A resource can be configured to wait for an explicit
startup instruction with the WithExplicitStart method. A resource configured with
WithExplicitStart is initialized with KnownResourceStates.NotStarted.

C#

In the preceeding code the "dbmigration" resource is configured to not automatically
start with the distributed application.

Resources with explicit start can be started from the .NET Aspire dashboard by clicking
the "Start" command. For more information, see .NET Aspire dashboard: Stop or Start a

var builder = DistributedApplication.CreateBuilder(args);

// Adds the project "apiservice" of type "Projects.AspireApp_ApiService".
var apiservice = builder.AddProject<Projects.AspireApp_ApiService>
("apiservice");

var builder = DistributedApplication.CreateBuilder(args);

// Adds the project "apiservice" of type "Projects.AspireApp_ApiService".
var apiservice = builder.AddProject<Projects.AspireApp_ApiService>
("apiservice")
 .WithReplicas(3);

Configure explicit resource start

var builder = DistributedApplication.CreateBuilder(args);

var postgres = builder.AddPostgres("postgres");
var postgresdb = postgres.AddDatabase("postgresdb");

builder.AddProject<Projects.AspireApp_DbMigration>("dbmigration")
 .WithReference(postgresdb)
 .WithExplicitStart();

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.projectresourcebuilderextensions.withreplicas
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.resourcebuilderextensions.withexplicitstart
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.resourcebuilderextensions.withexplicitstart
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.knownresourcestates.notstarted#aspire-hosting-applicationmodel-knownresourcestates-notstarted

resource.

A reference represents a dependency between resources. For example, you can probably
imagine a scenario where you a web frontend depends on a Redis cache. Consider the
following example app host Program C# code:

C#

The "webfrontend" project resource uses WithReference to add a dependency on the
"cache" container resource. These dependencies can represent connection strings or
service discovery information. In the preceding example, an environment variable is
injected into the "webfrontend" resource with the name ConnectionStrings__cache . This
environment variable contains a connection string that the webfrontend uses to connect
to Redis via the .NET Aspire Redis integration, for example,
ConnectionStrings__cache="localhost:62354" .

In some cases, you might want to wait for a resource to be ready before starting another
resource. For example, you might want to wait for a database to be ready before
starting an API that depends on it. To express this dependency, use the WaitFor method:

C#

In the preceding code, the "apiservice" project resource waits for the "postgresdb"
database resource to enter the KnownResourceStates.Running. The example code shows

Reference resources

var builder = DistributedApplication.CreateBuilder(args);

var cache = builder.AddRedis("cache");

builder.AddProject<Projects.AspireApp_Web>("webfrontend")
 .WithReference(cache);

Waiting for resources

var builder = DistributedApplication.CreateBuilder(args);

var postgres = builder.AddPostgres("postgres");
var postgresdb = postgres.AddDatabase("postgresdb");

builder.AddProject<Projects.AspireApp_ApiService>("apiservice")
 .WithReference(postgresdb)
 .WaitFor(postgresdb);

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.resourcebuilderextensions.withreference
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.resourcebuilderextensions.waitfor
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.knownresourcestates.running#aspire-hosting-applicationmodel-knownresourcestates-running

the .NET Aspire PostgreSQL integration, but the same pattern can be applied to other
resources.

Other cases might warrant waiting for a resource to run to completion, either
KnownResourceStates.Exited or KnownResourceStates.Finished before the dependent
resource starts. To wait for a resource to run to completion, use the WaitForCompletion
method:

C#

In the preceding code, the "apiservice" project resource waits for the "migration" project
resource to run to completion before starting. The "migration" project resource waits for
the "postgresdb" database resource to enter the KnownResourceStates.Running. This
can be useful in scenarios where you want to run a database migration before starting
the API service, for example.

Waiting for a resource can be bypassed using the "Start" command in the dashboard.
Clicking "Start" on a waiting resource in the dashboard instructs it to start immediately
without waiting for the resource to be healthy or completed. This can be useful when
you want to test a resource immediately and don't want to wait for the app to be in the
right state.

.NET Aspire hosting integrations and client integrations are both delivered as NuGet
packages, but they serve different purposes. While client integrations provide client
library configuration for consuming apps outside the scope of the app host, hosting
integrations provide APIs for expressing resources and dependencies within the app

var builder = DistributedApplication.CreateBuilder(args);

var postgres = builder.AddPostgres("postgres");
var postgresdb = postgres.AddDatabase("postgresdb");

var migration = builder.AddProject<Projects.AspireApp_Migration>
("migration")
 .WithReference(postgresdb)
 .WaitFor(postgresdb);

builder.AddProject<Projects.AspireApp_ApiService>("apiservice")
 .WithReference(postgresdb)
 .WaitForCompletion(migration);

Forcing resource start in the dashboard

APIs for adding and expressing resources

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.knownresourcestates.exited#aspire-hosting-applicationmodel-knownresourcestates-exited
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.knownresourcestates.finished#aspire-hosting-applicationmodel-knownresourcestates-finished
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.resourcebuilderextensions.waitforcompletion
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.knownresourcestates.running#aspire-hosting-applicationmodel-knownresourcestates-running

host. For more information, see .NET Aspire integrations overview: Integration
responsibilities.

To express a ContainerResource you add it to an IDistributedApplicationBuilder instance
by calling the AddContainer method:

C#

For more information, see GPU support in Docker Desktop .

The preceding code adds a container resource named "ollama" with the image
ollama/ollama . The container resource is configured with multiple bind mounts, a
named HTTP endpoint, an entrypoint that resolves to Unix shell script, and container run
arguments with the WithContainerRuntimeArgs method.

All ContainerResource subclasses can be customized to meet your specific requirements.
This can be useful when using a hosting integration that models a container resource,
but requires modifications. When you have an IResourceBuilder<ContainerResource>
you can chain calls to any of the available APIs to modify the container resource. .NET
Aspire container resources typically point to pinned tags, but you might want to use the
latest tag instead.

To help exemplify this, imagine a scenario where you're using the .NET Aspire Redis
integration. If the Redis integration relies on the 7.4 tag and you want to use the
latest tag instead, you can chain a call to the WithImageTag API:

C#

Express container resources

Docker

var builder = DistributedApplication.CreateBuilder(args);

var ollama = builder.AddContainer("ollama", "ollama/ollama")
 .WithBindMount("ollama", "/root/.ollama")
 .WithBindMount("./ollamaconfig", "/usr/config")
 .WithHttpEndpoint(port: 11434, targetPort: 11434, name: "ollama")
 .WithEntrypoint("/usr/config/entrypoint.sh")
 .WithContainerRuntimeArgs("--gpus=all");

Customize container resources

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.containerresource
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.idistributedapplicationbuilder
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.containerresourcebuilderextensions.addcontainer
https://docs.docker.com/desktop/gpu/
https://docs.docker.com/desktop/gpu/
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.containerresourcebuilderextensions.withcontainerruntimeargs
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.containerresource
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.containerresourcebuilderextensions.withimagetag

For more information and additional APIs available, see
ContainerResourceBuilderExtensions.

When the app host is run, the ContainerResource is used to determine what container
image to create and start. Under the hood, .NET Aspire runs the container using the
defined container image by delegating calls to the appropriate OCI-compliant container
runtime, either Docker or Podman. The following commands are used:

First, the container is created using the docker container create command. Then,
the container is started using the docker container start command.

docker container create : Creates a new container from the specified image,
without starting it.
docker container start : Start one or more stopped containers.

These commands are used instead of docker run to manage attached container
networks, volumes, and ports. Calling these commands in this order allows any IP
(network configuration) to already be present at initial startup.

Beyond the base resource types, ProjectResource, ContainerResource, and
ExecutableResource, .NET Aspire provides extension methods to add common resources
to your app model. For more information, see Hosting integrations.

By default, container resources use the session container lifetime. This means that every
time the app host process is started, the container is created and started. When the app
host stops, the container is stopped and removed. Container resources can opt-in to a
persistent lifetime to avoid unnecessary restarts and use persisted container state. To

var builder = DistributedApplication.CreateBuilder(args);

var cache = builder.AddRedis("cache")
 .WithImageTag("latest");

// Instead of using the "7.4" tag, the "cache"
// container resource now uses the "latest" tag.

Container resource lifecycle

Docker

Container resource lifetime

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.containerresourcebuilderextensions#methods
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.containerresource
https://docs.docker.com/reference/cli/docker/container/create/
https://docs.docker.com/reference/cli/docker/container/create/
https://docs.docker.com/reference/cli/docker/container/start/
https://docs.docker.com/reference/cli/docker/container/start/
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.projectresource
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.containerresource
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.executableresource

achieve this, chain a call the ContainerResourceBuilderExtensions.WithLifetime API and
pass ContainerLifetime.Persistent:

C#

The preceding code adds a container resource named "ollama" with the image
"ollama/ollama" and a persistent lifetime.

It's common to express dependencies between project resources. Consider the following
example code:

C#

Project-to-project references are handled differently than resources that have well-
defined connection strings. Instead of connection string being injected into the
"webfrontend" resource, environment variables to support service discovery are injected.

Method Environment variable

WithReference(cache) ConnectionStrings__cache="localhost:62354"

WithReference(apiservice) services__apiservice__http__0="http://localhost:5455"

services__apiservice__https__0="https://localhost:7356"

Adding a reference to the "apiservice" project results in service discovery environment
variables being added to the frontend. This is because typically, project-to-project

var builder = DistributedApplication.CreateBuilder(args);

var ollama = builder.AddContainer("ollama", "ollama/ollama")
 .WithLifetime(ContainerLifetime.Persistent);

Connection string and endpoint references

var builder = DistributedApplication.CreateBuilder(args);

var cache = builder.AddRedis("cache");

var apiservice = builder.AddProject<Projects.AspireApp_ApiService>
("apiservice");

builder.AddProject<Projects.AspireApp_Web>("webfrontend")
 .WithReference(cache)
 .WithReference(apiservice);

ﾉ Expand table

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.containerresourcebuilderextensions.withlifetime
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.containerlifetime#aspire-hosting-applicationmodel-containerlifetime-persistent

communication occurs over HTTP/gRPC. For more information, see .NET Aspire service
discovery.

To get specific endpoints from a ContainerResource or an ExecutableResource, use one
of the following endpoint APIs:

WithEndpoint
WithHttpEndpoint
WithHttpsEndpoint

Then call the GetEndpoint API to get the endpoint which can be used to reference the
endpoint in the WithReference method:

C#

Method Environment variable

WithReference(endpoint) services__myapp__endpoint__0=https://localhost:9043

The port parameter is the port that the container is listening on. For more information
on container ports, see Container ports. For more information on service discovery, see
.NET Aspire service discovery.

In the preceding section, the WithReference method is used to express dependencies
between resources. When service endpoints result in environment variables being
injected into the dependent resource, the format might not be obvious. This section
provides details on this format.

var builder = DistributedApplication.CreateBuilder(args);

var customContainer = builder.AddContainer("myapp", "mycustomcontainer")
 .WithHttpEndpoint(port: 9043, name:
"endpoint");

var endpoint = customContainer.GetEndpoint("endpoint");

var apiservice = builder.AddProject<Projects.AspireApp_ApiService>
("apiservice")
 .WithReference(endpoint);

ﾉ Expand table

Service endpoint environment variable format

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.containerresource
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.executableresource
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.resourcebuilderextensions.withendpoint
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.resourcebuilderextensions.withhttpendpoint
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.resourcebuilderextensions.withhttpsendpoint
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.resourcebuilderextensions.getendpoint
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.resourcebuilderextensions.withreference
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.resourcebuilderextensions.withreference

When one resource depends on another resource, the app host injects environment
variables into the dependent resource. These environment variables configure the
dependent resource to connect to the resource it depends on. The format of the
environment variables is specific to .NET Aspire and expresses service endpoints in a way
that is compatible with Service Discovery.

Service endpoint environment variable names are prefixed with services__ (double
underscore), then the service name, the endpoint name, and finally the index. The index
supports multiple endpoints for a single service, starting with 0 for the first endpoint
and incrementing for each endpoint.

Consider the following environment variable examples:

Environment

The preceding environment variable expresses the first HTTP endpoint for the
apiservice service. The value of the environment variable is the URL of the service
endpoint. A named endpoint might be expressed as follows:

Environment

In the preceding example, the apiservice service has a named endpoint called
myendpoint . The value of the environment variable is the URL of the service endpoint.

Some situations warrant that you reference an existing resource, perhaps one that is
deployed to a cloud provider. For example, you might want to reference an Azure
database. In this case, you'd rely on the Execution context to dynamically determine
whether the app host is running in "run" mode or "publish" mode. If you're running
locally and want to rely on a cloud resource, you can use the IsRunMode property to
conditionally add the reference. You might choose to instead create the resource in
publish mode. Some hosting integrations support providing a connection string directly,
which can be used to reference an existing resource.

Likewise, there might be use cases where you want to integrate .NET Aspire into an
existing solution. One common approach is to add the .NET Aspire app host project to
an existing solution. Within your app host, you express dependencies by adding project

services__apiservice__http__0

services__apiservice__myendpoint__0

Reference existing resources

references to the app host and building out the app model. For example, one project
might depend on another. These dependencies are expressed using the WithReference
method. For more information, see Add .NET Aspire to an existing .NET app.

The .NET Aspire app host exposes several life cycles that you can hook into by
implementing the IDistributedApplicationLifecycleHook interface. The following lifecycle
methods are available:

Order Method Description

1 BeforeStartAsync Executes before the distributed application starts.

2 AfterEndpointsAllocatedAsync Executes after the orchestrator allocates endpoints for
resources in the application model.

3 AfterResourcesCreatedAsync Executes after the resource was created by the
orchestrator.

While the app host provides life cycle hooks, you might want to register custom events.
For more information, see Eventing in .NET Aspire.

To register a life cycle hook, implement the IDistributedApplicationLifecycleHook
interface and register the hook with the app host using the AddLifecycleHook API:

C#

App host life cycles

ﾉ Expand table

Register a life cycle hook

using Aspire.Hosting.Lifecycle;
using Microsoft.Extensions.Logging;

var builder = DistributedApplication.CreateBuilder(args);

builder.Services.AddLifecycleHook<LifecycleLogger>();

builder.Build().Run();

internal sealed class LifecycleLogger(ILogger<LifecycleLogger> logger)
 : IDistributedApplicationLifecycleHook
{
 public Task BeforeStartAsync(
 DistributedApplicationModel appModel, CancellationToken
cancellationToken = default)

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.resourcebuilderextensions.withreference
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.lifecycle.idistributedapplicationlifecyclehook
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.lifecycle.idistributedapplicationlifecyclehook.beforestartasync
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.lifecycle.idistributedapplicationlifecyclehook.afterendpointsallocatedasync
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.lifecycle.idistributedapplicationlifecyclehook.afterresourcescreatedasync
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.lifecycle.idistributedapplicationlifecyclehook
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.lifecycle.lifecyclehookservicecollectionextensions.addlifecyclehook

The preceding code:

Implements the IDistributedApplicationLifecycleHook interface as a
LifecycleLogger .
Registers the life cycle hook with the app host using the AddLifecycleHook API.
Logs a message for all the events.

When this app host is run, the life cycle hook is executed for each event. The following
output is generated:

Output

 {
 logger.LogInformation("BeforeStartAsync");
 return Task.CompletedTask;
 }

 public Task AfterEndpointsAllocatedAsync(
 DistributedApplicationModel appModel, CancellationToken
cancellationToken = default)
 {
 logger.LogInformation("AfterEndpointsAllocatedAsync");
 return Task.CompletedTask;
 }

 public Task AfterResourcesCreatedAsync(
 DistributedApplicationModel appModel, CancellationToken
cancellationToken = default)
 {
 logger.LogInformation("AfterResourcesCreatedAsync");
 return Task.CompletedTask;
 }
}

info: LifecycleLogger[0]
 BeforeStartAsync
info: Aspire.Hosting.DistributedApplication[0]
 Aspire version: 9.0.0
info: Aspire.Hosting.DistributedApplication[0]
 Distributed application starting.
info: Aspire.Hosting.DistributedApplication[0]
 Application host directory is: ..\AspireApp\AspireApp.AppHost
info: LifecycleLogger[0]
 AfterEndpointsAllocatedAsync
info: Aspire.Hosting.DistributedApplication[0]
 Now listening on: https://localhost:17043
info: Aspire.Hosting.DistributedApplication[0]
 Login to the dashboard at https://localhost:17043/login?
t=d80f598bc8a64c7ee97328a1cbd55d72
info: LifecycleLogger[0]
 AfterResourcesCreatedAsync

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.lifecycle.idistributedapplicationlifecyclehook
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.lifecycle.lifecyclehookservicecollectionextensions.addlifecyclehook

The preferred way to hook into the app host life cycle is to use the eventing API. For
more information, see Eventing in .NET Aspire.

The IDistributedApplicationBuilder exposes an execution context
(DistributedApplicationExecutionContext), which provides information about the current
execution of the app host. This context can be used to evaluate whether or not the app
host is executing as "run" mode, or as part of a publish operation. Consider the
following properties:

IsRunMode: Returns true if the current operation is running.
IsPublishMode: Returns true if the current operation is publishing.

This information can be useful when you want to conditionally execute code based on
the current operation. Consider the following example that demonstrates using the
IsRunMode property. In this case, an extension method is used to generate a stable node
name for RabbitMQ for local development runs.

C#

The execution context is often used to conditionally add resources or connection strings
that point to existing resources. Consider the following example that demonstrates
conditionally adding Redis or a connection string based on the execution context:

info: Aspire.Hosting.DistributedApplication[0]
 Distributed application started. Press Ctrl+C to shut down.

Execution context

private static IResourceBuilder<RabbitMQServerResource>
RunWithStableNodeName(
 this IResourceBuilder<RabbitMQServerResource> builder)
{
 if (builder.ApplicationBuilder.ExecutionContext.IsRunMode)
 {
 builder.WithEnvironment(context =>
 {
 // Set a stable node name so queue storage is consistent between
sessions
 var nodeName = $"{builder.Resource.Name}@localhost";
 context.EnvironmentVariables["RABBITMQ_NODENAME"] = nodeName;
 });
 }

 return builder;
}

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.idistributedapplicationbuilder
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.distributedapplicationexecutioncontext
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.distributedapplicationexecutioncontext.isrunmode
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.distributedapplicationexecutioncontext.ispublishmode

C#

In the preceding code:

If the app host is running in "run" mode, a Redis container resource is added.
If the app host is running in "publish" mode, a connection string is added.

This logic can easily be inverted to connect to an existing Redis resource when you're
running locally, and create a new Redis resource when you're publishing.

Resource relationships link resources together. Relationships are informational and don't
impact an app's runtime behavior. Instead, they're used when displaying details about
resources in the dashboard. For example, relationships are visible in the dashboard's
resource details, and Parent relationships control resource nesting on the resources
page.

Relationships are automatically created by some app model APIs. For example:

WithReference adds a relationship to the target resource with the type Reference .
WaitFor adds a relationship to the target resource with the type WaitFor .

var builder = DistributedApplication.CreateBuilder(args);

var redis = builder.ExecutionContext.IsRunMode
 ? builder.AddRedis("redis")
 : builder.AddConnectionString("redis");

builder.AddProject<Projects.WebApplication>("api")
 .WithReference(redis);

builder.Build().Run();

） Important

.NET Aspire provides common APIs to control the modality of resource builders,
allowing resources to behave differently based on the execution mode. The fluent
APIs are prefixed with RunAs* and PublishAs* . The RunAs* APIs influence the local
development (or run mode) behavior, whereas the PublishAs* APIs influence the
publishing of the resource. For more information on how the Azure resources use
these APIs, see Use existing Azure resources.

Resource relationships

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.resourcebuilderextensions.withreference
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.resourcebuilderextensions.waitfor

Adding a database to a DB container creates a relationship from the database to
the container with the type Parent .

Relationships can also be explicitly added to the app model using WithRelationship and
WithParentRelationship.

C#

The preceding example uses WithParentRelationship to configure catalogdb database
as the migration project's parent. The Parent relationship is special because it controls
resource nesting on the resource page. In this example, migration is nested under
catalogdb .

.NET Aspire integrations overview

.NET Aspire SDK
Eventing in .NET Aspire
Service discovery in .NET Aspire
.NET Aspire service defaults
Expressing external parameters
.NET Aspire inner-loop networking overview

var builder = DistributedApplication.CreateBuilder(args);

var catalogDb = builder.AddPostgres("postgres")
 .WithDataVolume()
 .AddDatabase("catalogdb");

builder.AddProject<Projects.AspireApp_CatalogDbMigration>("migration")
 .WithReference(catalogDb)
 .WithParentRelationship(catalogDb);

builder.Build().Run();

７ Note

There's validation for parent relationships to prevent a resource from having
multiple parents or creating a circular reference. These configurations can't be
rendered in the UI, and the app model will throw an error.

See also

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.resourcebuilderextensions.withrelationship
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.resourcebuilderextensions.withparentrelationship
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.resourcebuilderextensions.withparentrelationship

Orchestrate Node.js apps in .NET Aspire
Article • 03/04/2025

In this article, you learn how to use Node.js and Node Package Manager (npm) apps in a
.NET Aspire project. The sample app in this article demonstrates Angular , React , and
Vue client experiences. The following .NET Aspire APIs exist to support these scenarios
—and they're part of the Aspire.Hosting.NodeJS NuGet package:

Node.js : AddNodeApp.
npm apps : AddNpmApp.

The difference between these two APIs is that the former is used to host Node.js apps,
while the latter is used to host apps that execute from a package.json file's scripts
section—and the corresponding npm run <script-name> command.

To work with .NET Aspire, you need the following installed locally:

.NET 8.0 or .NET 9.0
An OCI compliant container runtime, such as:

Docker Desktop

https://angular.io/
https://angular.io/
https://react.dev/
https://react.dev/
https://vuejs.org/
https://vuejs.org/
https://nuget.org/packages/Aspire.Hosting.NodeJS
https://nuget.org/packages/Aspire.Hosting.NodeJS
https://nodejs.org/
https://nodejs.org/
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.nodeapphostingextension.addnodeapp
https://docs.npmjs.com/cli/using-npm/scripts
https://docs.npmjs.com/cli/using-npm/scripts
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.nodeapphostingextension.addnpmapp
https://dotnet.microsoft.com/download/dotnet/8.0
https://dotnet.microsoft.com/download/dotnet/8.0
https://dotnet.microsoft.com/download/dotnet/9.0
https://dotnet.microsoft.com/download/dotnet/9.0
https://www.docker.com/products/docker-desktop
https://www.docker.com/products/docker-desktop
https://podman.io/
https://podman.io/
https://visualstudio.microsoft.com/vs/
https://visualstudio.microsoft.com/vs/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://marketplace.visualstudio.com/items?itemName=ms-dotnettools.csdevkit
https://marketplace.visualstudio.com/items?itemName=ms-dotnettools.csdevkit
https://github.com/dotnet/aspire-samples/tree/main/samples/AspireWithJavaScript
https://github.com/dotnet/aspire-samples/tree/main/samples/AspireWithJavaScript
https://learn.microsoft.com/en-us/samples/dotnet/aspire-samples/aspire-angular-react-vue
https://learn.microsoft.com/en-us/samples/dotnet/aspire-samples/aspire-nodejs
https://learn.microsoft.com/en-us/samples/dotnet/aspire-samples/aspire-nodejs
https://expressjs.com/
https://expressjs.com/

JetBrains Rider with .NET Aspire plugin (Optional)

For more information, see .NET Aspire setup and tooling, and .NET Aspire SDK.

Additionally, you need to install Node.js on your machine. The sample app in this
article was built with Node.js version 20.12.2 and npm version 10.5.1. To verify your
Node.js and npm versions, run the following commands:

Node.js

Node.js

To download Node.js (including npm), see the Node.js download page .

To clone the sample source code from GitHub , run the following command:

Bash

After cloning the repository, navigate to the samples/AspireWithJavaScript folder:

Bash

From this directory, there are six child directories described in the following list:

AspireJavaScript.Angular: An Angular app that consumes the weather forecast API
and displays the data in a table.
AspireJavaScript.AppHost: A .NET Aspire project that orchestrates the other apps
in this sample. For more information, see .NET Aspire orchestration overview.
AspireJavaScript.MinimalApi: An HTTP API that returns randomly generated
weather forecast data.
AspireJavaScript.React: A React app that consumes the weather forecast API and
displays the data in a table.

node --version

npm --version

Clone sample source code

git clone https://github.com/dotnet/aspire-samples.git

cd samples/AspireWithJavaScript

https://blog.jetbrains.com/dotnet/2024/02/19/jetbrains-rider-and-the-net-aspire-plugin/
https://blog.jetbrains.com/dotnet/2024/02/19/jetbrains-rider-and-the-net-aspire-plugin/
https://nodejs.org/en/download/package-manager
https://nodejs.org/en/download/package-manager
https://nodejs.org/en/download/package-manager
https://nodejs.org/en/download/package-manager
https://github.com/dotnet/aspire-samples/tree/main/samples/AspireWithJavaScript
https://github.com/dotnet/aspire-samples/tree/main/samples/AspireWithJavaScript

AspireJavaScript.ServiceDefaults: The default shared project for .NET Aspire
projects. For more information, see .NET Aspire service defaults.
AspireJavaScript.Vue: A Vue app that consumes the weather forecast API and
displays the data in a table.

The sample app demonstrates how to use JavaScript client apps that are built on top of
Node.js. Each client app was written either using a npm create template command or
manually. The following table lists the template commands used to create each client
app, along with the default port:

App type Create template command Default port

Angular npm create @angular@latest 4200

React Didn't use a template. PORT env var

Vue npm create vue@latest 5173

To run the app, you first need to install the dependencies for each client. To do so,
navigate to each client folder and run npm install (or the install alias npm i)
commands .

Node.js

For more information on the Angular app, see explore the Angular client.

Install client dependencies

ﾉ Expand table

 Tip

You don't need to run any of these commands, since the sample app already
includes the clients. Instead, this is a point of reference from which the clients were
created. For more information, see npm-init .

Install Angular dependencies

npm i ./AspireJavaScript.Angular/

Install React dependencies

https://angular.dev/
https://angular.dev/
https://react.dev/
https://react.dev/
https://vuejs.org/
https://vuejs.org/
https://docs.npmjs.com/cli/v10/commands/npm-install
https://docs.npmjs.com/cli/v10/commands/npm-install
https://docs.npmjs.com/cli/v10/commands/npm-install
https://docs.npmjs.com/cli/commands/npm-init
https://docs.npmjs.com/cli/commands/npm-init

Node.js

For more information on the React app, see explore the React client.

Node.js

For more information on the Vue app, see explore the Vue client.

To run the sample app, call the dotnet run command given the orchestrator app host
AspireJavaScript.AppHost.csproj as the --project switch:

.NET CLI

The .NET Aspire dashboard launches in your default browser, and each client app
endpoint displays under the Endpoints column of the Resources page. The following
image depicts the dashboard for this sample app:

The weatherapi service endpoint resolves to a Swagger UI page that documents the
HTTP API. Each client app consumes this service to display the weather forecast data.
You can view each client app by navigating to the corresponding endpoint in the .NET
Aspire dashboard. Their screenshots and the modifications made from the template
starting point are detailed in the following sections.

npm i ./AspireJavaScript.React/

Install Vue dependencies

npm i ./AspireJavaScript.Vue/

Run the sample app

dotnet run --project
./AspireJavaScript.AppHost/AspireJavaScript.AppHost.csproj



https://learn.microsoft.com/en-us/dotnet/core/tools/dotnet-run
https://learn.microsoft.com/en-us/dotnet/aspire/docs/get-started/media/aspire-dashboard-with-nodejs.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/get-started/media/aspire-dashboard-with-nodejs.png#lightbox

In the same terminal session that you used to run the app, press Ctrl +

https://nuget.org/packages/Aspire.Hosting.NodeJS
https://nuget.org/packages/Aspire.Hosting.NodeJS

The project file also defines a build target that ensures that the npm dependencies are
installed before the app host is built. The app host code (Program.cs) declares the client
app resources using the AddNpmApp(IDistributedApplicationBuilder, String, String,
String, String[]) API.

C#

The preceding code:

Creates a DistributedApplicationBuilder.
Adds the "weatherapi" service as a project to the app host.

Marks the HTTP endpoints as external.

var builder = DistributedApplication.CreateBuilder(args);

var weatherApi = builder.AddProject<Projects.AspireJavaScript_MinimalApi>
("weatherapi")
 .WithExternalHttpEndpoints();

builder.AddNpmApp("angular", "../AspireJavaScript.Angular")
 .WithReference(weatherApi)
 .WaitFor(weatherApi)
 .WithHttpEndpoint(env: "PORT")
 .WithExternalHttpEndpoints()
 .PublishAsDockerFile();

builder.AddNpmApp("react", "../AspireJavaScript.React")
 .WithReference(weatherApi)
 .WaitFor(weatherApi)
 .WithEnvironment("BROWSER", "none") // Disable opening browser on npm
start
 .WithHttpEndpoint(env: "PORT")
 .WithExternalHttpEndpoints()
 .PublishAsDockerFile();

builder.AddNpmApp("vue", "../AspireJavaScript.Vue")
 .WithReference(weatherApi)
 .WaitFor(weatherApi)
 .WithHttpEndpoint(env: "PORT")
 .WithExternalHttpEndpoints()
 .PublishAsDockerFile();

builder.AddNpmApp("reactvite", "../AspireJavaScript.Vite")
 .WithReference(weatherApi)
 .WithEnvironment("BROWSER", "none")
 .WithHttpEndpoint(env: "VITE_PORT")
 .WithExternalHttpEndpoints()
 .PublishAsDockerFile();

builder.Build().Run();

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.nodeapphostingextension.addnpmapp#aspire-hosting-nodeapphostingextension-addnpmapp(aspire-hosting-idistributedapplicationbuilder-system-string-system-string-system-string-system-string())
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.nodeapphostingextension.addnpmapp#aspire-hosting-nodeapphostingextension-addnpmapp(aspire-hosting-idistributedapplicationbuilder-system-string-system-string-system-string-system-string())
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.distributedapplicationbuilder

With a reference to the "weatherapi" service, adds the "angular", "react", and "vue"
client apps as npm apps.

Each client app is configured to run on a different container port, and uses the
PORT environment variable to determine the port.
All client apps also rely on a Dockerfile to build their container image and are
configured to express themselves in the publishing manifest as a container from
the PublishAsDockerFile API.

For more information on inner-loop networking, see .NET Aspire inner-loop networking
overview. For more information on deploying apps, see .NET Aspire manifest format for
deployment tool builders.

When the app host orchestrates the launch of each client app, it uses the npm run start
command. This command is defined in the scripts section of the package.json file for
each client app. The start script is used to start the client app on the specified port.
Each client app relies on a proxy to request the "weatherapi" service.

The proxy is configured in:

The proxy.conf.js file for the Angular client.
The webpack.config.js file for the React client.
The vite.config.ts file for the Vue client.

There are several key modifications from the original Angular template. The first is the
addition of a proxy.conf.js file. This file is used to proxy requests from the Angular client
to the "weatherapi" service.

JavaScript

Explore the Angular client

module.exports = {
 "/api": {
 target:
 process.env["services__weatherapi__https__0"] ||
 process.env["services__weatherapi__http__0"],
 secure: process.env["NODE_ENV"] !== "development",
 pathRewrite: {
 "^/api": "",
 },
 },
};

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.executableresourcebuilderextensions.publishasdockerfile

The .NET Aspire app host sets the services__weatherapi__http__0 environment variable,
which is used to resolve the "weatherapi" service endpoint. The preceding configuration
proxies HTTP requests that start with /api to the target URL specified in the
environment variable.

Then include the proxy file to in the angular.json file. Update the serve target to include
the proxyConfig option, referencing to the created proxy.conf.js file. The Angular CLI will
now use the proxy configuration while serving the Angular client app.

JavaScript

The third update is to the package.json file. This file is used to configure the Angular
client to run on a different port than the default port. This is achieved by using the PORT
environment variable, and the run-script-os npm package to set the port.

JSON

"serve": {
 "builder": "@angular-devkit/build-angular:dev-server",
 "configurations": {
 "production": {
 "buildTarget": "weather:build:production"
 },
 "development": {
 "buildTarget": "weather:build:development"
 }
 },
 "defaultConfiguration": "development",
 "options": {
 "proxyConfig": "proxy.conf.js"
 }
},

{
 "name": "angular-weather",
 "version": "0.0.0",
 "engines": {
 "node": ">=20.12"
 },
 "scripts": {
 "ng": "ng",
 "start": "run-script-os",
 "start:win32": "ng serve --port %PORT%",
 "start:default": "ng serve --port $PORT",
 "build": "ng build",
 "watch": "ng build --watch --configuration development",
 "test": "ng test"
 },
 "private": true,

The scripts section of the package.json file is used to define the start script. This script
is used by the npm start command to start the Angular client app. The start script is
configured to use the run-script-os package to set the port, which delegates to the ng
serve command passing the appropriate --port switch based on the OS-appropriate
syntax.

In order to make HTTP calls to the "weatherapi" service, the Angular client app needs to
be configured to provide the Angular HttpClient for dependency injection. This is
achieved by using the provideHttpClient helper function while configuring the
application in the app.config.ts file.

TypeScript

 "dependencies": {
 "@angular/animations": "^19.2.1",
 "@angular/common": "^19.2.1",
 "@angular/compiler": "^19.2.1",
 "@angular/core": "^19.2.1",
 "@angular/forms": "^19.2.1",
 "@angular/platform-browser": "^19.2.1",
 "@angular/platform-browser-dynamic": "^19.2.1",
 "@angular/router": "^19.2.1",
 "rxjs": "~7.8.2",
 "tslib": "^2.8.1",
 "zone.js": "~0.15.0"
 },
 "devDependencies": {
 "@angular-devkit/build-angular": "^19.2.1",
 "@angular/cli": "^19.2.1",
 "@angular/compiler-cli": "^19.2.1",
 "@types/jasmine": "~5.1.7",
 "jasmine-core": "~5.6.0",
 "karma": "~6.4.4",
 "karma-chrome-launcher": "~3.2.0",
 "karma-coverage": "~2.2.1",
 "karma-jasmine": "~5.1.0",
 "karma-jasmine-html-reporter": "~2.1.0",
 "typescript": "~5.8.2",
 "run-script-os": "^1.1.6"
 }
}

import { ApplicationConfig } from '@angular/core';
import { provideHttpClient } from '@angular/common/http';
import { provideRouter } from '@angular/router';

import { routes } from './app.routes';

export const appConfig: ApplicationConfig = {
 providers: [

Finally, the Angular client app needs to call the /api/WeatherForecast endpoint to
retrieve the weather forecast data. There are several HTML, CSS, and TypeScript updates,
all of which are made to the following files:

app.component.css: Update the CSS to style the table.
app.component.html: Update the HTML to display the weather forecast data in a
table.
app.component.ts: Update the TypeScript to call the /api/WeatherForecast endpoint
and display the data in the table.

TypeScript

To visualize the Angular client app, navigate to the "angular" endpoint in the .NET Aspire
dashboard. The following image depicts the Angular client app:

 provideRouter(routes),
 provideHttpClient()
]
};

import { Component, Injectable } from '@angular/core';
import { CommonModule } from '@angular/common';
import { RouterOutlet } from '@angular/router';
import { HttpClient } from '@angular/common/http';
import { WeatherForecasts } from '../types/weatherForecast';

@Injectable()
@Component({
 selector: 'app-root',
 standalone: true,
 imports: [CommonModule, RouterOutlet],
 templateUrl: './app.component.html',
 styleUrl: './app.component.css'
})
export class AppComponent {
 title = 'weather';
 forecasts: WeatherForecasts = [];

 constructor(private http: HttpClient) {
 http.get<WeatherForecasts>('api/weatherforecast').subscribe({
 next: result => this.forecasts = result,
 error: console.error
 });
 }
}

Angular app running

https://github.com/dotnet/aspire-samples/blob/ef6868b0999c6eea3d42a10f2b20433c5ea93720/samples/AspireWithJavaScript/AspireJavaScript.Angular/src/app/app.component.css
https://github.com/dotnet/aspire-samples/blob/ef6868b0999c6eea3d42a10f2b20433c5ea93720/samples/AspireWithJavaScript/AspireJavaScript.Angular/src/app/app.component.css
https://github.com/dotnet/aspire-samples/blob/ef6868b0999c6eea3d42a10f2b20433c5ea93720/samples/AspireWithJavaScript/AspireJavaScript.Angular/src/app/app.component.html
https://github.com/dotnet/aspire-samples/blob/ef6868b0999c6eea3d42a10f2b20433c5ea93720/samples/AspireWithJavaScript/AspireJavaScript.Angular/src/app/app.component.html
https://github.com/dotnet/aspire-samples/blob/ef6868b0999c6eea3d42a10f2b20433c5ea93720/samples/AspireWithJavaScript/AspireJavaScript.Angular/src/app/app.component.html
https://github.com/dotnet/aspire-samples/blob/ef6868b0999c6eea3d42a10f2b20433c5ea93720/samples/AspireWithJavaScript/AspireJavaScript.Angular/src/app/app.component.ts
https://github.com/dotnet/aspire-samples/blob/ef6868b0999c6eea3d42a10f2b20433c5ea93720/samples/AspireWithJavaScript/AspireJavaScript.Angular/src/app/app.component.ts
https://github.com/dotnet/aspire-samples/blob/ef6868b0999c6eea3d42a10f2b20433c5ea93720/samples/AspireWithJavaScript/AspireJavaScript.Angular/src/app/app.component.ts

The React app wasn't written using a template, and instead was written manually. The
complete source code can be found in the dotnet/aspire-samples repository . Some of
the key points of interest are found in the src/App.js file:

JavaScript



Explore the React client

import { useEffect, useState } from "react";
import "./App.css";

function App() {
 const [forecasts, setForecasts] = useState([]);

 const requestWeather = async () => {
 const weather = await fetch("api/weatherforecast");
 console.log(weather);

 const weatherJson = await weather.json();
 console.log(weatherJson);

 setForecasts(weatherJson);
 };

 useEffect(() => {
 requestWeather();
 }, []);

 return (
 <div className="App">
 <header className="App-header">
 <h1>React Weather</h1>
 <table>
 <thead>

https://github.com/dotnet/aspire-samples/tree/main/samples/AspireWithJavaScript/AspireJavaScript.React
https://github.com/dotnet/aspire-samples/tree/main/samples/AspireWithJavaScript/AspireJavaScript.React
https://learn.microsoft.com/en-us/dotnet/aspire/docs/get-started/media/angular-app.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/get-started/media/angular-app.png#lightbox

The App function is the entry point for the React client app. It uses the useState and
useEffect hooks to manage the state of the weather forecast data. The fetch API is
used to make an HTTP request to the /api/WeatherForecast endpoint. The response is
then converted to JSON and set as the state of the weather forecast data.

JavaScript

 <tr>
 <th>Date</th>
 <th>Temp. (C)</th>
 <th>Temp. (F)</th>
 <th>Summary</th>
 </tr>
 </thead>
 <tbody>
 {(
 forecasts ?? [
 {
 date: "N/A",
 temperatureC: "",
 temperatureF: "",
 summary: "No forecasts",
 },
]
).map((w) => {
 return (
 <tr key={w.date}>
 <td>{w.date}</td>
 <td>{w.temperatureC}</td>
 <td>{w.temperatureF}</td>
 <td>{w.summary}</td>
 </tr>
);
 })}
 </tbody>
 </table>
 </header>
 </div>
);
}

export default App;

const HTMLWebpackPlugin = require("html-webpack-plugin");

module.exports = (env) => {
 return {
 entry: "./src/index.js",
 devServer: {
 port: env.PORT || 4001,
 allowedHosts: "all",
 proxy: [

The preceding code defines the module.exports as follows:

The entry property is set to the src/index.js file.
The devServer relies on a proxy to forward requests to the "weatherapi" service,
sets the port to the PORT environment variable, and allows all hosts.
The output results in a dist folder with a bundle.js file.

 {
 context: ["/api"],
 target:
 process.env.services__weatherapi__https__0 ||
 process.env.services__weatherapi__http__0,
 pathRewrite: { "^/api": "" },
 secure: false,
 },
],
 },
 output: {
 path: `${__dirname}/dist`,
 filename: "bundle.js",
 },
 plugins: [
 new HTMLWebpackPlugin({
 template: "./src/index.html",
 favicon: "./src/favicon.ico",
 }),
],
 module: {
 rules: [
 {
 test: /\.js$/,
 exclude: /node_modules/,
 use: {
 loader: "babel-loader",
 options: {
 presets: [
 "@babel/preset-env",
 ["@babel/preset-react", { runtime: "automatic" }],
],
 },
 },
 },
 {
 test: /\.css$/,
 exclude: /node_modules/,
 use: ["style-loader", "css-loader"],
 },
],
 },
 };
};

The plugins set the src/index.html file as the template, and expose the favicon.ico
file.

The final updates are to the following files:

App.css: Update the CSS to style the table.
App.js: Update the JavaScript to call the /api/WeatherForecast endpoint and display
the data in the table.

To visualize the React client app, navigate to the "react" endpoint in the .NET Aspire
dashboard. The following image depicts the React client app:

There are several key modifications from the original Vue template. The primary updates
were the addition of the fetch call in the TheWelcome.vue file to retrieve the weather
forecast data from the /api/WeatherForecast endpoint. The following code snippet
demonstrates the fetch call:

HTML

React app running



Explore the Vue client

<script lang="ts">
interface WeatherForecast {
 date: string
 temperatureC: number
 temperatureF: number
 summary: string
};

https://github.com/dotnet/aspire-samples/blob/ef6868b0999c6eea3d42a10f2b20433c5ea93720/samples/AspireWithJavaScript/AspireJavaScript.React/src/App.css
https://github.com/dotnet/aspire-samples/blob/ef6868b0999c6eea3d42a10f2b20433c5ea93720/samples/AspireWithJavaScript/AspireJavaScript.React/src/App.css
https://github.com/dotnet/aspire-samples/blob/ef6868b0999c6eea3d42a10f2b20433c5ea93720/samples/AspireWithJavaScript/AspireJavaScript.React/src/App.js
https://github.com/dotnet/aspire-samples/blob/ef6868b0999c6eea3d42a10f2b20433c5ea93720/samples/AspireWithJavaScript/AspireJavaScript.React/src/App.js
https://github.com/dotnet/aspire-samples/blob/ef6868b0999c6eea3d42a10f2b20433c5ea93720/samples/AspireWithJavaScript/AspireJavaScript.React/src/App.js
https://learn.microsoft.com/en-us/dotnet/aspire/docs/get-started/media/react-app.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/get-started/media/react-app.png#lightbox

type Forecasts = WeatherForecast[];

export default {
 name: 'TheWelcome',
 data() {
 return {
 forecasts: [],
 loading: true,
 error: null
 }
 },
 mounted() {
 fetch('api/weatherforecast')
 .then(response => response.json())
 .then(data => {
 this.forecasts = data
 })
 .catch(error => {
 this.error = error
 })
 .finally(() => (this.loading = false))
 }
}
</script>

<template>
 <table>
 <thead>
 <tr>
 <th>Date</th>
 <th>Temp. (C)</th>
 <th>Temp. (F)</th>
 <th>Summary</th>
 </tr>
 </thead>
 <tbody>
 <tr v-for="forecast in (forecasts as Forecasts)">
 <td>{{ forecast.date }}</td>
 <td>{{ forecast.temperatureC }}</td>
 <td>{{ forecast.temperatureF }}</td>
 <td>{{ forecast.summary }}</td>
 </tr>
 </tbody>
 </table>
</template>

<style>
table {
 border: none;
 border-collapse: collapse;
}

th {
 font-size: x-large;

As the TheWelcome integration is mounted , it calls the /api/weatherforecast endpoint to
retrieve the weather forecast data. The response is then set as the forecasts data
property. To set the server port, the Vue client app uses the PORT environment variable.
This is achieved by updating the vite.config.ts file:

TypeScript

 font-weight: bold;
 border-bottom: solid .2rem hsla(160, 100%, 37%, 1);
}

th,
td {
 padding: 1rem;
}

td {
 text-align: center;
 font-size: large;
}

tr:nth-child(even) {
 background-color: var(--vt-c-black-soft);
}
</style>

import { fileURLToPath, URL } from 'node:url'

import { defineConfig } from 'vite'
import vue from '@vitejs/plugin-vue'

// https://vitejs.dev/config/
export default defineConfig({
 plugins: [
 vue(),
],
 resolve: {
 alias: {
 '@': fileURLToPath(new URL('./src', import.meta.url))
 }
 },
 server: {
 host: true,
 port: parseInt(process.env.PORT ?? "5173"),
 proxy: {
 '/api': {
 target: process.env.services__weatherapi__https__0 ||
process.env.services__weatherapi__http__0,
 changeOrigin: true,
 rewrite: path => path.replace(/^\/api/, ''),
 secure: false
 }

Additionally, the Vite config specifies the server.proxy property to forward requests to
the "weatherapi" service. This is achieved by using the services__weatherapi__http__0
environment variable, which is set by the .NET Aspire app host.

The final update from the template is made to the TheWelcome.vue file. This file calls the
/api/WeatherForecast endpoint to retrieve the weather forecast data, and displays the
data in a table. It includes CSS, HTML, and TypeScript updates .

To visualize the Vue client app, navigate to the "vue" endpoint in the .NET Aspire
dashboard. The following image depicts the Vue client app:

The sample source code for this article is designed to run locally. Each client app
deploys as a container image. The Dockerfile for each client app is used to build the
container image. Each Dockerfile is identical, using a multistage build to create a
production-ready container image.

Dockerfile

 }
 }
})

Vue app running



Deployment considerations

FROM node:20 as build

WORKDIR /app

https://github.com/dotnet/aspire-samples/blob/ef6868b0999c6eea3d42a10f2b20433c5ea93720/samples/AspireWithJavaScript/AspireJavaScript.Vue/src/components/TheWelcome.vue
https://github.com/dotnet/aspire-samples/blob/ef6868b0999c6eea3d42a10f2b20433c5ea93720/samples/AspireWithJavaScript/AspireJavaScript.Vue/src/components/TheWelcome.vue
https://learn.microsoft.com/en-us/dotnet/aspire/docs/get-started/media/vue-app.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/get-started/media/vue-app.png#lightbox

The client apps are currently configured to run as true SPA apps, and aren't configured
to run in a server-side rendered (SSR) mode. They sit behind nginx, which is used to
serve the static files. They use a default.conf.template file to configure nginx to proxy
requests to the client app.

nginx

COPY package.json package.json
COPY package-lock.json package-lock.json

RUN npm install

COPY . .

RUN npm run build

FROM nginx:alpine

COPY --from=build /app/default.conf.template
/etc/nginx/templates/default.conf.template
COPY --from=build /app/dist/weather/browser /usr/share/nginx/html

Expose the default nginx port
EXPOSE 80

CMD ["nginx", "-g", "daemon off;"]

server {
 listen ${PORT};
 listen [::]:${PORT};
 server_name localhost;

 access_log /var/log/nginx/server.access.log main;

 location / {
 root /usr/share/nginx/html;
 try_files $uri $uri/ /index.html;
 }

 location /api/ {
 proxy_pass ${services__weatherapi__https__0};
 proxy_http_version 1.1;
 proxy_ssl_server_name on;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 rewrite ^/api(/.*)$ $1 break;
 }
}

Node.js server app considerations

While this article focuses on client apps, you might have scenarios where you need to
host a Node.js server app. The same semantics are required to host a Node.js server app
as a SPA client app. The .NET Aspire app host requires a package reference to the
Aspire.Hosting.NodeJS NuGet package and the code needs to call either AddNodeApp
or AddNpmApp . These APIs are useful for adding existing JavaScript apps to the .NET
Aspire app host.

When configuring secrets and passing environment variables to JavaScript-based apps,
whether they are client or server apps, use parameters. For more information, see .NET
Aspire: External parameters—secrets.

To export OpenTelemetry logs, traces, and metrics from a Node.js server app, you use
the OpenTelemetry JavaScript SDK .

For a complete example of a Node.js server app using the OpenTelemetry JavaScript
SDK, you can refer to the Code Samples: .NET Aspire Node.js sample page. Consider the
sample's instrumentation.js file, which demonstrates how to configure the
OpenTelemetry JavaScript SDK to export logs, traces, and metrics:

JavaScript

Use the OpenTelemetry JavaScript SDK

import { env } from 'node:process';
import { NodeSDK } from '@opentelemetry/sdk-node';
import { OTLPTraceExporter } from '@opentelemetry/exporter-trace-otlp-grpc';
import { OTLPMetricExporter } from '@opentelemetry/exporter-metrics-otlp-
grpc';
import { OTLPLogExporter } from '@opentelemetry/exporter-logs-otlp-grpc';
import { SimpleLogRecordProcessor } from '@opentelemetry/sdk-logs';
import { PeriodicExportingMetricReader } from '@opentelemetry/sdk-metrics';
import { HttpInstrumentation } from '@opentelemetry/instrumentation-http';
import { ExpressInstrumentation } from '@opentelemetry/instrumentation-
express';
import { RedisInstrumentation } from '@opentelemetry/instrumentation-redis-
4';
import { diag, DiagConsoleLogger, DiagLogLevel } from '@opentelemetry/api';
import { credentials } from '@grpc/grpc-js';

const environment = process.env.NODE_ENV || 'development';

// For troubleshooting, set the log level to DiagLogLevel.DEBUG
//diag.setLogger(new DiagConsoleLogger(), environment === 'development' ?
DiagLogLevel.INFO : DiagLogLevel.WARN);

const otlpServer = env.OTEL_EXPORTER_OTLP_ENDPOINT;

if (otlpServer) {

https://nuget.org/packages/Aspire.Hosting.NodeJS
https://nuget.org/packages/Aspire.Hosting.NodeJS
https://opentelemetry.io/docs/languages/js/
https://opentelemetry.io/docs/languages/js/
https://learn.microsoft.com/en-us/samples/dotnet/aspire-samples/aspire-nodejs

While there are several considerations that are beyond the scope of this article, you
learned how to build .NET Aspire projects that use Node.js and Node Package Manager
(npm). You also learned how to use the AddNpmApp APIs to host Node.js apps and apps
that execute from a package.json file, respectively. Finally, you learned how to use the
npm CLI to create Angular, React, and Vue client apps, and how to configure them to run
on different ports.

Code Samples: .NET Aspire with Angular, React, and Vue

 console.log(`OTLP endpoint: ${otlpServer}`);

 const isHttps = otlpServer.startsWith('https://');
 const collectorOptions = {
 credentials: !isHttps
 ? credentials.createInsecure()
 : credentials.createSsl()
 };

 const sdk = new NodeSDK({
 traceExporter: new OTLPTraceExporter(collectorOptions),
 metricReader: new PeriodicExportingMetricReader({
 exportIntervalMillis: environment === 'development' ? 5000 :
10000,
 exporter: new OTLPMetricExporter(collectorOptions),
 }),
 logRecordProcessor: new SimpleLogRecordProcessor({
 exporter: new OTLPLogExporter(collectorOptions)
 }),
 instrumentations: [
 new HttpInstrumentation(),
 new ExpressInstrumentation(),
 new RedisInstrumentation()
],
 });

 sdk.start();
}

 Tip

To configure the .NET Aspire dashboard OTEL CORS settings, see the .NET Aspire
dashboard OTEL CORS settings page.

Summary

See also

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.nodeapphostingextension.addnpmapp
https://learn.microsoft.com/en-us/samples/dotnet/aspire-samples/aspire-angular-react-vue

Code Samples: .NET Aspire Node.js App

https://learn.microsoft.com/en-us/samples/dotnet/aspire-samples/aspire-nodejs

Orchestrate Python apps in .NET Aspire
Article • 11/12/2024

In this article, you learn how to use Python apps in a .NET Aspire app host. The sample
app in this article demonstrates launching a Python application. The Python extension
for .NET Aspire requires the use of virtual environments.

To work with .NET Aspire, you need the following installed locally:

.NET 8.0 or .NET 9.0
An OCI compliant container runtime, such as:

Docker Desktop or Podman . For more information, see Container runtime.
An Integrated Developer Environment (IDE) or code editor, such as:

Visual Studio 2022 version 17.9 or higher (Optional)
Visual Studio Code (Optional)

C# Dev Kit: Extension (Optional)
JetBrains Rider with .NET Aspire plugin (Optional)

For more information, see .NET Aspire setup and tooling, and .NET Aspire SDK.

Additionally, you need to install Python on your machine. The sample app in this
article was built with Python version 3.12.4 and pip version 24.1.2. To verify your Python
and pip versions, run the following commands:

Python

Python

To download Python (including pip), see the Python download page .

To get started launching a Python project in .NET Aspire first use the starter template to
create a .NET Aspire application host:

Prerequisites

python --version

pip --version

Create a .NET Aspire project using the template

https://dotnet.microsoft.com/download/dotnet/8.0
https://dotnet.microsoft.com/download/dotnet/8.0
https://dotnet.microsoft.com/download/dotnet/9.0
https://dotnet.microsoft.com/download/dotnet/9.0
https://www.docker.com/products/docker-desktop
https://www.docker.com/products/docker-desktop
https://podman.io/
https://podman.io/
https://visualstudio.microsoft.com/vs/
https://visualstudio.microsoft.com/vs/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://marketplace.visualstudio.com/items?itemName=ms-dotnettools.csdevkit
https://marketplace.visualstudio.com/items?itemName=ms-dotnettools.csdevkit
https://blog.jetbrains.com/dotnet/2024/02/19/jetbrains-rider-and-the-net-aspire-plugin/
https://blog.jetbrains.com/dotnet/2024/02/19/jetbrains-rider-and-the-net-aspire-plugin/
https://www.python.org/downloads
https://www.python.org/downloads
https://www.python.org/downloads
https://www.python.org/downloads

.NET CLI

In the same terminal session, change directories into the newly created project:

.NET CLI

Once the template has been created launch the app host with the following command
to ensure that the app host and the .NET Aspire dashboard launches successfully:

.NET CLI

Once the app host starts it should be possible to click on the dashboard link in the
console output. At this point the dashboard will not show any resources. Stop the app
host by pressing Ctrl + C in the terminal.

From your previous terminal session where you created the .NET Aspire solution, create
a new directory to contain the Python source code.

Console

Change directories into the newly created hello-python directory:

Console

To work with Python apps, they need to be within a virtual environment. To create a
virtual environment, run the following command:

Python

dotnet new aspire -o PythonSample

cd PythonSample

dotnet run --project PythonSample.AppHost/PythonSample.AppHost.csproj

Prepare a Python app

mkdir hello-python

cd hello-python

Initialize the Python virtual environment

For more information on virtual environments, see the Python: Install packages in a
virtual environment using pip and venv .

To activate the virtual environment, enabling installation and usage of packages, run the
following command:

Bash

Ensure that pip within the virtual environment is up-to-date by running the following
command:

Python

Install the Flask package by creating a requirements.txt file in the hello-python directory
and adding the following line:

Python

Then, install the Flask package by running the following command:

Python

After Flask is installed, create a new file named main.py in the hello-python directory and
add the following code:

Python

python -m venv .venv

Unix/macOS

source .venv/bin/activate

python -m pip install --upgrade pip

Install Python packages

Flask==3.0.3

python -m pip install -r requirements.txt

https://packaging.python.org/en/latest/guides/installing-using-pip-and-virtual-environments/
https://packaging.python.org/en/latest/guides/installing-using-pip-and-virtual-environments/
https://packaging.python.org/en/latest/guides/installing-using-pip-and-virtual-environments/

The preceding code creates a simple Flask app that listens on port 8111 and returns the
message "Hello, World!" when the root endpoint is accessed.

Install the Python hosting package by running the following command:

.NET CLI

After the package is installed, the project XML should have a new package reference
similar to the following:

XML

import os
import flask

app = flask.Flask(__name__)

@app.route('/', methods=['GET'])
def hello_world():
 return 'Hello, World!'

if __name__ == '__main__':
 port = int(os.environ.get('PORT', 8111))
 app.run(host='0.0.0.0', port=port)

Update the app host project

dotnet add ../PythonSample.AppHost/PythonSample.AppHost.csproj package
Aspire.Hosting.Python --version 9.0.0

<Project Sdk="Microsoft.NET.Sdk">

 <Sdk Name="Aspire.AppHost.Sdk" Version="9.1.0" />

 <PropertyGroup>
 <OutputType>Exe</OutputType>
 <TargetFramework>net9.0</TargetFramework>
 <ImplicitUsings>enable</ImplicitUsings>
 <Nullable>enable</Nullable>
 <IsAspireHost>true</IsAspireHost>
 <UserSecretsId>5fd92a87-fff8-4a09-9f6e-2c0d656e25ba</UserSecretsId>
 </PropertyGroup>

 <ItemGroup>
 <PackageReference Include="Aspire.Hosting.AppHost" Version="9.1.0" />
 <PackageReference Include="Aspire.Hosting.Python" Version="9.1.0" />
 </ItemGroup>

Update the app host Program.cs file to include the Python project, by calling the
AddPythonApp API and specifying the project name, project path, and the entry point file:

C#

Now that you've added the Python hosting package, updated the app host Program.cs
file, and created a Python project, you can run the app host:

.NET CLI

Launch the dashboard by clicking the link in the console output. The dashboard should
display the Python project as a resource.

</Project>

using Microsoft.Extensions.Hosting;

var builder = DistributedApplication.CreateBuilder(args);

#pragma warning disable ASPIREHOSTINGPYTHON001
var pythonapp = builder.AddPythonApp("hello-python", "../hello-python",
"main.py")
 .WithHttpEndpoint(env: "PORT")
 .WithExternalHttpEndpoints()
 .WithOtlpExporter();
#pragma warning restore ASPIREHOSTINGPYTHON001

if (builder.ExecutionContext.IsRunMode &&
builder.Environment.IsDevelopment())
{
 pythonapp.WithEnvironment("DEBUG", "True");
}

builder.Build().Run();

） Important

The AddPythonApp API is experimental and may change in future releases. For more
information, see ASPIREHOSTINGPYTHON001.

Run the app

dotnet run --project ../PythonSample.AppHost/PythonSample.AppHost.csproj

Select the Endpoints link to open the hello-python endpoint in a new browser tab. The
browser should display the message "Hello, World!":

Stop the app host by pressing Ctrl + C in the terminal.

To add a bit of observability, add telemetry to help monitor the dependant Python app.
In the Python project, add the following OpenTelemetry package as a dependency in the
requirements.txt file:

Python

The preceding requirement update, adds the OpenTelemetry package and the OTLP
exporter. Next, re-install the Python app requirements into the virtual environment by
running the following command:





Add telemetry support.

Flask==3.0.3
opentelemetry-distro
opentelemetry-exporter-otlp-proto-grpc
opentelemetry-instrumentation-flask
gunicorn

https://learn.microsoft.com/en-us/dotnet/aspire/docs/get-started/media/python-dashboard.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/get-started/media/python-dashboard.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/get-started/media/python-hello-world.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/get-started/media/python-hello-world.png#lightbox

Python

The preceding command installs the OpenTelemetry package and the OTLP exporter, in
the virtual environment. Update the Python app to include the OpenTelemetry code, by
replacing the existing main.py code with the following:

Python

Update the app host project's launchSettings.json file to include the
ASPIRE_ALLOW_UNSECURED_TRANSPORT environment variable:

JSON

python -m pip install -r requirements.txt

import os
import logging
import flask
from opentelemetry import trace
from opentelemetry.exporter.otlp.proto.grpc.trace_exporter import
OTLPSpanExporter
from opentelemetry.sdk.trace import TracerProvider
from opentelemetry.sdk.trace.export import BatchSpanProcessor
from opentelemetry.instrumentation.flask import FlaskInstrumentor

app = flask.Flask(__name__)

trace.set_tracer_provider(TracerProvider())
otlpExporter = OTLPSpanExporter()
processor = BatchSpanProcessor(otlpExporter)
trace.get_tracer_provider().add_span_processor(processor)

FlaskInstrumentor().instrument_app(app)

logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

@app.route('/', methods=['GET'])
def hello_world():
 logger.info("request received!")
 return 'Hello, World!'

if __name__ == '__main__':
 port = int(os.environ.get('PORT', 8111))
 debug = bool(os.environ.get('DEBUG', False))
 host = os.environ.get('HOST', '127.0.0.1')
 app.run(port=port, debug=debug, host=host)

{
 "$schema": "https://json.schemastore.org/launchsettings.json",

The ASPIRE_ALLOW_UNSECURED_TRANSPORT variable is required because when running
locally the OpenTelemetry client in Python rejects the local development certificate.
Launch the app host again:

.NET CLI

https://learn.microsoft.com/en-us/dotnet/aspire/docs/get-started/media/python-telemetry-in-dashboard.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/get-started/media/python-telemetry-in-dashboard.png#lightbox

While there are several considerations that are beyond the scope of this article, you
learned how to build .NET Aspire solution that integrates with Python. You also learned
how to use the AddPythonApp API to host Python apps.

GitHub: .NET Aspire Samples—Python hosting integration

Summary

See also

https://github.com/dotnet/aspire-samples/tree/main/samples/AspireWithPython
https://github.com/dotnet/aspire-samples/tree/main/samples/AspireWithPython

App host configuration
Article • 11/22/2024

The app host project configures and starts your distributed application (DistributedApplication). When a
DistributedApplication runs it reads configuration from the app host. Configuration is loaded from environment
variables that are set on the app host and DistributedApplicationOptions.

Configuration includes:

Settings for hosting the resource service, such as the address and authentication options.
Settings used to start the .NET Aspire dashboard, such the dashboard's frontend and OpenTelemetry
Protocol (OTLP) addresses.
Internal settings that .NET Aspire uses to run the app host. These are set internally but can be accessed by
integrations that extend .NET Aspire.

App host configuration is provided by the app host launch profile. The app host has a launch settings file call
launchSettings.json which has a list of launch profiles. Each launch profile is a collection of related options which
defines how you would like dotnet to start your application.

JSON

The preceding launch settings file:

Has one launch profile named https .
Configures an .NET Aspire app host project:

The applicationUrl property configures the dashboard launch address (ASPNETCORE_URLS).
Environment variables such as DOTNET_DASHBOARD_OTLP_ENDPOINT_URL and
DOTNET_RESOURCE_SERVICE_ENDPOINT_URL are set on the app host.

For more information, see .NET Aspire and launch profiles.

{
 "$schema": "https://json.schemastore.org/launchsettings.json",
 "profiles": {
 "https": {
 "commandName": "Project",
 "dotnetRunMessages": true,
 "launchBrowser": true,
 "applicationUrl": "https://localhost:17134;http://localhost:15170",
 "environmentVariables": {
 "ASPNETCORE_ENVIRONMENT": "Development",
 "DOTNET_ENVIRONMENT": "Development",
 "DOTNET_DASHBOARD_OTLP_ENDPOINT_URL": "https://localhost:21030",
 "DOTNET_RESOURCE_SERVICE_ENDPOINT_URL": "https://localhost:22057"
 }
 }
 }
}

７ Note

Configuration described on this page is for .NET Aspire app host project. To configure the standalone
dashboard, see dashboard configuration.

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.distributedapplication
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.distributedapplicationoptions

Option Default
value

Description

ASPIRE_ALLOW_UNSECURED_TRANSPORT false Allows communication with the app host without https. ASPNETCORE_URLS
(dashboard address) and DOTNET_RESOURCE_SERVICE_ENDPOINT_URL (app host
resource service address) must be secured with HTTPS unless true.

DOTNET_ASPIRE_CONTAINER_RUNTIME docker Allows the user of alternative container runtimes for resources backed by
containers. Possible values are docker (default) or podman . See Setup and
tooling overview for more details.

A resource service is hosted by the app host. The resource service is used by the dashboard to fetch information
about resources which are being orchestrated by .NET Aspire.

Option Default value Description

DOTNET_RESOURCE_SERVICE_ENDPOINT_URL null Configures the address of the resource service hosted by the
app host. Automatically generated with launchSettings.json to
have a random port on localhost. For example,
https://localhost:17037 .

DOTNET_DASHBOARD_RESOURCESERVICE_APIKEY Automatically
generated 128-
bit entropy
token.

The API key used to authenticate requests made to the app
host's resource service. The API key is required if the app host
is in run mode, the dashboard isn't disabled, and the
dashboard isn't configured to allow anonymous access with
DOTNET_DASHBOARD_UNSECURED_ALLOW_ANONYMOUS .

By default, the dashboard is automatically started by the app host. The dashboard supports its own set of
configuration, and some settings can be configured from the app host.

Option Default value Description

ASPNETCORE_URLS null Dashboard address. Must be https unless
ASPIRE_ALLOW_UNSECURED_TRANSPORT or
DistributedApplicationOptions.AllowUnsecuredTransport

is true. Automatically generated with launchSettings.json
to have a random port on localhost. The value in launch
settings is set on the applicationUrls property.

ASPNETCORE_ENVIRONMENT Production Configures the environment the dashboard runs as. For
more information, see Use multiple environments in
ASP.NET Core.

Common configuration
ﾉ Expand table

Resource service

ﾉ Expand table

Dashboard

ﾉ Expand table

https://learn.microsoft.com/en-us/aspnet/core/fundamentals/environments
https://learn.microsoft.com/en-us/aspnet/core/fundamentals/environments

Option Default value Description

DOTNET_DASHBOARD_OTLP_ENDPOINT_URL http://localhost:18889

if no gRPC endpoint is
configured.

Configures the dashboard OTLP gRPC address. Used by
the dashboard to receive telemetry over OTLP. Set on
resources as the OTEL_EXPORTER_OTLP_ENDPOINT env var.
The OTEL_EXPORTER_OTLP_PROTOCOL env var is grpc .
Automatically generated with launchSettings.json to have
a random port on localhost.

DOTNET_DASHBOARD_OTLP_HTTP_ENDPOINT_URL null Configures the dashboard OTLP HTTP address. Used by
the dashboard to receive telemetry over OTLP. If only
DOTNET_DASHBOARD_OTLP_HTTP_ENDPOINT_URL is configured
then it is set on resources as the
OTEL_EXPORTER_OTLP_ENDPOINT env var. The
OTEL_EXPORTER_OTLP_PROTOCOL env var is http/protobuf .

DOTNET_DASHBOARD_CORS_ALLOWED_ORIGINS null Overrides the CORS allowed origins configured in the
dashboard. This setting replaces the default behavior of
calculating allowed origins based on resource endpoints.

DOTNET_DASHBOARD_FRONTEND_BROWSERTOKEN Automatically
generated 128-bit
entropy token.

Configures the frontend browser token. This is the value
that must be entered to access the dashboard when the
auth mode is BrowserToken. If no browser token is
specified then a new token is generated each time the
app host is launched.

Internal settings are used by the app host and integrations. Internal settings aren't designed to be configured
directly.

Option Default value Description

AppHost:Directory The content root if there's no project. Directory of the project where the app host is
located. Accessible from the
IDistributedApplicationBuilder.AppHostDirectory.

AppHost:Path The directory combined with the application
name.

The path to the app host. It combines the
directory with the application name.

AppHost:Sha256 It is created from the app host name when
the app host is in publish mode. Otherwise it
is created from the app host path.

Hex encoded hash for the current application.
The hash is based on the location of the app on
the current machine so it is stable between
launches of the app host.

AppHost:OtlpApiKey Automatically generated 128-bit entropy
token.

The API key used to authenticate requests sent
to the dashboard OTLP service. The value is
present if needed: the app host is in run mode,
the dashboard isn't disabled, and the dashboard
isn't configured to allow anonymous access with
DOTNET_DASHBOARD_UNSECURED_ALLOW_ANONYMOUS .

AppHost:BrowserToken Automatically generated 128-bit entropy
token.

The browser token used to authenticate
browsing to the dashboard when it is launched
by the app host. The browser token can be set
by DOTNET_DASHBOARD_FRONTEND_BROWSERTOKEN . The
value is present if needed: the app host is in run
mode, the dashboard isn't disabled, and the

Internal

ﾉ Expand table

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.idistributedapplicationbuilder.apphostdirectory#aspire-hosting-idistributedapplicationbuilder-apphostdirectory

Option Default value Description
dashboard isn't configured to allow anonymous
access with
DOTNET_DASHBOARD_UNSECURED_ALLOW_ANONYMOUS .

AppHost:ResourceService:AuthMode ApiKey . If
DOTNET_DASHBOARD_UNSECURED_ALLOW_ANONYMOUS

is true then the value is Unsecured .

The authentication mode used to access the
resource service. The value is present if needed:
the app host is in run mode and the dashboard
isn't disabled.

AppHost:ResourceService:ApiKey Automatically generated 128-bit entropy
token.

The API key used to authenticate requests made
to the app host's resource service. The API key
can be set by
DOTNET_DASHBOARD_RESOURCESERVICE_APIKEY . The
value is present if needed: the app host is in run
mode, the dashboard isn't disabled, and the
dashboard isn't configured to allow anonymous
access with
DOTNET_DASHBOARD_UNSECURED_ALLOW_ANONYMOUS .

Custom resource commands in .NET
Aspire
Article • 11/12/2024

Each resource in the .NET Aspire app model is represented as an IResource and when
added to the distributed application builder, it's the generic-type parameter of the
IResourceBuilder<T> interface. You use the resource builder API to chain calls,
configuring the underlying resource, and in some situations, you might want to add
custom commands to the resource. Some common scenario for creating a custom
command might be running database migrations or seeding/resetting a database. In
this article, you learn how to add a custom command to a Redis resource that clears the
cache.

Start by creating a new .NET Aspire Starter App from the available templates. To create
the solution from this template, follow the Quickstart: Build your first .NET Aspire
solution. After creating this solution, add a new class named
RedisResourceBuilderExtensions.cs to the app host project. Replace the contents of the
file with the following code:

C#

） Important

These .NET Aspire dashboard commands are only available when running the
dashboard locally. They're not available when running the dashboard in Azure
Container Apps.

Add custom commands to a resource

using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.Diagnostics.HealthChecks;
using Microsoft.Extensions.Logging;
using StackExchange.Redis;

namespace Aspire.Hosting;

internal static class RedisResourceBuilderExtensions
{
 public static IResourceBuilder<RedisResource> WithClearCommand(
 this IResourceBuilder<RedisResource> builder)
 {
 builder.WithCommand(

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.iresource
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.idistributedapplicationbuilder
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.iresourcebuilder-1

The preceding code:

 name: "clear-cache",
 displayName: "Clear Cache",
 executeCommand: context => OnRunClearCacheCommandAsync(builder,
context),
 updateState: OnUpdateResourceState,
 iconName: "AnimalRabbitOff",
 iconVariant: IconVariant.Filled);

 return builder;
 }

 private static async Task<ExecuteCommandResult>
OnRunClearCacheCommandAsync(
 IResourceBuilder<RedisResource> builder,
 ExecuteCommandContext context)
 {
 var connectionString = await
builder.Resource.GetConnectionStringAsync() ??
 throw new InvalidOperationException(
 $"Unable to get the '{context.ResourceName}' connection
string.");

 await using var connection =
ConnectionMultiplexer.Connect(connectionString);

 var database = connection.GetDatabase();

 await database.ExecuteAsync("FLUSHALL");

 return CommandResults.Success();
 }

 private static ResourceCommandState OnUpdateResourceState(
 UpdateCommandStateContext context)
 {
 var logger =
context.ServiceProvider.GetRequiredService<ILogger<Program>>();

 if (logger.IsEnabled(LogLevel.Information))
 {
 logger.LogInformation(
 "Updating resource state: {ResourceSnapshot}",
 context.ResourceSnapshot);
 }

 return context.ResourceSnapshot.HealthStatus is HealthStatus.Healthy
 ? ResourceCommandState.Enabled
 : ResourceCommandState.Disabled;
 }
}

Shares the Aspire.Hosting namespace so that it's visible to the app host project.

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting
https://www.fluentui-blazor.net/Icon#explorer
https://www.fluentui-blazor.net/Icon#explorer
https://learn.microsoft.com/en-us/dotnet/api/system.threading.cancellationtoken

In the preceding example, the executeCommand delegate is implemented as an async
method that clears the cache of the Redis resource. It delegates out to a private class-
scoped function named OnRunClearCacheCommandAsync to perform the actual cache
clearing. Consider the following code:

C#

The preceding code:

Retrieves the connection string from the Redis resource.
Connects to the Redis instance.
Gets the database instance.
Executes the FLUSHALL command to clear the cache.
Returns a CommandResults.Success() instance to indicate that the command was
successful.

The updateState delegate is where the command state is determined. This parameter is
defined as a Func<UpdateCommandStateContext, ResourceCommandState> . The
UpdateCommandStateContext provides the following properties:

UpdateCommandStateContext.ServiceProvider : The IServiceProvider instance that's
used to resolve services.

private static async Task<ExecuteCommandResult> OnRunClearCacheCommandAsync(
 IResourceBuilder<RedisResource> builder,
 ExecuteCommandContext context)
{
 var connectionString = await builder.Resource.GetConnectionStringAsync()
??
 throw new InvalidOperationException(
 $"Unable to get the '{context.ResourceName}' connection
string.");

 await using var connection =
ConnectionMultiplexer.Connect(connectionString);

 var database = connection.GetDatabase();

 await database.ExecuteAsync("FLUSHALL");

 return CommandResults.Success();
}

Update command state logic

UpdateCommandStateContext.ResourceSnapshot : The snapshot of the resource
instance that the command is being executed on.

The immutable snapshot is an instance of CustomResourceSnapshot , which exposes all
sorts of valuable details about the resource instance. Consider the following code:

C#

The preceding code:

Retrieves the logger instance from the service provider.
Logs the resource snapshot details.
Returns ResourceCommandState.Enabled if the resource is healthy; otherwise, it
returns ResourceCommandState.Disabled .

To test the custom command, update your app host project's Program.cs file to include
the following code:

C#

private static ResourceCommandState OnUpdateResourceState(
 UpdateCommandStateContext context)
{
 var logger =
context.ServiceProvider.GetRequiredService<ILogger<Program>>();

 if (logger.IsEnabled(LogLevel.Information))
 {
 logger.LogInformation(
 "Updating resource state: {ResourceSnapshot}",
 context.ResourceSnapshot);
 }

 return context.ResourceSnapshot.HealthStatus is HealthStatus.Healthy
 ? ResourceCommandState.Enabled
 : ResourceCommandState.Disabled;
}

Test the custom command

var builder = DistributedApplication.CreateBuilder(args);

var cache = builder.AddRedis("cache")
 .WithClearCommand();

var apiService = builder.AddProject<Projects.AspireApp_ApiService>
("apiservice");

The preceding code calls the WithClearCommand extension method to add the custom
command to the Redis resource. Run the app and navigate to the .NET Aspire
dashboard. You should see the custom command listed under the Redis resource. On
the Resources page of the dashboard, select the ellipsis button under the Actions
column:

The preceding image shows the Clear cache command that was added to the Redis
resource. The icon displays as a rabbit crosses out to indicate that the speed of the
dependant resource is being cleared.

Select the Clear cache command to clear the cache of the Redis resource. The command
should execute successfully, and the cache should be cleared:

builder.AddProject<Projects.AspireApp_Web>("webfrontend")
 .WithExternalHttpEndpoints()
 .WithReference(cache)
 .WaitFor(cache)
 .WithReference(apiService)
 .WaitFor(apiService);

builder.Build().Run();



https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/media/custom-clear-cache-command.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/media/custom-clear-cache-command.png#lightbox

.NET Aspire orchestration overview

.NET Aspire dashboard: Resource submenu actions



See also

https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/media/custom-clear-cache-command-succeeded.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/media/custom-clear-cache-command-succeeded.png#lightbox

Add Dockerfiles to your .NET app model
Article • 07/23/2024

With .NET Aspire it's possible to specify a Dockerfile to build when the app host is
started using either the AddDockerfile or WithDockerfile extension methods.

In the following example the AddDockerfile extension method is used to specify a
container by referencing the context path for the container build.

C#

Unless the context path argument is a rooted path the context path is interpreted as
being relative to the app host projects directory (where the AppHost *.csproj folder is
located).

By default the name of the Dockerfile which is used is Dockerfile and is expected to be
within the context path directory. It's possible to explicitly specify the Dockerfile name
either as an absolute path or a relative path to the context path.

This is useful if you wish to modify the specific Dockerfile being used when running
locally or when the app host is deploying.

C#

Add a Dockerfile to the app model

var builder = DistributedApplication.CreateBuilder(args);

var container = builder.AddDockerfile(
 "mycontainer", "relative/context/path");

var builder = DistributedApplication.CreateBuilder(args);

var container = builder.ExecutionContext.IsRunMode
 ? builder.AddDockerfile(
 "mycontainer", "relative/context/path", "Dockerfile.debug")
 : builder.AddDockerfile(
 "mycontainer", "relative/context/path", "Dockerfile.release");

Customize existing container resources

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.containerresourcebuilderextensions.adddockerfile
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.containerresourcebuilderextensions.withdockerfile
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.containerresourcebuilderextensions.adddockerfile

When using AddDockerfile the return value is an IResourceBuilder<ContainerResource> .
.NET Aspire includes many custom resource types that are derived from
ContainerResource.

Using the WithDockerfile extension method it's possible to continue using these
strongly typed resource types and customize the underlying container that is used.

C#

The WithBuildArg method can be used to pass arguments into the container image
build.

C#

The value parameter on the WithBuildArg method can be a literal value (boolean ,
string , int) or it can be a resource builder for a parameter resource. The following
code replaces the GO_VERSION with a parameter value that can be specified at
deployment time.

C#

Build arguments correspond to the ARG command in Dockerfiles. Expanding the
preceding example, this is a multi-stage Dockerfile which specifies specific container
image version to use as a parameter.

var builder = DistributedApplication.CreateBuilder(args);

var pgsql = builder.AddPostgres("pgsql")
 .WithDockerfile("path/to/context")
 .WithPgAdmin();

Pass build arguments

var builder = DistributedApplication.CreateBuilder(args);

var container = builder.AddDockerfile("mygoapp", "relative/context/path")
 .WithBuildArg("GO_VERSION", "1.22");

var builder = DistributedApplication.CreateBuilder(args);

var goVersion = builder.AddParameter("goversion");

var container = builder.AddDockerfile("mygoapp", "relative/context/path")
 .WithBuildArg("GO_VERSION", goVersion);

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.containerresourcebuilderextensions.adddockerfile
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.containerresource
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.containerresourcebuilderextensions.withdockerfile
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.containerresourcebuilderextensions.withbuildarg
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.containerresourcebuilderextensions.withbuildarg
https://docs.docker.com/build/guide/build-args/
https://docs.docker.com/build/guide/build-args/

Dockerfile

In addition to build arguments it's possible to specify build secrets using
WithBuildSecret which are made selectively available to individual commands in the
Dockerfile using the --mount=type=secret syntax on RUN commands.

C#

For example, consider the RUN command in a Dockerfile which exposes the specified
secret to the specific command:

Dockerfile

Stage 1: Build the Go program
ARG GO_VERSION=1.22
FROM golang:${GO_VERSION} AS builder
WORKDIR /build
COPY . .
RUN go build mygoapp.go

Stage 2: Run the Go program
FROM mcr.microsoft.com/cbl-mariner/base/core:2.0
WORKDIR /app
COPY --from=builder /build/mygoapp .
CMD ["./mygoapp"]

７ Note

Instead of hardcoding values into the container image, it's recommended to use
environment variables for values that frequently change. This avoids the need to
rebuild the container image whenever a change is required.

Pass build secrets

var builder = DistributedApplication.CreateBuilder(args);

var accessToken = builder.AddParameter("accesstoken", secret: true);

var container = builder.AddDockerfile("myapp", "relative/context/path")
 .WithBuildSecret("ACCESS_TOKEN", accessToken);

The helloworld command can read the secret from /run/secrets/ACCESS_TOKEN
RUN --mount=type=secret,id=ACCESS_TOKEN helloworld

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.containerresourcebuilderextensions.withbuildsecret

Ｕ Caution

Caution should be exercised when passing secrets in build environments. This is
often done when using a token to retrieve dependencies from private repositories
or feeds before a build. It is important to ensure that the injected secrets are not
copied into the final or intermediate images.

.NET Aspire inner-loop networking
overview
Article • 11/12/2024

One of the advantages of developing with .NET Aspire is that it enables you to develop,
test, and debug cloud-native apps locally. Inner-loop networking is a key aspect of .NET
Aspire that allows your apps to communicate with each other in your development
environment. In this article, you learn how .NET Aspire handles various networking
scenarios with proxies, endpoints, endpoint configurations, and launch profiles.

The inner loop is the process of developing and testing your app locally before
deploying it to a target environment. .NET Aspire provides several tools and features to
simplify and enhance the networking experience in the inner loop, such as:

Launch profiles: Launch profiles are configuration files that specify how to run your
app locally. You can use launch profiles (such as the launchSettings.json file) to
define the endpoints, environment variables, and launch settings for your app.
Kestrel configuration: Kestrel configuration allows you to specify the endpoints
that the Kestrel web server listens on. You can configure Kestrel endpoints in your
app settings, and .NET Aspire automatically uses these settings to create
endpoints.
Endpoints/Endpoint configurations: Endpoints are the connections between your
app and the services it depends on, such as databases, message queues, or APIs.
Endpoints provide information such as the service name, host port, scheme, and
environment variable. You can add endpoints to your app either implicitly (via
launch profiles) or explicitly by calling WithEndpoint.
Proxies: .NET Aspire automatically launches a proxy for each service binding you
add to your app, and assigns a port for the proxy to listen on. The proxy then
forwards the requests to the port that your app listens on, which might be different
from the proxy port. This way, you can avoid port conflicts and access your app
and services using consistent and predictable URLs.

A service binding in .NET Aspire involves two integrations: a service representing an
external resource your app requires (for example, a database, message queue, or API),

Networking in the inner loop

How endpoints work

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.resourcebuilderextensions.withendpoint

and a binding that establishes a connection between your app and the service and
provides necessary information.

.NET Aspire supports two service binding types: implicit, automatically created based on
specified launch profiles defining app behavior in different environments, and explicit,
manually created using WithEndpoint.

Upon creating a binding, whether implicit or explicit, .NET Aspire launches a lightweight
reverse proxy on a specified port, handling routing and load balancing for requests from
your app to the service. The proxy is a .NET Aspire implementation detail, requiring no
configuration or management concern.

To help visualize how endpoints work, consider the .NET Aspire starter templates inner-
loop networking diagram:

When you call AddProject, the app host looks for Properties/launchSettings.json to
determine the default set of endpoints. The app host selects a specific launch profile



Launch profiles

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.resourcebuilderextensions.withendpoint
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.projectresourcebuilderextensions.addproject
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/media/networking/networking-proxies.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/media/networking/networking-proxies.png#lightbox

using the following rules:

1. An explicit launchProfileName argument passed when calling AddProject .
2. The DOTNET_LAUNCH_PROFILE environment variable. For more information, see .NET

environment variables.
3. The first launch profile defined in launchSettings.json.

Consider the following launchSettings.json file:

JSON

For the remainder of this article, imagine that you've created an
IDistributedApplicationBuilder assigned to a variable named builder with the
CreateBuilder() API:

C#

To specify the http and https launch profiles, configure the applicationUrl values for
both in the launchSettings.json file. These URLs are used to create endpoints for this

{
 "$schema": "http://json.schemastore.org/launchsettings.json",
 "profiles": {
 "http": {
 "commandName": "Project",
 "dotnetRunMessages": true,
 "launchBrowser": false,
 "inspectUri": "{wsProtocol}://{url.hostname}:
{url.port}/_framework/debug/ws-proxy?browser={browserInspectUri}",
 "environmentVariables": {
 "ASPNETCORE_ENVIRONMENT": "Development"
 }
 },
 "https": {
 "commandName": "Project",
 "dotnetRunMessages": true,
 "launchBrowser": true,
 "inspectUri": "{wsProtocol}://{url.hostname}:
{url.port}/_framework/debug/ws-proxy?browser={browserInspectUri}",
 "applicationUrl": "https://localhost:7239;http://localhost:5066",
 "environmentVariables": {
 "ASPNETCORE_ENVIRONMENT": "Development"
 }
 }
 }
}

var builder = DistributedApplication.CreateBuilder(args);

https://learn.microsoft.com/en-us/dotnet/core/tools/dotnet-environment-variables
https://learn.microsoft.com/en-us/dotnet/core/tools/dotnet-environment-variables
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.idistributedapplicationbuilder
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.distributedapplication.createbuilder#aspire-hosting-distributedapplication-createbuilder

project. This is the equivalent of:

C#

For more information, see .NET Aspire and launch profiles.

.NET Aspire supports Kestrel endpoint configuration. For example, consider an
appsettings.json file for a project that defines a Kestrel endpoint with the HTTPS scheme
and port 5271:

JSON

The preceding configuration specifies an Https endpoint. The Url property is set to
https://*:5271 , which means the endpoint listens on all interfaces on port 5271. For
more information, see Configure endpoints for the ASP.NET Core Kestrel web server.

With the Kestrel endpoint configured, the project should remove any configured
applicationUrl from the launchSettings.json file.

builder.AddProject<Projects.Networking_Frontend>("frontend")
 .WithHttpEndpoint(port: 5066)
 .WithHttpsEndpoint(port: 7239);

） Important

If there's no launchSettings.json (or launch profile), there are no bindings by default.

Kestrel configured endpoints

{
 "Logging": {
 "LogLevel": {
 "Default": "Information",
 "Microsoft.AspNetCore": "Warning"
 }
 },
 "Kestrel": {
 "Endpoints": {
 "Https": {
 "Url": "https://*:5271"
 }
 }
 }
}

https://learn.microsoft.com/en-us/aspnet/core/fundamentals/servers/kestrel/endpoints

When you add a project resource, there's an overload that lets you specify that the
Kestrel endpoint should be used instead of the launchSettings.json file:

C#

For more information, see AddProject.

When defining a service binding, the host port is always given to the proxy that sits in
front of the service. This allows single or multiple replicas of a service to behave
similarly. Additionally, all resource dependencies that use the WithReference API rely of
the proxy endpoint from the environment variable.

Consider the following method chain that calls AddProject, WithHttpEndpoint, and then
WithReplicas:

C#

The preceding code results in the following networking diagram:

７ Note

If the applicationUrl is present in the launchSettings.json file and the Kestrel
endpoint is configured, the app host will throw an exception.

builder.AddProject<Projects.Networking_ApiService>(
 name: "apiservice",
 configure: static project =>
 {
 project.ExcludeLaunchProfile = true;
 project.ExcludeKestrelEndpoints = false;
 })
 .WithHttpsEndpoint();

Ports and proxies

builder.AddProject<Projects.Networking_Frontend>("frontend")
 .WithHttpEndpoint(port: 5066)
 .WithReplicas(2);

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.projectresourcebuilderextensions.addproject
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.resourcebuilderextensions.withreference
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.projectresourcebuilderextensions.addproject
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.resourcebuilderextensions.withhttpendpoint
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.projectresourcebuilderextensions.withreplicas

The preceding diagram depicts the following:

A web browser as an entry point to the app.
A host port of 5066.
The frontend proxy sitting between the web browser and the frontend service
replicas, listening on port 5066.



https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/media/networking/proxy-with-replicas.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/media/networking/proxy-with-replicas.png#lightbox

The frontend_0 frontend service replica listening on the randomly assigned port
65001.
The frontend_1 frontend service replica listening on the randomly assigned port
65002.

Without the call to WithReplicas , there's only one frontend service. The proxy still listens
on port 5066, but the frontend service listens on a random port:

C#

There are two ports defined:

A host port of 5066.
A random proxy port that the underlying service will be bound to.

builder.AddProject<Projects.Networking_Frontend>("frontend")
 .WithHttpEndpoint(port: 5066);

The preceding diagram depicts the following:

A web browser as an entry point to the app.
A host port of 5066.
The frontend proxy sitting between the web browser and the frontend service,
listening on port 5066.
The frontend service listening on random port of 65001.



https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/media/networking/proxy-host-port-and-random-port.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/media/networking/proxy-host-port-and-random-port.png#lightbox

The underlying service is fed this port via ASPNETCORE_URLS for project resources. Other
resources access to this port by specifying an environment variable on the service
binding:

C#

The previous code makes the random port available in the PORT environment variable.
The app uses this port to listen to incoming connections from the proxy. Consider the
following diagram:

builder.AddNpmApp("frontend", "../NodeFrontend", "watch")
 .WithHttpEndpoint(port: 5067, env: "PORT");

The preceding diagram depicts the following:

A web browser as an entry point to the app.
A host port of 5067.
The frontend proxy sitting between the web browser and the frontend service,
listening on port 5067.
The frontend service listening on an environment 65001.



https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/media/networking/proxy-with-env-var-port.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/media/networking/proxy-with-env-var-port.png#lightbox

When you omit the host port, .NET Aspire generates a random port for both host and
service port. This is useful when you want to avoid port conflicts and don't care about
the host or service port. Consider the following code:

C#

In this scenario, both the host and service ports are random, as shown in the following
diagram:

 Tip

To avoid an endpoint being proxied, set the IsProxied property to false when
calling the WithEndpoint extension method. For more information, see Endpoint
extensions: additional considerations.

Omit the host port

builder.AddProject<Projects.Networking_Frontend>("frontend")
 .WithHttpEndpoint();

The preceding diagram depicts the following:

A web browser as an entry point to the app.
A random host port of 65000.
The frontend proxy sitting between the web browser and the frontend service,
listening on port 65000.
The frontend service listening on a random port of 65001.



https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/media/networking/proxy-with-random-ports.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/media/networking/proxy-with-random-ports.png#lightbox

When you add a container resource, .NET Aspire automatically assigns a random port to
the container. To specify a container port, configure the container resource with the
desired port:

C#

The preceding code:

Creates a container resource named frontend , from the
mcr.microsoft.com/dotnet/samples:aspnetapp image.
Exposes an http endpoint by binding the host to port 8000 and mapping it to the
container's port 8080.

Consider the following diagram:

Container ports

builder.AddContainer("frontend", "mcr.microsoft.com/dotnet/samples",
"aspnetapp")
 .WithHttpEndpoint(port: 8000, targetPort: 8080);

Any resource that implements the IResourceWithEndpoints interface can use the
WithEndpoint extension methods. There are several overloads of this extension, allowing
you to specify the scheme, container port, host port, environment variable name, and
whether the endpoint is proxied.

Endpoint extension methods

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.iresourcewithendpoints

There's also an overload that allows you to specify a delegate to configure the endpoint.
This is useful when you need to configure the endpoint based on the environment or
other factors. Consider the following code:

C#

The preceding code provides a callback delegate to configure the endpoint. The
endpoint is named admin and configured to use the http scheme and transport, as well
as the 17003 host port. The consumer references this endpoint by name, consider the
following AddHttpClient call:

C#

The Uri is constructed using the admin endpoint name prefixed with the _ sentinel.
This is a convention to indicate that the admin segment is the endpoint name belonging
to the apiservice service. For more information, see .NET Aspire service discovery.

When calling the WithEndpoint extension method, the callback overload exposes the
raw EndpointAnnotation, which allows the consumer to customize many aspects of the
endpoint.

The AllocatedEndpoint property allows you to get or set the endpoint for a service. The
IsExternal and IsProxied properties determine how the endpoint is managed and
exposed: IsExternal decides if it should be publicly accessible, while IsProxied ensures
DCP manages it, allowing for internal port differences and replication.

builder.AddProject<Projects.Networking_ApiService>("apiService")
 .WithEndpoint(
 endpointName: "admin",
 callback: static endpoint =>
 {
 endpoint.Port = 17003;
 endpoint.UriScheme = "http";
 endpoint.Transport = "http";
 });

builder.Services.AddHttpClient<WeatherApiClient>(
 client => client.BaseAddress = new Uri("http://_admin.apiservice"));

Additional considerations

 Tip

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.endpointannotation

The Name property identifies the service, whereas the Port and TargetPort properties
specify the desired and listening ports, respectively.

For network communication, the Protocol property supports TCP and UDP, with
potential for more in the future, and the Transport property indicates the transport
protocol (HTTP, HTTP2, HTTP3). Lastly, if the service is URI-addressable, the UriScheme
property provides the URI scheme for constructing the service URI.

For more information, see the available properties of the EndpointAnnotation
properties.

All .NET Aspire project resource endpoints follow a set of default heuristics. Some
endpoints are included in ASPNETCORE_URLS at runtime, some are published as
HTTP/HTTPS_PORTS , and some configurations are resolved from Kestrel configuration.
Regardless of the default behavior, you can filter the endpoints that are included in
environment variables by using the WithEndpointsInEnvironment extension method:

C#

The preceding code adds a default HTTPS endpoint, as well as an admin endpoint on
port 19227. However, the admin endpoint is excluded from the environment variables.
This is useful when you want to expose an endpoint for internal use only.

If you're hosting an external executable that runs its own proxy and encounters
port binding issues due to DCP already binding the port, try setting the IsProxied
property to false . This prevents DCP from managing the proxy, allowing your
executable to bind the port successfully.

Endpoint filtering

builder.AddProject<Projects.Networking_ApiService>("apiservice")
 .WithHttpsEndpoint() // Adds a default "https" endpoint
 .WithHttpsEndpoint(port: 19227, name: "admin")
 .WithEndpointsInEnvironment(
 filter: static endpoint =>
 {
 return endpoint.Name is not "admin";
 });

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.endpointannotation#properties
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.endpointannotation#properties
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.projectresourcebuilderextensions.withendpointsinenvironment

Eventing in .NET Aspire
Article • 11/13/2024

In .NET Aspire, eventing allows you to publish and subscribe to events during various
app host life cycles. Eventing is more flexible than life cycle events. Both let you run
arbitrary code during event callbacks, but eventing offers finer control of event timing,
publishing, and provides supports for custom events.

The eventing mechanisms in .NET Aspire are part of the 📦 Aspire.Hosting NuGet
package. This package provides a set of interfaces and classes in the
Aspire.Hosting.Eventing namespace that you use to publish and subscribe to events in
your .NET Aspire app host project. Eventing is scoped to the app host itself and the
resources within.

In this article, you learn how to use the eventing features in .NET Aspire.

The following events are available in the app host and occur in the following order:

1. BeforeStartEvent: This event is raised before the app host starts.
2. AfterEndpointsAllocatedEvent: This event is raised after the app host allocated

endpoints.
3. AfterResourcesCreatedEvent: This event is raised after the app host created

resources.

All of the preceding events are analogous to the app host life cycles. That is, an
implementation of the IDistributedApplicationLifecycleHook could handle these events
just the same. With the eventing API, however, you can run arbitrary code when these
events are raised and event define custom events—any event that implements the
IDistributedApplicationEvent interface.

To subscribe to the built-in app host events, use the eventing API. After you have a
distributed application builder instance, walk up to the
IDistributedApplicationBuilder.Eventing property and call the Subscribe<T>
(Func<T,CancellationToken,Task>) API. Consider the following sample app host
Program.cs file:

C#

App host eventing

Subscribe to app host events

https://www.nuget.org/packages/Aspire.Hosting
https://www.nuget.org/packages/Aspire.Hosting
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.eventing
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.beforestartevent
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.afterendpointsallocatedevent
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.afterresourcescreatedevent
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.lifecycle.idistributedapplicationlifecyclehook
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.eventing.idistributedapplicationevent
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.idistributedapplicationbuilder.eventing#aspire-hosting-idistributedapplicationbuilder-eventing
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.eventing.idistributedapplicationeventing.subscribe#aspire-hosting-eventing-idistributedapplicationeventing-subscribe-1(system-func((-0-system-threading-cancellationtoken-system-threading-tasks-task)))
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.eventing.idistributedapplicationeventing.subscribe#aspire-hosting-eventing-idistributedapplicationeventing-subscribe-1(system-func((-0-system-threading-cancellationtoken-system-threading-tasks-task)))

The preceding code is based on the starter template with the addition of the calls to the
Subscribe API. The Subscribe<T> API returns a DistributedApplicationEventSubscription
instance that you can use to unsubscribe from the event. It's common to discard the

using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.Logging;

var builder = DistributedApplication.CreateBuilder(args);

var cache = builder.AddRedis("cache");

var apiService = builder.AddProject<Projects.AspireApp_ApiService>
("apiservice");

builder.AddProject<Projects.AspireApp_Web>("webfrontend")
 .WithExternalHttpEndpoints()
 .WithReference(cache)
 .WaitFor(cache)
 .WithReference(apiService)
 .WaitFor(apiService);

builder.Eventing.Subscribe<BeforeStartEvent>(
 static (@event, cancellationToken) =>
 {
 var logger = @event.Services.GetRequiredService<ILogger<Program>>();

 logger.LogInformation("1. BeforeStartEvent");

 return Task.CompletedTask;
 });

builder.Eventing.Subscribe<AfterEndpointsAllocatedEvent>(
 static (@event, cancellationToken) =>
 {
 var logger = @event.Services.GetRequiredService<ILogger<Program>>();

 logger.LogInformation("2. AfterEndpointsAllocatedEvent");

 return Task.CompletedTask;
 });

builder.Eventing.Subscribe<AfterResourcesCreatedEvent>(
 static (@event, cancellationToken) =>
 {
 var logger = @event.Services.GetRequiredService<ILogger<Program>>();

 logger.LogInformation("3. AfterResourcesCreatedEvent");

 return Task.CompletedTask;
 });

builder.Build().Run();

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.eventing.distributedapplicationeventsubscription

returned subscriptions, as you don't usually need to unsubscribe from events as the
entire app is torn down when the app host is shut down.

When the app host is run, by the time the .NET Aspire dashboard is displayed, you
should see the following log output in the console:

Plaintext

The log output confirms that event handlers are executed in the order of the app host
life cycle events. The subscription order doesn't affect execution order. The
BeforeStartEvent is triggered first, followed by AfterEndpointsAllocatedEvent , and
finally AfterResourcesCreatedEvent .

In addition to the app host events, you can also subscribe to resource events. Resource
events are raised specific to an individual resource. Resource events are defined as
implementations of the IDistributedApplicationResourceEvent interface. The following
resource events are available in the listed order:

1. ConnectionStringAvailableEvent: Raised when a connection string becomes
available for a resource.

2. BeforeResourceStartedEvent: Raised before the orchestrator starts a new resource.
3. ResourceReadyEvent: Raised when a resource initially transitions to a ready state.

info: Program[0]
 1. BeforeStartEvent
info: Aspire.Hosting.DistributedApplication[0]
 Aspire version: 9.0.0
info: Aspire.Hosting.DistributedApplication[0]
 Distributed application starting.
info: Aspire.Hosting.DistributedApplication[0]
 Application host directory is: ..\AspireApp\AspireApp.AppHost
info: Program[0]
 2. AfterEndpointsAllocatedEvent
info: Aspire.Hosting.DistributedApplication[0]
 Now listening on: https://localhost:17178
info: Aspire.Hosting.DistributedApplication[0]
 Login to the dashboard at https://localhost:17178/login?t=<YOUR_TOKEN>
info: Program[0]
 3. AfterResourcesCreatedEvent
info: Aspire.Hosting.DistributedApplication[0]
 Distributed application started. Press Ctrl+C to shut down.

Resource eventing

Subscribe to resource events

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.eventing.idistributedapplicationresourceevent
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.connectionstringavailableevent
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.beforeresourcestartedevent
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.resourcereadyevent

To subscribe to resource events, use the eventing API. After you have a distributed
application builder instance, walk up to the IDistributedApplicationBuilder.Eventing
property and call the Subscribe<T>(IResource, Func<T,CancellationToken,Task>) API.
Consider the following sample app host Program.cs file:

C#

using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.Logging;

var builder = DistributedApplication.CreateBuilder(args);

var cache = builder.AddRedis("cache");

builder.Eventing.Subscribe<ResourceReadyEvent>(
 cache.Resource,
 static (@event, cancellationToken) =>
 {
 var logger = @event.Services.GetRequiredService<ILogger<Program>>();

 logger.LogInformation("3. ResourceReadyEvent");

 return Task.CompletedTask;
 });

builder.Eventing.Subscribe<BeforeResourceStartedEvent>(
 cache.Resource,
 static (@event, cancellationToken) =>
 {
 var logger = @event.Services.GetRequiredService<ILogger<Program>>();

 logger.LogInformation("2. BeforeResourceStartedEvent");

 return Task.CompletedTask;
 });

builder.Eventing.Subscribe<ConnectionStringAvailableEvent>(
 cache.Resource,
 static (@event, cancellationToken) =>
 {
 var logger = @event.Services.GetRequiredService<ILogger<Program>>();

 logger.LogInformation("1. ConnectionStringAvailableEvent");

 return Task.CompletedTask;
 });

var apiService = builder.AddProject<Projects.AspireApp_ApiService>
("apiservice");

builder.AddProject<Projects.AspireApp_Web>("webfrontend")
 .WithExternalHttpEndpoints()
 .WithReference(cache)

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.idistributedapplicationbuilder.eventing#aspire-hosting-idistributedapplicationbuilder-eventing
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.eventing.idistributedapplicationeventing.subscribe#aspire-hosting-eventing-idistributedapplicationeventing-subscribe-1(aspire-hosting-applicationmodel-iresource-system-func((-0-system-threading-cancellationtoken-system-threading-tasks-task)))

The preceding code subscribes to the ResourceReadyEvent ,
ConnectionStringAvailableEvent , and BeforeResourceStartedEvent events on the cache
resource. When AddRedis is called, it returns an IResourceBuilder<T> where T is a
RedisResource. The resource builder exposes the resource as the
IResourceBuilder<T>.Resource property. The resource in question is then passed to the
Subscribe API to subscribe to the events on the resource.

When the app host is run, by the time the .NET Aspire dashboard is displayed, you
should see the following log output in the console:

Plaintext

 .WaitFor(cache)
 .WithReference(apiService)
 .WaitFor(apiService);

builder.Build().Run();

info: Aspire.Hosting.DistributedApplication[0]
 Aspire version: 9.0.0
info: Aspire.Hosting.DistributedApplication[0]
 Distributed application starting.
info: Aspire.Hosting.DistributedApplication[0]
 Application host directory is: ..\AspireApp\AspireApp.AppHost
info: Program[0]
 1. ConnectionStringAvailableEvent
info: Program[0]
 2. BeforeResourceStartedEvent
info: Program[0]
 3. ResourceReadyEvent
info: Aspire.Hosting.DistributedApplication[0]
 Now listening on: https://localhost:17222
info: Aspire.Hosting.DistributedApplication[0]
 Login to the dashboard at https://localhost:17222/login?t=<YOUR_TOKEN>
info: Aspire.Hosting.DistributedApplication[0]
 Distributed application started. Press Ctrl+C to shut down.

７ Note

Some events are blocking. For example, when the BeforeResourceStartEvent is
published, the startup of the resource will be blocked until all subscriptions for that
event on a given resource have completed executing. Whether an event is blocking
or not depends on how it is published (see the following section).

Publish events

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.redisbuilderextensions.addredis
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.iresourcebuilder-1
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.redisresource
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.iresourcebuilder-1.resource#aspire-hosting-applicationmodel-iresourcebuilder-1-resource

When subscribing to any of the built-in events, you don't need to publish the event
yourself as the app host orchestrator manages to publish built-in events on your behalf.
However, you can publish custom events with the eventing API. To publish an event, you
have to first define an event as an implementation of either the
IDistributedApplicationEvent or IDistributedApplicationResourceEvent interface. You
need to determine which interface to implement based on whether the event is a global
app host event or a resource-specific event.

Then, you can subscribe and publish the event by calling the either of the following APIs:

PublishAsync<T>(T, CancellationToken): Publishes an event to all subscribes of the
specific event type.
PublishAsync<T>(T, EventDispatchBehavior, CancellationToken): Publishes an event
to all subscribes of the specific event type with a specified dispatch behavior.

When events are dispatched, you can control how the events are dispatched to
subscribers. The event dispatch behavior is specified with the EventDispatchBehavior
enum. The following behaviors are available:

EventDispatchBehavior.BlockingSequential: Fires events sequentially and blocks
until they're all processed.
�(�Y�H�Q�W�'�L�V�S�D�W�F�K�%�H�K�D�Y�L&�����FQ�W��U�S�O�L�F�D�W�L�R�Q�(�Y�H�Q�W �����)�LF�����FQ�W��U�S�O�LV���V�H�T�X�H�Q�W�L�D�O�O�\���D�Q755 3�O�R�F�N�V

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.eventing.idistributedapplicationevent
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.eventing.idistributedapplicationresourceevent
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.eventing.idistributedapplicationeventing.publishasync#aspire-hosting-eventing-idistributedapplicationeventing-publishasync-1(-0-system-threading-cancellationtoken)
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.eventing.idistributedapplicationeventing.publishasync#aspire-hosting-eventing-idistributedapplicationeventing-publishasync-1(-0-aspire-hosting-eventing-eventdispatchbehavior-system-threading-cancellationtoken)
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.eventing.eventdispatchbehavior#aspire-hosting-eventing-eventdispatchbehavior-blockingsequential
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.eventing.eventdispatchbehavior#aspire-hosting-eventing-eventdispatchbehavior-blockingconcurrent
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.eventing.eventdispatchbehavior#aspire-hosting-eventing-eventdispatchbehavior-nonblockingsequential
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.eventing.eventdispatchbehavior#aspire-hosting-eventing-eventdispatchbehavior-nonblockingconcurrent
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.eventing.idistributedapplicationeventing.publishasync

External parameters
Article • 12/06/2024

Environments provide context for the application to run in. Parameters express the
ability to ask for an external value when running the app. Parameters can be used to
provide values to the app when running locally, or to prompt for values when deploying.
They can be used to model a wide range of scenarios including secrets, connection
strings, and other configuration values that might vary between environments.

Parameter values are read from the Parameters section of the app host's configuration
and are used to provide values to the app while running locally. When you publish the
app, if the value isn't configured you're prompted to provide it.

Consider the following example app host Program.cs file:

C#

The preceding code adds a parameter named value to the app host. The parameter is
then passed to the Projects.ApiService project as an environment variable named
EXAMPLE_VALUE .

Adding parameters to the builder is only one aspect of the configuration. You must also
provide the value for the parameter. The value can be provided in the app host
configuration file, set as a user secret, or configured in any other standard configuration.
When parameter values aren't found, they're prompted for when publishing the app.

Consider the following app host configuration file appsettings.json:

JSON

Parameter values

var builder = DistributedApplication.CreateBuilder(args);

// Add a parameter named "value"
var value = builder.AddParameter("value");

builder.AddProject<Projects.ApiService>("api")
 .WithEnvironment("EXAMPLE_VALUE", value);

Configure parameter values

https://learn.microsoft.com/en-us/dotnet/core/extensions/configuration

The preceding JSON configures a parameter in the Parameters section of the app host
configuration. In other words, that app host is able to find the parameter as its
configured. For example, you could walk up to the
IDistributedApplicationBuilder.Configuration and access the value using the
Parameters:value key:

C#

.NET Aspire uses a deployment manifest to represent the app's resources and their
relationships. Parameters are represented in the manifest as a new primitive called
parameter.v0 :

JSON

{
 "Parameters": {
 "value": "local-value"
 }
}

var builder = DistributedApplication.CreateBuilder(args);

var key = $"Parameters:value";
var value = builder.Configuration[key]; // value = "local-value"

） Important

However, you don't need to access this configuration value yourself in the app
host. Instead, the ParameterResource is used to pass the parameter value to
dependent resources. Most often as an environment variable.

Parameter representation in the manifest

{
 "resources": {
 "value": {
 "type": "parameter.v0",
 "value": "{value.inputs.value}",
 "inputs": {
 "value": {
 "type": "string"
 }
 }
 }

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.idistributedapplicationbuilder.configuration#aspire-hosting-idistributedapplicationbuilder-configuration
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.parameterresource

Parameters can be used to model secrets. When a parameter is marked as a secret, it
serves as a hint to the manifest that the value should be treated as a secret. When you
publish the app, the value is prompted for and stored in a secure location. When you
run the app locally, the value is read from the Parameters section of the app host
configuration.

Consider the following example app host Program.cs file:

C#

Now consider the following app host configuration file appsettings.json:

JSON

The manifest representation is as follows:

JSON

 }
}

Secret values

var builder = DistributedApplication.CreateBuilder(args);

// Add a secret parameter named "secret"
var secret = builder.AddParameter("secret", secret: true);

builder.AddProject<Projects.ApiService>("api")
 .WithEnvironment("SECRET", secret);

builder.Build().Run();

{
 "Parameters": {
 "secret": "local-secret"
 }
}

{
 "resources": {
 "value": {
 "type": "parameter.v0",
 "value": "{value.inputs.value}",
 "inputs": {
 "value": {
 "type": "string",

Parameters can be used to model connection strings. When you publish the app, the
value is prompted for and stored in a secure location. When you run the app locally, the
value is read from the ConnectionStrings section of the app host configuration.

Consider the following example app host Program.cs file:

C#

Now consider the following app host configuration file appsettings.json:

JSON

 "secret": true
 }
 }
 }
 }
}

Connection string values

７ Note

Connection strings are used to represent a wide range of connection information,
including database connections, message brokers, endpoint URIs, and other
services. In .NET Aspire nomenclature, the term "connection string" is used to
represent any kind of connection information.

var builder = DistributedApplication.CreateBuilder(args);

var redis = builder.AddConnectionString("redis");

builder.AddProject<Projects.WebApplication>("api")
 .WithReference(redis);

builder.Build().Run();

{
 "ConnectionStrings": {
 "redis": "local-connection-string"
 }
}

For more information pertaining to connection strings and their representation in the
deployment manifest, see Connection string and binding references.

To express a parameter, consider the following example code:

C#

The following steps are performed:

Adds a SQL Server resource named sql and publishes it as a connection string.
Adds a database named db .
Adds a parameter named insertionRows .
Adds a project named api and associates it with the
Projects.Parameters_ApiService project resource type-parameter.
Passes the insertionRows parameter to the api project.
References the db database.

The value for the insertionRows parameter is read from the Parameters section of the
app host configuration file appsettings.json:

JSON

Parameter example

var builder = DistributedApplication.CreateBuilder(args);

var db = builder.AddSqlServer("sql")
 .PublishAsConnectionString()
 .AddDatabase("db");

var insertionRows = builder.AddParameter("insertionRows");

builder.AddProject<Projects.Parameters_ApiService>("api")
 .WithEnvironment("InsertionRows", insertionRows)
 .WithReference(db);

builder.Build().Run();

{
 "Logging": {
 "LogLevel": {
 "Default": "Information",
 "Microsoft.AspNetCore": "Warning",
 "Aspire.Hosting.Dcp": "Warning"
 }
 },
 "Parameters": {

The Parameters_ApiService project consumes the insertionRows parameter. Consider
the Program.cs example file:

C#

.NET Aspire manifest format for deployment tool builders

 "insertionRows": "1"
 }
}

using Microsoft.EntityFrameworkCore;

var builder = WebApplication.CreateBuilder(args);

int insertionRows = builder.Configuration.GetValue<int>("InsertionRows", 1);

builder.AddServiceDefaults();

builder.AddSqlServerDbContext<MyDbContext>("db");

var app = builder.Build();

app.MapGet("/", async (MyDbContext context) =>
{
 // You wouldn't normally do this on every call,
 // but doing it here just to make this simple.
 context.Database.EnsureCreated();

 for (var i = 0; i < insertionRows; i++)
 {
 var entry = new Entry();
 await context.Entries.AddAsync(entry);
 }

 await context.SaveChangesAsync();

 var entries = await context.Entries.ToListAsync();

 return new
 {
 totalEntries = entries.Count,
 entries
 };
});

app.Run();

See also

Tutorial: Connect an ASP.NET Core app to SQL Server using .NET Aspire and Entity
Framework Core

Persist .NET Aspire project data using
volumes or bind mounts
Article • 04/02/2025

Every time you start and stop a .NET Aspire project, the app also creates and destroys
the app resource containers. Any data or files stored in those containers during a
debugging session is lost for subsequent sessions. Many development teams prefer to
keep this data across debugging sessions so that, for example, they don't have to
repopulate a database with sample data for each run.

In this article, you learn how to configure .NET Aspire projects to persist data across app
launches. A continuous set of data during local development is useful in many scenarios.
Various .NET Aspire resource container types are able to leverage volumes and bind
mounts, such as PostgreSQL, Redis and Azure Storage.

Suppose you have a .NET Aspire solution with a database resource. By default, data is
saved in the container for that resource. Because all the resource containers are
destroyed when you stop your app, you lose that data and won't see it the next time
you run the solution. This setup creates problems when you want to persist data in a
database or storage services between app launches for testing or debugging. For
example, you may want to:

Work with a continuous set of data in a database during an extended development
session across multiple restarts.
Test or debug a changing set of files in an Azure Blob Storage emulator.
Maintain cached data or messages in a Redis instance across app launches.

You can accomplish these goals using volumes or bind mounts. These objects store data
outside the container in a directory on the container host, so it's not destroyed with the
container. This way, you decide which services retain data between launches of your
.NET Aspire project.

When to persist project data

７ Note

Volumes and bind mounts are features of your container runtime: Docker or
Podman. .NET Aspire includes methods that make it easy to work with those
features.

Both volumes and bind mounts store data in a directory on the container host. Because
this directory is outside the container, data isn't destroyed when the container stops.
Volumes and bind mounts, however behave differently:

Volumes: The container runtime creates and controls volumes. Volumes are
isolated from the core functionality of the container host.
Bind mounts: The container runtime mounts a file or directory on the host
machine. Both the container and the host machine can access the contents of the
bind mount.

Volumes are more secure and portable than bind mounts. They also perform better and
you should use them wherever possible. Use bind mounts only if you need to access or
modify the data from your host machine.

Volumes are the recommended way to persist data generated by containers and they're
supported on both Windows and Linux. Volumes can store data from multiple
containers at a time, offer high performance, and are easy to back up or migrate. With
.NET Aspire, you configure a volume for each resource container using the
ContainerResourceBuilderExtensions.WithVolume method, which accepts three
parameters:

name : An optional name for the volume.
target : The target path in the container of the data you want to persist.
isReadOnly : A Boolean flag that indicates whether the data in the volume can be
changed. The default value is false .

For the remainder of this article, imagine that you're exploring a Program class in a .NET
Aspire app host project that's already defined the distributed app builder bits:

C#

Compare volumes and bind mounts

Use volumes

var builder = DistributedApplication.CreateBuilder(args);

// TODO:
// Consider various code snippets for configuring
// volumes here and persistent passwords.

builder.Build().Run();

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.containerresourcebuilderextensions.withvolume

The first code snippet to consider uses the
ContainerResourceBuilderExtensions.WithVolume API to configure a volume for a SQL
Server resource. The following code demonstrates how to configure a volume for a SQL
Server resource in a .NET Aspire app host project:

C#

In this example /var/opt/mssql sets the path to the database files in the container.

All .NET Aspire container resources can utilize volumes, and some provide convenient
APIs for adding named volumes derived from resources. Using the WithDataVolume
method as an example, the following code is functionally equivalent to the previous
example but more succinct:

C#

With the app host project being named VolumeMount.AppHost , the WithDataVolume
method automatically creates a named volume as VolumeMount.AppHost-sql-data and is
mounted to the /var/opt/mssql path in the SQL Server container. The naming
convention is as follows:

{appHostProjectName}-{resourceName}-data : The volume name is derived from the
app host project name and the resource name.

Bind mounts enable access to the data from both within the container and from
processes on the host machine. For example, once a bind mount is established, you can
copy a file into it on your host computer. The file is then available at the bound path
within the container for your resource. With .NET Aspire, you configure a bind mount for
each resource container using the WithBindMount method, which accepts three
parameters:

source : The path to the folder on the host machine to mount in the container.
target : The target path in the container for the folder.

var sql = builder.AddSqlServer("sql")
 .WithVolume(target: "/var/opt/mssql")
 .AddDatabase("sqldb");

var sql = builder.AddSqlServer("sql")
 .WithDataVolume()
 .AddDatabase("sqldb");

Use bind mounts

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.containerresourcebuilderextensions.withvolume
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.sqlserverbuilderextensions.withdatavolume
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.containerresourcebuilderextensions.withbindmount

isReadOnly : A Boolean flag that indicates whether the data in the bind mount can
be changed. The default value is false .

Consider this code snippet, which uses the WithBindMount API to configure a bind
mount for a SQL Server resource:

C#

In this example:

source: @"C:\SqlServer\Data" sets the folder on the host computer that will be
bound.
target: "/var/opt/mssql" sets the path to the database files in the container.

As for volumes, some .NET Aspire container resources provide convenient APIs for
adding bind mounts. Using the WithDataBindMount method as an example, the
following code is functionally equivalent to the previous example but more succinct:

C#

Named volumes require a consistent password between app launches. .NET Aspire
conveniently provides random password generation functionality. Consider the previous
example once more, where a password is generated automatically:

C#

Since the password parameter isn't provided when calling AddSqlServer , .NET Aspire
automatically generates a password for the SQL Server resource.

var sql = builder.AddSqlServer("sql")
 .WithBindMount(source: @"C:\SqlServer\Data", target:
"/var/opt/mssql")
 .AddDatabase("sqldb");

var sql = builder.AddSqlServer("sql")
 .WithDataBindMount(source: @"C:\SqlServer\Data")
 .AddDatabase("sqldb");

Create persistent passwords

var sql = builder.AddSqlServer("sql")
 .WithDataVolume()
 .AddDatabase("sqldb");

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.containerresourcebuilderextensions.withbindmount
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.sqlserverbuilderextensions.withdatabindmount

To create a persistent password, you must override the generated password. To do this,
run the following command in your app host project directory to set a local password in
your .NET user secrets:

.NET CLI

The naming convention for these secrets is important to understand. The password is
stored in configuration with the Parameters:sql-password key. The naming convention
follows this pattern:

Parameters:{resourceName}-password : In the case of the SQL Server resource (which
was named "sql"), the password is stored in the configuration with the key
Parameters:sql-password .

The same pattern applies to the other server-based resource types, such as those shown
in the following table:

Resource
type

Hosting package Example
resource name

Override key

MySQL 📦 Aspire.Hosting.MySql mysql Parameters:mysql-password

Oracle 📦 Aspire.Hosting.Oracle oracle Parameters:oracle-

password

PostgreSQL 📦 Aspire.Hosting.PostgreSQL postgresql Parameters:postgresql-

password

RabbitMQ 📦 Aspire.Hosting.RabbitMq rabbitmq Parameters:rabbitmq-

password

SQL Server 📦 Aspire.Hosting.SqlServer sql Parameters:sql-password

By overriding the generated password, you can ensure that the password remains
consistent between app launches. An alternative approach is to use the AddParameter

） Important

This isn't a persistent password! Instead, it changes every time the app host runs.

dotnet user-secrets set Parameters:sql-password <password>

ﾉ Expand table

https://www.nuget.org/packages/Aspire.Hosting.MySql
https://www.nuget.org/packages/Aspire.Hosting.MySql
https://www.nuget.org/packages/Aspire.Hosting.Oracle
https://www.nuget.org/packages/Aspire.Hosting.Oracle
https://www.nuget.org/packages/Aspire.Hosting.PostgreSQL
https://www.nuget.org/packages/Aspire.Hosting.PostgreSQL
https://www.nuget.org/packages/Aspire.Hosting.RabbitMq
https://www.nuget.org/packages/Aspire.Hosting.RabbitMq
https://www.nuget.org/packages/Aspire.Hosting.SqlServer
https://www.nuget.org/packages/Aspire.Hosting.SqlServer
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.parameterresourcebuilderextensions.addparameter

method to create a parameter that can be used as a password. The following code
demonstrates how to create a persistent password for a SQL Server resource:

C#

The AddParameter method is used to create a parameter named sql-password that's
considered a secret. The AddSqlServer method is then called with the password
parameter to set the password for the SQL Server resource. For more information, see
External parameters.

You can apply the volume concepts in the preceding code to a variety of services,
including seeding a database with data that will persist across app launches. Try
combining these techniques with the resource implementations demonstrated in the
following tutorials:

Tutorial: Connect an ASP.NET Core app to .NET Aspire storage integrations
Tutorial: Connect an ASP.NET Core app to SQL Server using .NET Aspire and Entity
Framework Core
.NET Aspire orchestration overview

var sqlPassword = builder.AddParameter("sql-password", secret: true);

var sql = builder.AddSqlServer("sql", password: sqlPassword)
 .WithDataVolume()
 .AddDatabase("sqldb");

Next steps

.NET Aspire dashboard overview
Article • 11/12/2024

.NET Aspire project templates offer a sophisticated dashboard for comprehensive app
monitoring and inspection, and it's also available in standalone mode. This dashboard
allows you to closely track various aspects of your app, including logs, traces, and
environment configurations, in real-time. It's purpose-built to enhance the development
experience, providing an insightful overview of your app's state and structure. The
dashboard exposes the ability to stop, start, and restart resources, as well as view and
interact with logs and telemetry.

The dashboard is integrated into the .NET Aspire *.AppHost. During development the
dashboard is automatically launched when you start the project. It's configured to
display the .NET Aspire project's resources and telemetry.

For more information about using the dashboard during .NET Aspire development, see
Explore dashboard features.

The .NET Aspire dashboard is also shipped as a Docker image and can be used
standalone, without the rest of .NET Aspire. The standalone dashboard provides a great
UI for viewing telemetry and can be used by any application.

Use the dashboard with .NET Aspire projects



Standalone mode

Bash

docker run --rm -it -p 18888:18888 -p 4317:18889 -d --name aspire-
dashboard \
 mcr.microsoft.com/dotnet/aspire-dashboard:9.0

https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/projects.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/projects.png#lightbox

The preceding Docker command:

Starts a container from the mcr.microsoft.com/dotnet/aspire-dashboard:9.0 image.
The container instance exposing two ports:

Maps the dashboard's OTLP port 18889 to the host's port 4317 . Port 4317
receives OpenTelemetry data from apps. Apps send data using OpenTelemetry
Protocol (OTLP) .
Maps the dashboard's port 18888 to the host's port 18888 . Port 18888 has the
dashboard UI. Navigate to http://localhost:18888 in the browser to view the
dashboard.

For more information, see the Standalone .NET Aspire dashboard.

The dashboard is configured when it starts up. Configuration includes frontend and
OTLP addresses, the resource service endpoint, authentication, telemetry limits and
more.

For more information, see .NET Aspire dashboard configuration.

The dashboard user experience is built with a variety of technologies. The frontend is
built with 📦 Grpc.AspNetCore) NuGet package NuGet package) to the resource
server. Consider the following diagram that illustrates the architecture of the .NET Aspire
dashboard:

Configuration

Architecture

https://opentelemetry.io/docs/specs/otlp/
https://opentelemetry.io/docs/specs/otlp/
https://opentelemetry.io/docs/specs/otlp/
https://www.nuget.org/packages/Grpc.AspNetCore
https://www.nuget.org/packages/Grpc.AspNetCore

The .NET Aspire dashboard offers powerful insights to your apps. The UI displays
information about resources, including their configuration, console logs and in-depth
telemetry.

Data displayed in the dashboard can be sensitive. For example, configuration can
include secrets in environment variables, and telemetry can include sensitive runtime
data. Care should be taken to secure access to the dashboard.

For more information, see .NET Aspire dashboard security considerations.



Security

Next steps
Explore the .NET Aspire dashboard

https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/architecture-diagram.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/architecture-diagram.png#lightbox

Explore the .NET Aspire dashboard
Article • 11/12/2024

In the upcoming sections, you discover how to create a .NET Aspire project and embark
on the following tasks:

The screenshots featured in this article showcase the dark theme. For more information
on theme selection, see Theme selection.

When you run a .NET Aspire app host, the orchestrator starts up all the app's dependent
resources and then opens a browser window to the dashboard. The .NET Aspire
dashboard requires token-based authentication for its users because it displays
environment variables and other sensitive information.

When the dashboard is launched from Visual Studio or Visual Studio Code (with the C#
Dev Kit extension), the browser is automatically logged in, and the dashboard opens
directly. This is the typical developer F5 experience, and the authentication login flow is
automated by the .NET Aspire tooling.

However, if you start the app host from the command line, you're presented with the
login page. The console window displays a URL that you can select on to open the
dashboard in your browser.

The URL contains a token query string (with the token value mapped to the t name
part) that's used to log in to the dashboard. If your console supports it, you can hold the
Ctrl key and then select the link to open the dashboard in your browser. This method

is easier than copying the token from the console and pasting it into the login page. If
you end up on the dashboard login page without either of the previously described
methods, you can always return to the console to copy the token.

Investigate the dashboard's capabilities by using the app generated from the
project template as explained in the Quickstart: Build your first .NET Aspire project.

＂

Delve into the features of the .NET Aspire dashboard app.＂

Dashboard authentication



https://marketplace.visualstudio.com/items?itemName=ms-dotnettools.csdevkit
https://marketplace.visualstudio.com/items?itemName=ms-dotnettools.csdevkit
https://marketplace.visualstudio.com/items?itemName=ms-dotnettools.csdevkit
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/dotnet-run-login-url.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/dotnet-run-login-url.png#lightbox

The login page accepts a token and provides helpful instructions on how to obtain the
token, as shown in the following screenshot:

After copying the token from the console and pasting it into the login page, select the
Log in button.





https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/aspire-login.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/aspire-login.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/aspire-login-help.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/aspire-login-help.png#lightbox

The dashboard persists the token as a browser persistent cookie, which remains valid for
three days. Persistent cookies have an expiration date and remain valid even after
closing the browser. This means that users don't need to log in again if they close and
reopen the browser. For more information, see the Security considerations for running
the .NET Aspire dashboard documentation.

The Resources page is the default home page of the .NET Aspire dashboard. This page
lists all of the .NET projects, containers, and executables included in your .NET Aspire
solution. For example, the starter application includes two projects:

apiservice: A back-end API project built using Minimal APIs.
webfrontend: The front-end UI project built using Blazor.

The dashboard also provides essential details about each resource:

Type: Displays whether the resource is a project, container, or executable.
Name: The name of the resource.
State: Displays whether or not the resource is currently running.

Errors: Within the State column, errors are displayed as a badge with the error
count. It's useful to understand quickly what resources are reporting errors.
Selecting the badge takes you to the semantic logs for that resource with the
filter at an error level.

Start time: When the resource started running.
Source: The location of the resource on the device.
Endpoints: One or more URLs to reach the running resource directly.
Logs: A link to the resource logs page.
Actions: A set of actions that can be performed on the resource:

Stop / Start: Stop (or Start) the resource—depending on the current State.



Resources page

https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/aspire-login-filled.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/aspire-login-filled.png#lightbox

Console logs: Navigate to the resource's console logs.
Ellipsis: A submenu with extra resource specific actions:

View details: View the resource details.
Console log: Navigate to the resource's console logs.
Structured logs: Navigate to the resource's structured logs.
Traces: Navigate to the resource's traces.
Metrics: Navigate to the resource's metrics.
Restart: Stop and then start the resource.

Consider the following screenshot of the resources page:

Each resource has a set of available actions that are conditionally enabled based on the
resource's current state. For example, if a resource is running, the Stop action is enabled.
If the resource is stopped, the Start action is enabled. Likewise, some actions are
disabled when they're unavailable, for example, some resources don't have structured
logs. In these situations, the Structured logs action is disabled.

The .NET Aspire dashboard allows you to stop or start a resource by selecting the Stop
or Start button in the Actions column. Consider the following screenshot of the
resources page with the Stop button selected:



Resource actions

Stop or Start a resource



https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/projects.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/projects.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/resource-stop-action.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/resource-stop-action.png#lightbox

When you select Stop, the resource stops running, and the State column updates to
reflect the change.

The Start button is then enabled, allowing you to start the resource again. Additionally,
the dashboard displays a toast notification of the result of the action:

When a resource is in a non-running state, the Start button is enabled. Selecting Start
starts the resource, and the State column updates to reflect the change. The Stop
button is then enabled, allowing you to stop the resource again. The dashboard displays
a toast notification of the result of the action:

Selecting the horizontal ellipsis icon in the Actions column opens a submenu with
additional resource-specific actions. In addition to the built-in resource submenu
actions, you can also define custom resource actions by defining custom commands. For

７ Note

For project resources, when the debugger is attached, it's reattached on restart.





 Tip

Resources that depend on other resources that are stopped, or restarted, might
experience temporary errors. This is expected behavior and is typically resolved
when the dependent resources are in a Running state once again.

Resource submenu actions

https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/resource-stopped-action.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/resource-stopped-action.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/resource-started-action.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/resource-started-action.png#lightbox

more information, see Custom resource commands in .NET Aspire. For the built-in
resource submenu actions, consider the following screenshot:

The following submenu actions are available:

View details: View the resource details.
Console log: Navigate to the resource's console logs.
Structured logs: Navigate to the resource's structured logs.
Traces: Navigate to the resource's traces.
Metrics: Navigate to the resource's metrics.
Restart: Stop and then start the resource.



） Important

There might be resources with disabled submenu actions. They're greyed out when
they're disabled. For example, the following screenshot shows the submenu actions
disabled:



https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/resource-actions.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/resource-actions.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/resource-submenu-actions.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/resource-submenu-actions.png#lightbox

To view a text visualizer of certain columns, on hover you see a vertical ellipsis icon.
Select the icon to display the available options:

Copy to clipboard
Open in text visualizer

Consider the following screenshot of the ellipsis menu options:

When you select the Open in text visualizer option, a modal dialog opens with the text
displayed in a larger format. Consider the following screenshot of the text visualizer
modal dialog:

Some values are formatted as JSON or XML. In these cases, the text visualizer enables
the Select format dropdown to switch between the different formats.

You can obtain full details about each resource by selecting the ellipsis button in the
Actions column and then selecting View details. The Details page provides a
comprehensive view of the resource:

Copy or Open in text visualizer





Resource details

https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/text-visualizer-selection-menu.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/text-visualizer-selection-menu.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/text-visualizer-resources.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/text-visualizer-resources.png#lightbox

The search bar in the upper right of the dashboard also provides the option to filter the
list, which is useful for .NET Aspire projects with many resources. To select the types of
resources that are displayed, drop down the arrow to the left of the filter textbox:

In this example, only containers are displayed in the list. For example, if you enable Use
Redis for caching when creating a .NET Aspire project, you should see a Redis container
listed:



https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/resource-details.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/resource-details.png#lightbox

Executables are stand-alone processes. You can configure a .NET Aspire project to run a
stand-alone executable during startup, though the default starter templates don't
include any executables by default.

The following screenshot shows an example of a project that has errors:

Selecting the error count badge navigates to the Structured logs page with a filter
applied to show only the logs relevant to the resource:

To see the log entry in detail for the error, select the View button to open a window
below the list with the structured log entry details:







https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/resources-filtered-containers.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/resources-filtered-containers.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/projects-errors.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/projects-errors.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/structured-logs-errors.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/structured-logs-errors.png#lightbox

For more information and examples of Structured logs, see the Structured logs page
section.

The .NET Aspire dashboard provides various ways to view logs, traces, and metrics for
your app. This information enables you to track the behavior and performance of your
app and to diagnose any issues that arise.



７ Note

The resources page isn't available if the dashboard is started without a configured
resource service. The dashboard starts on the Structured logs page instead. This is
the default experience when the dashboard is run in standalone mode without
additional configuration.

For more information about configuring a resource service, see Dashboard
configuration.

Monitoring pages

Console logs page

https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/structured-logs-errors-view.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/structured-logs-errors-view.png#lightbox

The Console logs page displays text that each resource in your app has sent to standard
output. Logs are a useful way to monitor the health of your app and diagnose issues.
Logs are displayed differently depending on the source, such as project, container, or
executable.

When you open the Console logs page, you must select a source in the Select a
resource drop-down list.

If you select a project, the live logs are rendered with a stylized set of colors that
correspond to the severity of the log; green for information as an example. Consider the
following example screenshot of project logs with the apiservice project selected:

When errors occur, they're styled in the logs such that they're easy to identify. Consider
the following example screenshot of project logs with errors:

If you select a container or executable, formatting is different from a project but verbose
behavior information is still available. Consider the following example screenshot of a
container log with the cache container selected:





https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/project-logs.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/project-logs.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/project-logs-error.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/project-logs-error.png#lightbox

When project resources are replicated using the WithReplicas API, they're represented in
the resource selector under a top-level named resource entry with an icon to indicator.
Each replicated resource is listed under the top-level resource entry, with its
corresponding unique name. Consider the following example screenshot of a replicated
project resource:



Resource replicas

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.projectresourcebuilderextensions.withreplicas
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/container-logs.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/container-logs.png#lightbox

The preceding screenshot shows the catalogservice (application) project with two
replicas, catalogservice-2bpj2qdq6k and catalogservice-6ljdin0hc0 . Each replica has its
own set of logs that can be viewed by selecting the replica name.

.NET Aspire automatically configures your projects with logging using OpenTelemetry.
Navigate to the Structured logs page to view the semantic logs for your .NET Aspire
project. Semantic, or structured logging makes it easier to store and query log-events,



Structured logs page

https://github.com/NLog/NLog/wiki/How-to-use-structured-logging
https://github.com/NLog/NLog/wiki/How-to-use-structured-logging
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/console-logs-with-replicas.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/console-logs-with-replicas.png#lightbox

as the log-event message-template and message-parameters are preserved, instead of
just transforming them into a formatted message. You notice a clean structure for the
different logs displayed on the page using columns:

Resource: The resource the log originated from.
Level: The log level of the entry, such as information, warning, or error.
Timestamp: The time that the log occurred.
Message: The details of the log.
Trace: A link to the relevant trace for the log, if applicable.
Details: Additional details or metadata about the log entry.

Consider the following example screenshot of semantic logs:

The structured logs page also provides a search bar to filter the logs by service, level, or
message. You use the Level drop down to filter by log level. You can also filter by any
log property by selecting the filter icon button, which opens the advanced filter dialog.

Consider the following screenshots showing the structured logs, filtered to display items
with "Hosting" in the message text:



Filter structured logs

https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/structured-logs.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/structured-logs.png#lightbox

Navigate to the Traces page to view all of the traces for your app. .NET Aspire
automatically configures tracing for the different projects in your app. Distributed
tracing is a diagnostic technique that helps engineers localize failures and performance
issues within applications, especially those that might be distributed across multiple
machines or processes. For more information, see .NET distributed tracing. This
technique tracks requests through an application and correlates work done by different
application integrations. Traces also help identify how long different stages of the
request took to complete. The traces page displays the following information:

Timestamp: When the trace completed.
Name: The name of the trace, prefixed with the project name.
Spans: The resources involved in the request.
Duration: The time it took to complete the request. This column includes a radial
icon that illustrates the duration of the request in comparison with the others in
the list.



Traces page

https://learn.microsoft.com/en-us/dotnet/core/diagnostics/distributed-tracing
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/structured-logs-filtered.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/structured-logs-filtered.png#lightbox

The traces page also provides a search bar to filter the traces by name or span. Apply a
filter, and notice the trace results are updated immediately. Consider the following
screenshot of traces with a filter applied to weather and notice how the search term is
highlighted in the results:

When filtering traces in the Add filter dialog, after selecting a Parameter and
corresponding Condition, the Value selection is pre-populated with the available values
for the selected parameter. Consider the following screenshot of the Add filter dialog
with the http.route parameter selected:



Filter traces



https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/traces.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/traces.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/trace-view-filter.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/trace-view-filter.png#lightbox

When a resource has multiple replicas, you can filter telemetry to view data from all
instances at once. Select the parent resource, labeled (application) , as shown in the
following screenshot:



Combine telemetry from multiple resources

https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/traces-filtering.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/traces-filtering.png#lightbox

After selecting the parent resource, the traces page displays telemetry from all instances
of the resource.

The trace details page contains various details pertinent to the request, including:

Trace Detail: When the trace started.
Duration: The time it took to complete the request.
Resources: The number of resources involved in the request.
Depth: The number of layers involved in the request.
Total Spans: The total number of spans involved in the request.

Each span is represented as a row in the table, and contains a Name. Spans also display
the error icon if an error occurred within that particular span of the trace. Spans that
have a type of client/consumer, but don't have a span on the server, show an arrow icon
and then the destination address. This represents a client call to a system outside of the
.NET Aspire project. For example, an HTTP request an external web API, or a database
call.

Within the trace details page, there's a View Logs button that takes you to the
structured logs page with a filter applied to show only the logs relevant to the request.
Consider an example screenshot depicting the structured logs page with a filter applied
to show only the logs relevant to the trace:



Trace details

https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/telemetry-resource-filter.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/telemetry-resource-filter.png#lightbox

The structured logs page is discussed in more detail in the Structured logs page section.

Each trace has a color, which is generated to help differentiate between spans—one
color for each resource. The colors are reflected in both the traces page and the trace
detail page. When traces depict an arrow icon, those icons are colorized as well to match
the span of the target trace. Consider the following example screenshot of traces:

You can also select the View button to navigate to a detailed view of the request and
the duration of time it spent traveling through each application layer. Consider an
example selection of a trace to view its details:



Trace examples



https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/structured-logs-trace-errors.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/structured-logs-trace-errors.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/traces.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/traces.png#lightbox

For each span in the trace, select View to see more details:

Scroll down in the span details pain to see full information. At the bottom of the span
details pane, some span types, such as this call to a cache, show span event timings:

When errors are present, the page renders an error icon next to the trace name.
Consider an example screenshot of traces with errors:







https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/trace.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/trace.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/trace-span-details.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/trace-span-details.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/trace-span-event-details.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/trace-span-event-details.png#lightbox

And the corresponding detailed view of the trace with errors:

Navigate to the Metrics page to view the metrics for your app. .NET Aspire automatically
configures metrics for the different projects in your app. Metrics are a way to measure
the health of your application and can be used to monitor the performance of your app
over time.

Each metric-publishing project in your app has its own metrics. The metrics page
displays a selection pane for each top-level meter and the corresponding instruments
that you can select to view the metric.

Consider the following example screenshot of the metrics page, with the webfrontend
project selected and the System.Net.Http meter's http.client.request.duration metric
selected:





Metrics page

https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/traces-errors.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/traces-errors.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/trace-view-errors.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/trace-view-errors.png#lightbox

In addition to the metrics chart, the metrics page includes an option to view the data as
a table instead. Consider the following screenshot of the metrics page with the table
view selected:

Under the chart, there's a list of filters you can apply to focus on the data that interests
you. For example, in the following screenshot, the http.request.method field is filtered





https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/metrics-view.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/metrics-view.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/metrics-table-view.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/metrics-table-view.png#lightbox

to show only GET requests:

You can also choose to select the count of the displayed metric on the vertical access,
instead of its values:





https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/metrics-view-filtered.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/metrics-view-filtered.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/metrics-view-count.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/metrics-view-count.png#lightbox

For more information about metrics, see Built-in Metrics in .NET.

The .NET Aspire dashboard supports and displays OpenTelemetry Exemplars. An
exemplar links a metric data point to the operation that recorded it, serving as a bridge
between metrics and traces.

Exemplars are useful because they provide additional context about why a specific
metric value was recorded. For example, if you notice a spike in latency in the
http.client.request.duration metric, an exemplar could point to a specific trace or
span that caused the spike, helping you understand the root cause.

Exemplars are displayed in the metrics chart as a small round dot next to the data point.
When you hover over the indicator, a tooltip displays the exemplar details as shown in
the following screenshot:

The preceding screenshot shows the exemplar details for the
http.client.request.duration metric. The exemplar details include the:

Resource name.
Operation performed, in this case an HTTP GET to the /catalog/images/{id} .
Corresponding value and the time stamp.

Exemplars



https://learn.microsoft.com/en-us/dotnet/core/diagnostics/built-in-metrics
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/metrics-page-exemplars.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/metrics-page-exemplars.png#lightbox

Selecting the exemplar indicator opens the trace details page, where you can view the
trace associated, for example consider the following screenshot:

For more information, see OpenTelemetry Docs: Exemplars .

By default, the theme is set to follow the System theme, which means the dashboard
uses the same theme as your operating system. You can also select the Light or Dark
theme to override the system theme. Theme selections are persisted.

The following screenshot shows the theme selection dialog, with the default System
theme selected:

If you prefer the Light theme, you can select it from the theme selection dialog:



Theme selection



https://opentelemetry.io/docs/specs/otel/metrics/data-model/#exemplars
https://opentelemetry.io/docs/specs/otel/metrics/data-model/#exemplars
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/trace-page-from-exemplars.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/trace-page-from-exemplars.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/theme-selection.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/theme-selection.png#lightbox

The .NET Aspire dashboard provides various shortcuts to help you navigate and control
different parts of the dashboard. To display the keyboard shortcuts, press Shift + ? , or
select the question mark icon in the top-right corner of the dashboard:

The following shortcuts are available:

Panels:

+ : Increase panel size.
- : Decrease panel size.
Shift + r : Reset panel size.
Shift + t : Toggle panel orientation.
Shift + x : Close panel.

Page navigation:



Dashboard shortcuts



https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/theme-selection-light.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/theme-selection-light.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/dashboard-help.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/explore/dashboard-help.png#lightbox

r : Go to Resources.
c : Go to Console Logs.
s : Go to Structured Logs.
t : Go to Traces.
m : Go to Metrics.

Site-wide navigation:

? : Got to Help.
Shift + s : Go to Settings.

Next steps
Standalone .NET Aspire dashboard

Standalone .NET Aspire dashboard
Article • 10/29/2024

The .NET Aspire dashboard provides a great UI for viewing telemetry. The dashboard:

Ships as a container image that can be used with any OpenTelemetry enabled app.
Can be used standalone, without the rest of .NET Aspire.

The dashboard is started using the Docker command line.

Bash

The preceding Docker command:

Starts a container from the mcr.microsoft.com/dotnet/aspire-dashboard:9.0 image.
The container expose two ports:

Mapping the dashboard's OTLP port 18889 to the host's port 4317 . Port 4317
receives OpenTelemetry data from apps. Apps send data using OpenTelemetry
Protocol (OTLP) .



Start the dashboard

Bash

docker run --rm -it -d \
 -p 18888:18888 \
 -p 4317:18889 \
 --name aspire-dashboard \
 mcr.microsoft.com/dotnet/aspire-dashboard:9.0

https://opentelemetry.io/docs/specs/otlp/
https://opentelemetry.io/docs/specs/otlp/
https://opentelemetry.io/docs/specs/otlp/
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/standalone/standalone-mode.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/standalone/standalone-mode.png#lightbox

Mapping the dashboard's port 18888 to the host's port 18888 . Port 18888 has
the dashboard UI. Navigate to http://localhost:18888 in the browser to view
the dashboard.

Data displayed in the dashboard can be sensitive. By default, the dashboard is secured
with authentication that requires a token to login.

When the dashboard is run from a standalone container, the login token is printed to
the container logs. After copying the highlighted token into the login page, select the
Login button.

For more information about logging into the dashboard, see Dashboard authentication.

The dashboard offers a UI for viewing telemetry. Refer to the documentation to explore
the telemetry functionality:

Structured logs page
Traces page
Metrics page

Login to the dashboard



 Tip

To avoid the login, you can disable the authentication requirement by setting the
DOTNET_DASHBOARD_UNSECURED_ALLOW_ANONYMOUS environment variable to true .
Additional configuration is available, see Dashboard configuration.

Explore the dashboard

https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/standalone/aspire-dashboard-container-log.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/dashboard/media/standalone/aspire-dashboard-container-log.png#lightbox

Although there is no restriction on where the dashboard is run, the dashboard is
designed as a development and short-term diagnostic tool. The dashboard persists
telemetry in-memory which creates some limitations:

Telemetry is automatically removed if telemetry limits are exceeded.
No telemetry is persisted when the dashboard is restarted.

The dashboard also has functionality for viewing .NET Aspire resources. The dashboard
resource features are disabled when it is run in standalone mode. To enable the
resources UI, add configuration for a resource service.

Apps send telemetry to the dashboard using OpenTelemetry Protocol (OTLP) . The
dashboard must expose a port for receiving OpenTelemetry data, and apps are
configured to send data to that address.

A Docker command was shown earlier to start the dashboard. It configured the
container to receive OpenTelemetry data on port 4317 . The OTLP endpoint's full address
is http://localhost:4317 .

Apps collect and send telemetry using their language's OpenTelemetry SDK .

Important OpenTelemetry SDK options to configure:

OTLP endpoint, which should match the dashboard's configuration, for example,
http://localhost:4317 .
OTLP protocol, with the dashboard currently supporting only the OTLP/gRPC
protocol . Configure applications to use the grpc protocol.

To configure applications:

Use the OpenTelemetry SDK APIs within the application, or
Start the app with known environment variables :

OTEL_EXPORTER_OTLP_PROTOCOL with a value of grpc .
OTEL_EXPORTER_OTLP_ENDPOINT with a value of http://localhost:4317 .

Send telemetry to the dashboard

Configure OpenTelemetry SDK

Sample

https://opentelemetry.io/docs/specs/otlp/
https://opentelemetry.io/docs/specs/otlp/
https://opentelemetry.io/docs/languages/
https://opentelemetry.io/docs/languages/
https://opentelemetry.io/docs/specs/otlp/#otlpgrpc
https://opentelemetry.io/docs/specs/otlp/#otlpgrpc
https://opentelemetry.io/docs/specs/otlp/#otlpgrpc
https://opentelemetry.io/docs/specs/otel/protocol/exporter/#configuration-options
https://opentelemetry.io/docs/specs/otel/protocol/exporter/#configuration-options

https://learn.microsoft.com/en-us/samples/dotnet/aspire-samples/aspire-standalone-dashboard
https://learn.microsoft.com/en-us/samples/dotnet/aspire-samples/aspire-standalone-dashboard

Tutorial: Use the .NET Aspire dashboard
with Python apps
Article • 10/29/2024

The .NET Aspire dashboard provides a great user experience for viewing telemetry, and
is available as a standalone container image that can be used with any OpenTelemetry-
enabled app. In this article, you'll learn how to:

To complete this tutorial, you need the following:

Docker or Podman .
You can use an alternative container runtime, but the commands in this article
are for Docker.

Python 3.9 or higher locally installed.
A sample application.

This tutorial can be completed using either Flask, Django, or FastAPI. A sample
application in each framework is provided to help you follow along with this tutorial.
Download or clone the sample application to your local workstation.

Console

To run the application locally:

Start the .NET Aspire dashboard in standalone mode.＂

Use the .NET Aspire dashboard with a Python app.＂

Prerequisites

Sample application

Flask

git clone https://github.com/Azure-Samples/msdocs-python-flask-webapp-
quickstart

Flask

https://docs.docker.com/get-docker/
https://docs.docker.com/get-docker/
https://podman.io/
https://podman.io/
https://www.python.org/downloads/
https://www.python.org/downloads/

1. Go to the application folder:

Console

2. Create a virtual environment for the app:

PowerShell

3. Install the dependencies:

Console

4. Run the app:

Console

5. Browse to the sample application at http://localhost:5000 in a web browser.

cd msdocs-python-flask-webapp-quickstart

Windows

py -m venv .venv
.\.venv\Scripts\Activate.ps1

pip install -r requirements.txt

flask run

To use the .NET Aspire dashboard with your Python app, you need to install the
OpenTelemetry SDK and exporter. The OpenTelemetry SDK provides the API for
instrumenting your application, and the exporter sends telemetry data to the .NET
Aspire dashboard.

1. Install the OpenTelemetry SDK and exporter:

Console

2. Add a new file to your application called otlp_tracing.py and add the following
code:

Python

Adding OpenTelemetry

pip install opentelemetry-api opentelemetry-sdk opentelemetry-exporter-
otlp-proto-grpc

import logging
from opentelemetry import metrics, trace

3. Update your application (app.py for Flask, main.py for FastAPI) to include the
imports and call the configure_oltp_grpc_tracing function:

from opentelemetry._logs import set_logger_provider
from opentelemetry.exporter.otlp.proto.grpc._log_exporter import (
 OTLPLogExporter,
)
from opentelemetry.exporter.otlp.proto.grpc.metric_exporter import
OTLPMetricExporter
from opentelemetry.exporter.otlp.proto.grpc.trace_exporter import
OTLPSpanExporter
from opentelemetry.sdk._logs import LoggerProvider, LoggingHandler
from opentelemetry.sdk._logs.export import BatchLogRecordProcessor
from opentelemetry.sdk.metrics import MeterProvider
from opentelemetry.sdk.metrics.export import
PeriodicExportingMetricReader
from opentelemetry.sdk.trace import TracerProvider
from opentelemetry.sdk.trace.export import BatchSpanProcessor

def configure_oltp_grpc_tracing(
 endpoint: str = None
) -> trace.Tracer:
 # Configure Tracing
 traceProvider = TracerProvider()
 processor = BatchSpanProcessor(OTLPSpanExporter(endpoint=endpoint))
 traceProvider.add_span_processor(processor)
 trace.set_tracer_provider(traceProvider)

 # Configure Metrics
 reader =
PeriodicExportingMetricReader(OTLPMetricExporter(endpoint=endpoint))
 meterProvider = MeterProvider(metric_readers=[reader])
 metrics.set_meter_provider(meterProvider)

 # Configure Logging
 logger_provider = LoggerProvider()
 set_logger_provider(logger_provider)

 exporter = OTLPLogExporter(endpoint=endpoint)

logger_provider.add_log_record_processor(BatchLogRecordProcessor(export
er))
 handler = LoggingHandler(level=logging.NOTSET,
logger_provider=logger_provider)
 handler.setFormatter(logging.Formatter("Python: %(message)s"))

 # Attach OTLP handler to root logger
 logging.getLogger().addHandler(handler)

 tracer = trace.get_tracer(__name__)
 return tracer

Python

4. Replace the print calls with logger.info calls in your application.

5. Restart your application.

This instrumentation has only focused on adding OpenTelemetry to our code. For more
detailed instrumentation, you can use the OpenTelemetry Instrumentation packages for
the specific frameworks that you are using.

1. Install the Flask instrumentation package:

Console

2. Add the following code to your application:

Python

To start the Aspire dashboard in standalone mode, run the following Docker command:

Bash

import logging
from otlp_tracing import configure_otel_otlp

logging.basicConfig(level=logging.INFO)
tracer = configure_otel_otlp()
logger = logging.getLogger(__name__)

Framework Specific Instrumentation

Flask

pip install opentelemetry-instrumentation-flask

from opentelemetry.instrumentation.flask import FlaskInstrumentor

add this line after configure_otel_otlp() call
FlaskInstrumentor().instrument()

Start the Aspire dashboard

In the Docker logs, the endpoint and key for the dashboard are displayed. Copy the key
and navigate to http://localhost:18888 in a web browser. Enter the key to log in to the
dashboard.

Navigate around the Python application, and you'll see structured logs in the Aspire
dashboard. The structured logs page displays logs from your application, and you can
filter and search the logs.

You have successfully used the .NET Aspire dashboard with a Python application. To
learn more about the .NET Aspire dashboard, see the Aspire dashboard overview and
how to orchestrate a Python application with the .NET Aspire app host.

docker run --rm -it -p 18888:18888 -p 4317:18889 --name aspire-dashboard \
 mcr.microsoft.com/dotnet/aspire-dashboard:9.0

View Structured Logs

Next steps

Dashboard configuration
Article • 02/13/2025

The dashboard is configured when it starts up. Configuration includes frontend and OpenTelemetry Protocol
(OTLP) addresses, the resource service endpoint, authentication, telemetry limits, and more.

When the dashboard is launched with the .NET Aspire app host project, it's automatically configured to display
the app's resources and telemetry. Configuration is provided when launching the dashboard in standalone
mode.

There are many ways to provide configuration:

Command line arguments.
Environment variables. The : delimiter should be replaced with double underscore (__) in environment
variable names.
Optional JSON configuration file. The DOTNET_DASHBOARD_CONFIG_FILE_PATH setting can be used to specify a
JSON configuration file.

Consider the following example, which shows how to configure the dashboard when started from a Docker
container:

Bash

Alternatively, these same values could be configured using a JSON configuration file that is specified using
DOTNET_DASHBOARD_CONFIG_FILE_PATH :

JSON

Bash

docker run --rm -it -p 18888:18888 -p 4317:18889 -d --name aspire-dashboard \
 -e DASHBOARD__TELEMETRYLIMITS__MAXLOGCOUNT='1000' \
 -e DASHBOARD__TELEMETRYLIMITS__MAXTRACECOUNT='1000' \
 -e DASHBOARD__TELEMETRYLIMITS__MAXMETRICSCOUNT='1000' \
 mcr.microsoft.com/dotnet/aspire-dashboard:9.0

{
 "Dashboard": {
 "TelemetryLimits": {
 "MaxLogCount": 1000,
 "MaxTraceCount": 1000,
 "MaxMetricsCount": 1000
 }
 }
}

） Important

The dashboard displays information about resources, including their configuration, console logs and in-
depth telemetry.

Data displayed in the dashboard can be sensitive. For example, secrets in environment variables, and
sensitive runtime data in telemetry. Care should be taken to configure the dashboard to secure access.

Option Default value Description

ASPNETCORE_URLS http://localhost:18888 One or more HTTP endpoints through which the
dashboard frontend is served. The frontend
endpoint is used to view the dashboard in a
browser. When the dashboard is launched by the
.NET Aspire app host this address is secured with
HTTPS. Securing the dashboard with HTTPS is
recommended.

DOTNET_DASHBOARD_OTLP_ENDPOINT_URL http://localhost:18889 The OTLP/gRPC endpoint. This endpoint hosts
an OTLP service and receives telemetry using
gRPC. When the dashboard is launched by the
.NET Aspire app host this address is secured with
HTTPS. Securing the dashboard with HTTPS is
recommended.

DOTNET_DASHBOARD_OTLP_HTTP_ENDPOINT_URL http://localhost:18890 The OTLP/HTTP endpoint. This endpoint hosts
an OTLP service and receives telemetry using
Protobuf over HTTP. When the dashboard is
launched by the .NET Aspire app host the
OTLP/HTTP endpoint isn't configured by default.
To configure an OTLP/HTTP endpoint with the app
host, set an
DOTNET_DASHBOARD_OTLP_HTTP_ENDPOINT_URL env var
value in launchSettings.json. Securing the
dashboard with HTTPS is recommended.

DOTNET_DASHBOARD_UNSECURED_ALLOW_ANONYMOUS false Configures the dashboard to not use
authentication and accepts anonymous access.
This setting is a shortcut to configuring
Dashboard:Frontend:AuthMode and
Dashboard:Otlp:AuthMode to Unsecured .

DOTNET_DASHBOARD_CONFIG_FILE_PATH null The path for a JSON configuration file. If the
dashboard is being run in a Docker container,
then this is the path to the configuration file in a
mounted volume. This value is optional.

DOTNET_DASHBOARD_FILE_CONFIG_DIRECTORY null The directory where the dashboard looks for key-
per-file configuration. This value is optional.

DOTNET_RESOURCE_SERVICE_ENDPOINT_URL null The gRPC endpoint to which the dashboard
connects for its data. If this value is unspecified,
the dashboard shows telemetry data but no

For more information, see dashboard security.

７ Note

Configuration described on this page is for the standalone dashboard. To configure an .NET Aspire app
host project, see App host configuration.

Common configuration
ﾉ Expand table

https://opentelemetry.io/docs/specs/otlp/#otlpgrpc
https://opentelemetry.io/docs/specs/otlp/#otlpgrpc
https://opentelemetry.io/docs/specs/otlp/#otlphttp
https://opentelemetry.io/docs/specs/otlp/#otlphttp

Option Default value Description
resource list or console logs. This setting is a
shortcut to Dashboard:ResourceServiceClient:Url .

The dashboard frontend endpoint authentication is configured with Dashboard:Frontend:AuthMode . The frontend
can be secured with OpenID Connect (OIDC) or browser token authentication.

Browser token authentication works by the frontend asking for a token. The token can either be entered in the
UI or provided as a query string value to the login page. For example, https://localhost:1234/login?
t=TheToken . When the token is successfully authenticated an auth cookie is persisted to the browser, and the
browser is redirected to the app.

Option Default value Description

Dashboard:Frontend:AuthMode BrowserToken Can be set to BrowserToken , OpenIdConnect or
Unsecured . Unsecured should only be used during
local development. It's not recommended when
hosting the dashboard publicly or in other settings.

Dashboard:Frontend:BrowserToken null Specifies the browser token. If the browser token
isn't specified, then the dashboard generates one.
Tooling that wants to automate logging in with
browser token authentication can specify a token
and open a browser with the token in the query
string. A new token should be generated each time
the dashboard is launched.

Dashboard:Frontend:OpenIdConnect:NameClaimType name Specifies one or more claim types that should be
used to display the authenticated user's full name.
Can be a single claim type or a comma-delimited list
of claim types.

Dashboard:Frontend:OpenIdConnect:UsernameClaimType preferred_username Specifies one or more claim types that should be
used to display the authenticated user's username.
Can be a single claim type or a comma-delimited list
of claim types.

Dashboard:Frontend:OpenIdConnect:RequiredClaimType null Specifies the claim that must be present for
authorized users. Authorization fails without this
claim. This value is optional.

Dashboard:Frontend:OpenIdConnect:RequiredClaimValue null Specifies the value of the required claim. Only used
if
Dashboard:Frontend:OpenIdConnect:RequireClaimType

is also specified. This value is optional.

Authentication:Schemes:OpenIdConnect:Authority null URL to the identity provider (IdP).

Authentication:Schemes:OpenIdConnect:ClientId null Identity of the relying party (RP).

Authentication:Schemes:OpenIdConnect:ClientSecret null A secret that only the real RP would know.

Other properties of OpenIdConnectOptions null Values inside configuration section
Authentication:Schemes:OpenIdConnect:* are bound

Frontend authentication

ﾉ Expand table

https://learn.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.openidconnectoptions

Option Default value Description
to OpenIdConnectOptions , such as Scope .

The OTLP endpoint authentication is configured with Dashboard:Otlp:AuthMode . The OTLP endpoint can be
secured with an API key or client certificate authentication.

API key authentication works by requiring each OTLP request to have a valid x-otlp-api-key header value. It
must match either the primary or secondary key.

Option Default
value

Description

Dashboard:Otlp:AuthMode Unsecured Can be set to ApiKey , Certificate or Unsecured . Unsecured should only be
used during local development. It's not recommended when hosting the
dashboard publicly or in other settings.

Dashboard:Otlp:PrimaryApiKey null Specifies the primary API key. The API key can be any text, but a value with
at least 128 bits of entropy is recommended. This value is required if auth
mode is API key.

Dashboard:Otlp:SecondaryApiKey null Specifies the secondary API key. The API key can be any text, but a value
with at least 128 bits of entropy is recommended. This value is optional. If a
second API key is specified, then the incoming x-otlp-api-key header value
can match either the primary or secondary key.

Cross-origin resource sharing (CORS) can be configured to allow browser apps to send telemetry to the
dashboard.

By default, browser apps are restricted from making cross domain API calls. This impacts sending telemetry to
the dashboard because the dashboard and the browser app are always on different domains. To configure
CORS, use the Dashboard:Otlp:Cors section and specify the allowed origins and headers:

JSON

７ Note

Additional configuration may be required when using OpenIdConnect as authentication mode behind a
reverse-proxy that terminates SSL. Check if you need ASPNETCORE_FORWARDEDHEADERS_ENABLED to be set to
true .

For more information, see Configure ASP.NET Core to work with proxy servers and load balancers.

OTLP authentication

ﾉ Expand table

OTLP CORS

{
 "Dashboard": {
 "Otlp": {
 "Cors": {
 "AllowedOrigins": "http://localhost:5000,https://localhost:5001"

https://learn.microsoft.com/en-us/aspnet/core/security/authentication/certauth
https://learn.microsoft.com/en-us/aspnet/core/host-and-deploy/proxy-load-balancer

Consider the following configuration options:

Option Default
value

Description

Dashboard:Otlp:Cors:AllowedOrigins null Specifies the allowed origins for CORS. It's a comma-delimited string and
can include the * wildcard to allow any domain. This option is optional
and can be set using the DASHBOARD__OTLP__CORS__ALLOWEDORIGINS
environment variable.

Dashboard:Otlp:Cors:AllowedHeaders null A comma-delimited string representing the allowed headers for CORS.
This setting is optional and can be set using the
DASHBOARD__OTLP__CORS__ALLOWEDHEADERS environment variable.

The dashboard connects to a resource service to load and display resource information. The client is configured
in the dashboard for how to connect to the service.

The resource service client authentication is configured with Dashboard:ResourceServiceClient:AuthMode . The
client can be configured to support API key or client certificate authentication.

Option Default
value

Description

Dashboard:ResourceServiceClient:Url null The gRPC endpoint to which the dashboard
connects for its data. If this value is
unspecified, the dashboard shows telemetry
data but no resource list or console logs.

Dashboard:ResourceServiceClient:AuthMode null Can be set to ApiKey , Certificate or
Unsecured . Unsecured should only be used
during local development. It's not
recommended when hosting the dashboard
publicly or in other settings. This value is
required if a resource service URL is
specified.

Dashboard:ResourceServiceClient:ApiKey null The API to send to the resource service in
the x-resource-service-api-key header.

 }
 }
 }
}

ﾉ Expand table

７ Note

The dashboard only supports the POST method for sending telemetry and doesn't allow configuration of
the allowed methods (Access-Control-Allow-Methods) for CORS.

Resources

ﾉ Expand table

Option Default
value

Description

This value is required if auth mode is API
key.

Dashboard:ResourceServiceClient:ClientCertificate:Source null Can be set to File or KeyStore . This value is
required if auth mode is client certificate.

Dashboard:ResourceServiceClient:ClientCertificate:FilePath null The certificate file path. This value is
required if source is File .

Dashboard:ResourceServiceClient:ClientCertificate:Password null The password for the certificate file. This
value is optional.

Dashboard:ResourceServiceClient:ClientCertificate:Subject null The certificate subject. This value is required
if source is KeyStore .

Dashboard:ResourceServiceClient:ClientCertificate:Store My The certificate StoreName.

Dashboard:ResourceServiceClient:ClientCertificate:Location CurrentUser The certificate StoreLocation.

Telemetry is stored in memory. To avoid excessive memory usage, the dashboard has limits on the count and
size of stored telemetry. When a count limit is reached, new telemetry is added, and the oldest telemetry is
removed. When a size limit is reached, data is truncated to the limit.

Telemetry limits have different scopes depending upon the telemetry type:

MaxLogCount and MaxTraceCount are shared across resources. For example, a MaxLogCount value of 5,000
configures the dashboard to store up to 5,000 total log entries for all resources.
MaxMetricsCount is per-resource. For example, a MaxMetricsCount value of 10,000 configures the
dashboard to store up to 10,000 metrics data points per-resource.

Option Default
value

Description

Dashboard:TelemetryLimits:MaxLogCount 10,000 The maximum number of log entries. Limit is shared across
resources.

Dashboard:TelemetryLimits:MaxTraceCount 10,000 The maximum number of log traces. Limit is shared across
resources.

Dashboard:TelemetryLimits:MaxMetricsCount 50,000 The maximum number of metric data points. Limit is per-
resource.

Dashboard:TelemetryLimits:MaxAttributeCount 128 The maximum number of attributes on telemetry.

Dashboard:TelemetryLimits:MaxAttributeLength null The maximum length of attributes.

Dashboard:TelemetryLimits:MaxSpanEventCount null The maximum number of events on span attributes.

Telemetry limits

ﾉ Expand table

Other

https://learn.microsoft.com/en-us/dotnet/api/system.security.cryptography.x509certificates.storename
https://learn.microsoft.com/en-us/dotnet/api/system.security.cryptography.x509certificates.storelocation

Option Default
value

Description

Dashboard:ApplicationName Aspire The application name to be displayed in the UI. This applies only when no
resource service URL is specified. When a resource service exists, the service
specifies the application name.

ﾉ Expand table

Next steps
Security considerations for running the .NET Aspire dashboard

Enable browser telemetry
Article • 11/11/2024

The .NET Aspire dashboard can be configured to receive telemetry sent from browser
apps. This feature is useful for monitoring client-side performance and user interactions.
Browser telemetry requires additional dashboard configuration and that the JavaScript
OTEL SDK is added to the browser apps.

This article discusses how to enable browser telemetry in the .NET Aspire dashboard.

Browser telemetry requires the dashboard to enable these features:

OTLP HTTP endpoint. This endpoint is used by the dashboard to receive telemetry
from browser apps.
Cross-origin resource sharing (CORS). CORS allows browser apps to make requests
to the dashboard.

The .NET Aspire dashboard receives telemetry through OTLP endpoints. HTTP OTLP
endpoints and gRPC OTLP endpoints are supported by the dashboard. Browser apps
must use HTTP OLTP to send telemetry to the dashboard because browser apps don't
support gRPC.

To configure the gPRC or HTTP endpoints, specify the following environment variables:

DOTNET_DASHBOARD_OTLP_ENDPOINT_URL : The gRPC endpoint to which the dashboard
connects for its data.
DOTNET_DASHBOARD_OTLP_HTTP_ENDPOINT_URL : The HTTP endpoint to which the
dashboard connects for its data.

Configuration of the HTTP OTLP endpoint depends on whether the dashboard is started
by the app host or is run standalone.

If the dashboard and your app are started by the app host, the dashboard OTLP
endpoints are configured in the app host's launchSettings.json file.

Dashboard configuration

OTLP configuration

Configure OTLP HTTP with app host

https://opentelemetry.io/docs/languages/js/getting-started/browser/
https://opentelemetry.io/docs/languages/js/getting-started/browser/
https://opentelemetry.io/docs/languages/js/getting-started/browser/
https://opentelemetry.io/docs/specs/otlp/#otlphttp
https://opentelemetry.io/docs/specs/otlp/#otlphttp
https://opentelemetry.io/docs/specs/otlp/#otlphttp

Consider the following example JSON file:

JSON

The preceding launch settings JSON file configures all profiles to include the
DOTNET_DASHBOARD_OTLP_HTTP_ENDPOINT_URL environment variable.

{
 "$schema": "http://json.schemastore.org/launchsettings.json",
 "profiles": {
 "https": {
 "commandName": "Project",
 "dotnetRunMessages": true,
 "launchBrowser": true,
 "applicationUrl": "https://localhost:15887;http://localhost:15888",
 "environmentVariables": {
 "ASPNETCORE_ENVIRONMENT": "Development",
 "DOTNET_ENVIRONMENT": "Development",
 "DOTNET_DASHBOARD_OTLP_HTTP_ENDPOINT_URL":
"https://localhost:16175",
 "DOTNET_RESOURCE_SERVICE_ENDPOINT_URL": "https://localhost:17037",
 "DOTNET_ASPIRE_SHOW_DASHBOARD_RESOURCES": "true"
 }
 },
 "http": {
 "commandName": "Project",
 "dotnetRunMessages": true,
 "launchBrowser": true,
 "applicationUrl": "http://localhost:15888",
 "environmentVariables": {
 "ASPNETCORE_ENVIRONMENT": "Development",
 "DOTNET_ENVIRONMENT": "Development",
 "DOTNET_DASHBOARD_OTLP_HTTP_ENDPOINT_URL": "http://localhost:16175",
 "DOTNET_RESOURCE_SERVICE_ENDPOINT_URL": "http://localhost:17037",
 "DOTNET_ASPIRE_SHOW_DASHBOARD_RESOURCES": "true",
 "ASPIRE_ALLOW_UNSECURED_TRANSPORT": "true"
 }
 },
 "generate-manifest": {
 "commandName": "Project",
 "launchBrowser": true,
 "dotnetRunMessages": true,
 "commandLineArgs": "--publisher manifest --output-path aspire-
manifest.json",
 "applicationUrl": "http://localhost:15888",
 "environmentVariables": {
 "ASPNETCORE_ENVIRONMENT": "Development",
 "DOTNET_ENVIRONMENT": "Development"
 }
 }
 }
}

If the dashboard is used standalone, without the rest of .NET Aspire, the OTLP HTTP
endpoint is enabled by default on port 18890 . However, the port must be mapped when
the dashboard container is started:

Bash

The preceding command runs the dashboard container and maps gRPC OTLP to port
4317 and HTTP OTLP to port 4318 .

By default, browser apps are restricted from making cross domain API calls. This impacts
sending telemetry to the dashboard because the dashboard and the browser app are
always on different domains. Configuring CORS in the .NET Aspire dashboard removes
the restriction.

If the dashboard and your app are started by the app host, no CORS configuration is
required. .NET Aspire automatically configures the dashboard to allow all resource
origins.

If the dashboard is used standlone then CORS must be configured manually. The
domain used to view the browser app must be configured as an allowed origin by
specifing the DASHBOARD__OTLP__CORS__ALLOWEDORIGINS environment variable when the
dashboard container is started:

Bash

Configure OTLP HTTP with standalone dashboard

Bash

docker run --rm -it -d \
 -p 18888:18888 \
 -p 4317:18889 \
 -p 4318:18890 \
 --name aspire-dashboard \
 mcr.microsoft.com/dotnet/aspire-dashboard:9.0

CORS configuration

Bash

docker run --rm -it -d \
 -p 18888:18888 \
 -p 4317:18889 \

The preceding command runs the dashboard container and configures
https://localhost:8080 as an allowed origin. That means a browser app that is
accessed using https://localhost:8080 has permission to send the dashboard
telemetry.

Multiple origins can be allowed with a comma separated value. Or all origins can be
allowed with the * wildcard. For example, DASHBOARD__OTLP__CORS__ALLOWEDORIGINS=* .

For more information, see .NET Aspire dashboard configuration: OTLP CORS.

Dashboard OTLP endpoints can be secured with API key authentication. When enabled,
HTTP OTLP requests to the dashboard must include the API key as the x-otlp-api-key
header. By default a new API key is generated each time the dashboard is run.

API key authentication is automatically enabled when the dashboard is run from the app
host. Dashboard authentication can be disabled by setting
DOTNET_DASHBOARD_UNSECURED_ALLOW_ANONYMOUS to true in the app host's
launchSettings.json file.

OTLP endpoints are unsecured by default in the standalone dashboard.

A browser app uses the JavaScript OTEL SDK to send telemetry to the dashboard.
Successfully sending telemetry to the dashboard requires the SDK to be correctly
configured.

OTLP exporters must be included in the browser app and configured with the SDK. For
example, exporting distributed tracing with OTLP uses the @opentelemetry/exporter-
trace-otlp-proto package.

When OTLP is added to the SDK, OTLP options must be specified. OTLP options includes:

 -p 4318:18890 \
 -e DASHBOARD__OTLP__CORS__ALLOWEDORIGINS=https://localhost:8080 \
 --name aspire-dashboard \
 mcr.microsoft.com/dotnet/aspire-dashboard:9.0

OTLP endpoint security

Browser app configuration

OTLP exporter

https://opentelemetry.io/docs/languages/js/getting-started/browser/
https://opentelemetry.io/docs/languages/js/getting-started/browser/
https://www.npmjs.com/package/@opentelemetry/exporter-trace-otlp-proto
https://www.npmjs.com/package/@opentelemetry/exporter-trace-otlp-proto
https://www.npmjs.com/package/@opentelemetry/exporter-trace-otlp-proto

url : The address that HTTP OTLP requests are made to. The address should be the
dashboard HTTP OTLP endpoint and the path to the OTLP HTTP API. For example,
https://localhost:4318/v1/traces for the trace OTLP exporter. If the browser app
is launched by the app host then the HTTP OTLP endpoint is available from the
OTEL_EXPORTER_OTLP_ENDPOINT environment variable.

headers : The headers sent with requests. If OTLP endpoint API key authentication
is enabled the x-otlp-api-key header must be sent with OTLP requests. If the
browser app is launched by the app host then the API key is available from the
OTEL_EXPORTER_OTLP_HEADERS environment variable.

When a browser app is configured to collect distributed traces, the browser app can set
the trace parent a browser's spans using the meta element in the HTML. The value of the
name="traceparent" meta element should correspond to the current trace.

In a .NET app, for example, the trace parent value would likely be assigned from the
Activity.Current and passing its Activity.Id value as the content . For example, consider
the following Razor code:

razor

The preceding code sets the traceparent meta element to the current activity ID.

The following JavaScript code demonstrates the initialization of the OpenTelemetry
JavaScript SDK and the sending of telemetry data to the dashboard:

JavaScript

Browser metadata

<head>
 @if (Activity.Current is { } currentActivity)
 {
 <meta name="traceparent" content="@currentActivity.Id" />
 }
 <!-- Other elements omitted for brevity... -->
</head>

Example browser telemetry code

import { ConsoleSpanExporter, SimpleSpanProcessor } from
'@opentelemetry/sdk-trace-base';
import { DocumentLoadInstrumentation } from '@opentelemetry/instrumentation-
document-load';

https://learn.microsoft.com/en-us/dotnet/api/system.diagnostics.activity.current#system-diagnostics-activity-current
https://learn.microsoft.com/en-us/dotnet/api/system.diagnostics.activity.id#system-diagnostics-activity-id

The preceding JavaScript code defines an initializeTelemetry function that expects the
OTLP endpoint URL, the headers, and the resource attributes. These parameters are

import { OTLPTraceExporter } from '@opentelemetry/exporter-trace-otlp-
proto';
import { registerInstrumentations } from '@opentelemetry/instrumentation';
import { Resource } from '@opentelemetry/resources';
import { SemanticResourceAttributes } from '@opentelemetry/semantic-
conventions';
import { WebTracerProvider } from '@opentelemetry/sdk-trace-web';
import { ZoneContextManager } from '@opentelemetry/context-zone';

export function initializeTelemetry(otlpUrl, headers, resourceAttributes) {
 const otlpOptions = {
 url: `${otlpUrl}/v1/traces`,
 headers: parseDelimitedValues(headers)
 };

 const attributes = parseDelimitedValues(resourceAttributes);
 attributes[SemanticResourceAttributes.SERVICE_NAME] = 'browser';

 const provider = new WebTracerProvider({
 resource: new Resource(attributes),
 });
 provider.addSpanProcessor(new SimpleSpanProcessor(new
ConsoleSpanExporter()));
 provider.addSpanProcessor(new SimpleSpanProcessor(new
OTLPTraceExporter(otlpOptions)));

 provider.register({
 // Prefer ZoneContextManager: supports asynchronous operations
 contextManager: new ZoneContextManager(),
 });

 // Registering instrumentations
 registerInstrumentations({
 instrumentations: [new W捭‱〰⸱〮㔠吶2㌮ਰ⸰㠶ㄸㄶ†〠隔缶〷〠㄰⸵੅吊儊〮㘳㠵⸶ㄮ〸�退阀茀阀謀鄀退销

provided by the consuming browser app that pulls them from the environment variables
set by the app host. Consider the following Razor code:

razor

@using System.Diagnostics
<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="utf-8" />
 <meta name="viewport" content="width=device-width, initial-scale=1.0" />
 <title>@ViewData["Title"] - BrowserTelemetry</title>
 <link
href="https://cdn.jsdelivr.net/npm/bootstrap@5.3.3/dist/css/bootstrap.min.cs
s" rel="stylesheet" integrity="sha384-
QWTKZyjpPEjISv5WaRU9OFeRpok6YctnYmDr5pNlyT2bRjXh0JMhjY6hW+ALEwIH"
crossorigin="anonymous">
 <link rel="stylesheet" href="~/css/site.css" asp-append-version="true"
/>

 @if (Activity.Current is { } currentActivity)
 {
 <meta name="traceparent" content="@currentActivity.Id" />
 }
</head>
<body>
 <header>
 <nav class="navbar navbar-expand-sm navbar-toggleable-sm navbar-
light bg-white border-bottom box-shadow mb-3">
 <div class="container">
 <a class="navbar-brand" asp-area="" asp-
page="/Index">BrowserTelemetry
 </div>
 </nav>
 </header>
 <div class="container">
 <main role="main" class="pb-3">
 @RenderBody()
 </main>
 </div>
 @await RenderSectionAsync("Scripts", required: false)
 <script src="scripts/bundle.js"></script>
 @if (Environment.GetEnvironmentVariable("OTEL_EXPORTER_OTLP_ENDPOINT")
is { Length: > 0 } endpointUrl)
 {
 var headers =
Environment.GetEnvironmentVariable("OTEL_EXPORTER_OTLP_HEADERS");
 var attributes =
Environment.GetEnvironmentVariable("OTEL_RESOURCE_ATTRIBUTES");
 <script>
 BrowserTelemetry.initializeTelemetry('@endpointUrl', '@headers',
'@attributes');
 </script>
 }

For the complete working example of how to configure the JavaScript OTEL SDK to send
telemetry to the dashboard, see the browser telemetry sample .

.NET Aspire dashboard configuration
Standalone .NET Aspire dashboard
Browser telemetry sample

</body>
</html>

 Tip

The bundling and minification of the JavaScript code is beyond the scope of this
article.

See also

https://github.com/dotnet/aspire/tree/main/playground/BrowserTelemetry
https://github.com/dotnet/aspire/tree/main/playground/BrowserTelemetry
https://github.com/dotnet/aspire/tree/main/playground/BrowserTelemetry
https://github.com/dotnet/aspire/tree/main/playground/BrowserTelemetry

Security considerations for running the
.NET Aspire dashboard
Article • 11/20/2024

The .NET Aspire dashboard offers powerful insights to your apps. The dashboard
displays information about resources, including their configuration, console logs and in-
depth telemetry.

Data displayed in the dashboard can be sensitive. For example, configuration can
include secrets in environment variables, and telemetry can include sensitive runtime
data. Care should be taken to secure access to the dashboard.

The dashboard can be run in different scenarios, such as being automatically starting by
.NET Aspire tooling, or as a standalone application that is separate from other .NET
Aspire integrations. Steps to secure the dashboard depend on how it's being run.

The dashboard is automatically started when an .NET Aspire app host is run. The
dashboard is secure by default when run from .NET Aspire tooling:

Transport is secured with HTTPS. Using HTTPS is configured by default in
launchSettings.json. The launch profile includes https addresses in applicationUrl
and DOTNET_DASHBOARD_OTLP_ENDPOINT_URL values.
Browser frontend authenticated with a browser token.
Incoming telemetry authenticated with an API key.

HTTPS in the dashboard uses the ASP.NET Core development certificate. The certificate
must be trusted for the dashboard to work correctly. The steps required to trust the
development cert are different depending on the machine's operating system:

Trust the ASP.NET Core HTTPS development certificate on Windows and macOS
Trust HTTPS certificate on Linux

There are scenarios where you might want to allow an unsecured transport. The
dashboard can run without HTTPS from the .NET Aspire app host by configuring the
ASPIRE_ALLOW_UNSECURED_TRANSPORT setting to true . For more information, see Allow
unsecured transport in .NET Aspire.

Scenarios for running the dashboard

.NET Aspire tooling

https://learn.microsoft.com/en-us/aspnet/core/security/enforcing-ssl#trust-the-aspnet-core-https-development-certificate-on-windows-and-macos
https://learn.microsoft.com/en-us/aspnet/core/security/enforcing-ssl#trust-https-certificate-on-linux

The dashboard is shipped as a Docker image and can be used without the rest of .NET
Aspire. When the dashboard is launched in standalone mode, it defaults to a mix of
secure and unsecured settings.

Browser frontend authenticated with a browser token.
Incoming telemetry is unsecured. Warnings are displayed in the console and
dashboard UI.

The telemetry endpoint accepts incoming OTLP data without authentication. When the
endpoint is unsecured, the dashboard is open to receiving telemetry from untrusted
apps.

For information about securing the telemetry when running the dashboard in
standalone mode, see Securing the telemetry endpoint.

The .NET Aspire dashboard provides a variety of ways to view logs, traces, and metrics
for your app. This information enables you to track the behavior and performance of
your app and to diagnose any issues that arise. It's important that you can trust this
information, and a warning is displayed in the dashboard UI if telemetry isn't secured.

The dashboard collects telemetry through an OTLP (OpenTelemetry protocol)
endpoint. Apps send telemetry to this endpoint, and the dashboard stores the external
information it receives in memory, which is then accessible via the UI.

To prevent untrusted apps from sending telemetry to .NET Aspire, the OTLP endpoint
should be secured. The OTLP endpoint is automatically secured with an API key when
the dashboard is started by .NET Aspire tooling. Additional configuration is required for
standalone mode.

API key authentication can be enabled on the telemetry endpoint with some additional
configuration:

Bash

Standalone mode

Secure telemetry endpoint

Bash

docker run --rm -it -d -p 18888:18888 -p 4317:18889 --name aspire-
dashboard \
 -e DASHBOARD__OTLP__AUTHMODE='ApiKey' \

https://opentelemetry.io/docs/specs/otel/protocol/
https://opentelemetry.io/docs/specs/otel/protocol/

The preceding Docker command:

Starts the .NET Aspire dashboard image and exposes OTLP endpoint as port 4317
Configures the OTLP endpoint to use ApiKey authentication. This requires that
incoming telemetry has a valid x-otlp-api-key header value.
Configures the expected API key. {MY_APIKEY} in the example value should be
replaced with a real API key. The API key can be any text, but a value with at least
128 bits of entropy is recommended.

When API key authentication is configured, the dashboard validates incoming telemetry
has a required API key. Apps that send the dashboard telemetry must be configured to
send the API key. This can be configured in .NET with OtlpExporterOptions.Headers :

C#

Other languages have different OpenTelmetry APIs. Passing the
OTEL_EXPORTER_OTLP_HEADERS environment variable to apps is a universal way to
configure the header.

The dashboard stores external information it receives in memory, such as resource
details and telemetry. While the number of resources the dashboard tracks are
bounded, there isn't a limit to how much telemetry apps send to the dashboard. Limits
must be placed on how much information is stored to prevent the dashboard using an
excessive amount of memory and exhausting available memory on the current machine.

To help prevent memory exhaustion, the dashboard limits how much telemetry it stores
by default. For example, there is a maximum of 10,000 structured log entries per
resource. Once the limit is reached, each new log entry received causes an old entry to
be removed.

Configuration can customize telemetry limits.

 -e DASHBOARD__OTLP__PRIMARYAPIKEY='{MY_APIKEY}' \
 mcr.microsoft.com/dotnet/aspire-dashboard:9.0

builder.Services.Configure<OtlpExporterOptions>(
 o => o.Headers = $"x-otlp-api-key={MY_APIKEY}");

Memory exhaustion

Telemetry limits

https://opentelemetry.io/docs/specs/otel/protocol/exporter/
https://opentelemetry.io/docs/specs/otel/protocol/exporter/

.NET Aspire testing overview
Article • 03/17/2025

.NET Aspire supports automated testing of your application through the 📦
Aspire.Hosting.Testing NuGet package. This package provides the
DistributedApplicationTestingBuilder class, which is used to create a test host for your
application. The testing builder launches your app host project in a background thread
and manages its lifecycle, allowing you to control and manipulate the application and its
resources through DistributedApplicationTestingBuilder or DistributedApplication
instances.

By default, the testing builder disables the dashboard and randomizes the ports of
proxied resources to enable multiple instances of your application to run concurrently.
Once your test completes, disposing of the application or testing builder cleans up your
app resources.

To get started writing your first integration test with .NET Aspire, see the Write your first
.NET Aspire test article.

.NET Aspire's testing capabilities are designed specifically for closed-box integration
testing of your entire distributed application. Unlike unit tests or open-box integration
tests, which typically run individual components in isolation, .NET Aspire tests launch
your complete solution (the app host and all its resources) as separate processes, closely
simulating real-world scenarios.

Consider the following diagram that shows how the .NET Aspire testing project starts
the app host, which then starts the application and its resources:

Testing .NET Aspire solutions



https://www.nuget.org/packages/Aspire.Hosting.Testing
https://www.nuget.org/packages/Aspire.Hosting.Testing
https://www.nuget.org/packages/Aspire.Hosting.Testing
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.testing.distributedapplicationtestingbuilder
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.testing.distributedapplicationtestingbuilder
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.distributedapplication
https://learn.microsoft.com/en-us/dotnet/aspire/docs/testing/media/testing-diagram.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/testing/media/testing-diagram.png#lightbox

1. The test project starts the app host.
2. The app host process starts.
3. The app host runs the Database , API , and Frontend applications.
4. The test project sends an HTTP request to the Frontend application.

The diagram illustrates that the test project starts the app host, which then orchestrates
the all dependent app resources—regardless of their type. The test project is able to
send an HTTP request to the Frontend app, which depends on an API app, and the API
app depends on a Database . A successful request confirms that the Frontend app can
communicate with the API app, and that the API app can successfully get data from the
Database . For more information on seeing this approach in action, see the Write your
first .NET Aspire test article.

Use .NET Aspire testing when you want to:

https://learn.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.testing.webapplicationfactory-1

By default, .NET Aspire uses random ports to allow multiple instances of your application
to run concurrently without interference. It uses .NET Aspire's service discovery to
ensure applications can locate each other's endpoints. To disable port randomization,
pass "DcpPublisher:RandomizePorts=false" when constructing your testing builder, as
shown in the following snippet:

C#

The testing builder disables the .NET Aspire dashboard by default. To enable it, you can
set the DisableDashboard property to false , when creating your testing builder as
shown in the following snippet:

C#

Write your first .NET Aspire test
Managing the app host in .NET Aspire tests
Access resources in .NET Aspire tests

var builder = await DistributedApplicationTestingBuilder
 .CreateAsync<Projects.MyAppHost>(
 [
 "DcpPublisher:RandomizePorts=false"
]);

Enable the dashboard

var builder = await DistributedApplicationTestingBuilder
 .CreateAsync<Projects.MyAppHost>(
 args: [],
 configureBuilder: (appOptions, hostSettings) =>
 {
 appOptions.DisableDashboard = false;
 });

See also

Write your first .NET Aspire test
Article • 02/24/2025

In this article, you learn how to create a test project, write tests, and run them for your
.NET Aspire solutions. The tests in this article aren't unit tests, but rather functional or
integration tests. .NET Aspire includes several variations of testing project templates that
you can use to test your .NET Aspire resource dependencies—and their
communications. The testing project templates are available for MSTest, NUnit, and
xUnit testing frameworks and include a sample test that you can use as a starting point
for your tests.

The .NET Aspire test project templates rely on the 📦 Aspire.Hosting.Testing NuGet
package. This package exposes the DistributedApplicationTestingBuilder class, which is
used to create a test host for your distributed application. The distributed application
testing builder launches your app host project with instrumentation hooks so that you
can access and manipulate the host at various stages of its lifecyle. In particular,
DistributedApplicationTestingBuilder provides you access to
IDistributedApplicationBuilder and DistributedApplication class to create and start the
app host.

The easiest way to create a .NET Aspire test project is to use the testing project
template. If you're starting a new .NET Aspire project and want to include test projects,
the Visual Studio tooling supports that option. If you're adding a test project to an
existing .NET Aspire project, you can use the dotnet new command to create a test
project:

.NET CLI

For more information, see the .NET CLI dotnet new command documentation.

The following example test project was created as part of the .NET Aspire Starter
Application template. If you're unfamiliar with it, see Quickstart: Build your first .NET
Aspire project. The .NET Aspire test project takes a project reference dependency on the
target app host. Consider the template project:

Create a test project

dotnet new aspire-xunit

Explore the test project

https://www.nuget.org/packages/Aspire.Hosting.Testing
https://www.nuget.org/packages/Aspire.Hosting.Testing
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.testing.distributedapplicationtestingbuilder
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.testing.distributedapplicationtestingbuilder
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.idistributedapplicationbuilder
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.distributedapplication
https://learn.microsoft.com/en-us/dotnet/core/tools/dotnet-new

XML

The preceding project file is fairly standard. There's a PackageReference to the 📦
Aspire.Hosting.Testing NuGet package, which includes the required types to write
tests for .NET Aspire projects.

The template test project includes a IntegrationTest1 class with a single test. The test
verifies the following scenario:

The app host is successfully created and started.
The webfrontend resource is available and running.
An HTTP request can be made to the webfrontend resource and returns a
successful response (HTTP 200 OK).

Consider the following test class:

<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>
 <TargetFramework>net9.0</TargetFramework>
 <ImplicitUsings>enable</ImplicitUsings>
 <Nullable>enable</Nullable>
 <IsPackable>false</IsPackable>
 <IsTestProject>true</IsTestProject>
 </PropertyGroup>

 <ItemGroup>
 <PackageReference Include="Aspire.Hosting.Testing" Version="9.1.0" />
 <PackageReference Include="coverlet.collector" Version="6.0.4" />
 <PackageReference Include="Microsoft.NET.Test.Sdk" Version="17.13.0" />
 <PackageReference Include="xunit" Version="2.9.3" />
 <PackageReference Include="xunit.runner.visualstudio" Version="3.0.2" />
 </ItemGroup>

 <ItemGroup>
 <ProjectReference
Include="..\AspireApp.AppHost\AspireApp.AppHost.csproj" />
 </ItemGroup>

 <ItemGroup>
 <Using Include="System.Net" />
 <Using Include="Microsoft.Extensions.DependencyInjection" />
 <Using Include="Aspire.Hosting.ApplicationModel" />
 <Using Include="Aspire.Hosting.Testing" />
 <Using Include="Xunit" />
 </ItemGroup>

</Project>

https://www.nuget.org/packages/Aspire.Hosting.Testing
https://www.nuget.org/packages/Aspire.Hosting.Testing
https://www.nuget.org/packages/Aspire.Hosting.Testing

C#

The preceding code:

Relies on the DistributedApplicationTestingBuilder.CreateAsync API to
asynchronously create the app host.

The appHost is an instance of IDistributedApplicationTestingBuilder that
represents the app host.
The appHost instance has its service collection configured with the standard
HTTP resilience handler. For more information, see Build resilient HTTP apps:
Key development patterns.

namespace AspireApp.Tests;

public class IntegrationTest1
{
 [Fact]
 public async Task GetWebResourceRootReturnsOkStatusCode()
 {
 // Arrange
 var builder = await DistributedApplicationTestingBuilder
 .CreateAsync<Projects.AspireApp_AppHost>();

 builder.Services.ConfigureHttpClientDefaults(clientBuilder =>
 {
 clientBuilder.AddStandardResilienceHandler();
 });

 // To output logs to the xUnit.net ITestOutputHelper,
 // consider adding a package from https://www.nuget.org/packages?
q=xunit+logging

 await using var app = await builder.BuildAsync();

 await app.StartAsync();

 // Act
 var httpClient = app.CreateHttpClient("webfrontend");

 using var cts = new
CancellationTokenSource(TimeSpan.FromSeconds(30));
 await app.ResourceNotifications.WaitForResourceHealthyAsync(
 "webfrontend",
 cts.Token);

 var response = await httpClient.GetAsync("/");

 // Assert
 Assert.Equal(HttpStatusCode.OK, response.StatusCode);
 }
}

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.testing.distributedapplicationtestingbuilder.createasync
https://learn.microsoft.com/en-us/dotnet/core/resilience/http-resilience
https://learn.microsoft.com/en-us/dotnet/core/resilience/http-resilience

The appHost has its
IDistributedApplicationTestingBuilder.BuildAsync(CancellationToken) method
invoked, which returns the DistributedApplication instance as the app .

The app has its service provider get the ResourceNotificationService instance.
The app is started asynchronously.

An HttpClient is created for the webfrontend resource by calling
app.CreateHttpClient .
The resourceNotificationService is used to wait for the webfrontend resource to
be available and running.
A simple HTTP GET request is made to the root of the webfrontend resource.
The test asserts that the response status code is OK .

To further test resources and their expressed dependencies in your .NET Aspire solution,
you can assert that environment variables are injected correctly. The following example
demonstrates how to test that the webfrontend resource has an HTTPS environment
variable that resolves to the apiservice resource:

C#

Test resource environment variables

using Aspire.Hosting;

namespace AspireApp.Tests;

public class EnvVarTests
{
 [Fact]
 public async Task WebResourceEnvVarsResolveToApiService()
 {
 // Arrange
 var builder = await DistributedApplicationTestingBuilder
 .CreateAsync<Projects.AspireApp_AppHost>();

 var frontend = builder.CreateResourceBuilder<ProjectResource>
("webfrontend");

 // Act
 var envVars = await
frontend.Resource.GetEnvironmentVariableValuesAsync(
 DistributedApplicationOperation.Publish);

 // Assert
 Assert.Contains(envVars, static (kvp) =>
 {
 var (key, value) = kvp;

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.testing.idistributedapplicationtestingbuilder.buildasync#aspire-hosting-testing-idistributedapplicationtestingbuilder-buildasync(system-threading-cancellationtoken)
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.resourcenotificationservice
https://learn.microsoft.com/en-us/dotnet/api/system.net.http.httpclient

The preceding code:

Relies on the DistributedApplicationTestingBuilder.CreateAsync API to
asynchronously create the app host.
The builder instance is used to retrieve an IResourceWithEnvironment instance
named "webfrontend" from the IDistributedApplicationTestingBuilder.Resources.
The webfrontend resource is used to call GetEnvironmentVariableValuesAsync to
retrieve its configured environment variables.
The DistributedApplicationOperation.Publish argument is passed when calling
GetEnvironmentVariableValuesAsync to specify environment variables that are
published to the resource as binding expressions.
With the returned environment variables, the test asserts that the webfrontend
resource has an HTTPS environment variable that resolves to the apiservice
resource.

The .NET Aspire testing project template makes it easier to create test projects for .NET
Aspire solutions. The template project includes a sample test that you can use as a
starting point for your tests. The DistributedApplicationTestingBuilder follows a
familiar pattern to the WebApplicationFactory<TEntryPoint> in ASP.NET Core. It allows
you to create a test host for your distributed application and run tests against it.

Finally, when using the DistributedApplicationTestingBuilder all resource logs are
redirected to the DistributedApplication by default. The redirection of resource logs
enables scenarios where you want to assert that a resource is logging correctly.

Unit testing C# in .NET using dotnet test and xUnit
MSTest overview
Unit testing C# with NUnit and .NET Core

 return key is "services__apiservice__https__0"
 && value is "{apiservice.bindings.https.url}";
 });
 }
}

Summary

See also

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.testing.distributedapplicationtestingbuilder.createasync
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.iresourcewithenvironment
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.testing.idistributedapplicationtestingbuilder.resources
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.resourceextensions.getenvironmentvariablevaluesasync
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.distributedapplicationoperation#aspire-hosting-distributedapplicationoperation-publish
https://learn.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.testing.webapplicationfactory-1
https://learn.microsoft.com/en-us/dotnet/core/testing/unit-testing-with-dotnet-test
https://learn.microsoft.com/en-us/dotnet/core/testing/unit-testing-mstest-intro
https://learn.microsoft.com/en-us/dotnet/core/testing/unit-testing-with-nunit

Manage the app host in .NET Aspire
tests
Article • 02/25/2025

When writing functional or integration tests with .NET Aspire, managing the app host
instance efficiently is crucial. The app host represents the full application environment
and can be costly to create and tear down. This article explains how to manage the app
host instance in your .NET Aspire tests.

For writing tests with .NET Aspire, you use the 📦 Aspire.Hosting.Testing NuGet
package which contains some helper classes to manage the app host instance in your
tests.

In the tutorial on writing your first test, you were introduced to the
DistributedApplicationTestingBuilder class which can be used to create the app host
instance:

C#

The DistributedApplicationTestingBuilder.CreateAsync<T> method takes the app host
project type as a generic parameter to create the app host instance. While this method
is executed at the start of each test, it's more efficient to create the app host instance
once and share it across tests as the test suite grows.

With xUnit, you implement the IAsyncLifetime interface on the test class to support
asynchronous initialization and disposal of the app host instance. The InitializeAsync
method is used to create the app host instance before the tests are run and the
DisposeAsync method disposes the app host once the tests are completed.

C#

Use the DistributedApplicationTestingBuilder
class

var appHost = await DistributedApplicationTestingBuilder
 .CreateAsync<Projects.AspireApp_AppHost>();

public class WebTests : IAsyncLifetime
{
 private DistributedApplication _app;

https://www.nuget.org/packages/Aspire.Hosting.Testing
https://www.nuget.org/packages/Aspire.Hosting.Testing
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.testing.distributedapplicationtestingbuilder
https://github.com/xunit/xunit/blob/master/src/xunit.core/IAsyncLifetime.cs
https://github.com/xunit/xunit/blob/master/src/xunit.core/IAsyncLifetime.cs

By capturing the app host in a field when the test run is started, you can access it in
each test without the need to recreate it, decreasing the time it takes to run the tests.
Then, when the test run completes, the app host is disposed, which cleans up any
resources that were created during the test run, such as containers.

You can access the arguments from your app host with the args parameter. Arguments
are also passed to .NET's configuration system, so you can override many configuration
settings this way. In the following example, you override the environment by specifying
it as a command line option:

C#

Other arguments can be passed to your app host Program and made available in your
app host. In the next example, you pass an argument to the app host and use it to
control whether you add data volumes to a Postgres instance.

In the app host Program , you use configuration to support enabling or disabling
volumes:

C#

 public async Task InitializeAsync()
 {
 var appHost = await DistributedApplicationTestingBuilder
 .CreateAsync<Projects.AspireApp_AppHost>();

 _app = await appHost.BuildAsync();
 }

 public async Task DisposeAsync() => await _app.DisposeAsync();

 [Fact]
 public async Task GetWebResourceRootReturnsOkStatusCode()
 {
 // test code here
 }
}

Pass arguments to your app host

var builder = await DistributedApplicationTestingBuilder
 .CreateAsync<Projects.MyAppHost>(
 [
 "--environment=Testing"
]);

https://learn.microsoft.com/en-us/dotnet/core/extensions/configuration
https://learn.microsoft.com/en-us/aspnet/core/fundamentals/environments

In test code, you pass "UseVolumes=false" in the args to the app host:

C#

While the DistributedApplicationTestingBuilder class is useful for many scenarios,
there might be situations where you want more control over starting the app host, such
as executing code before the builder is created or after the app host is built. In these
cases, you implement your own version of the DistributedApplicationFactory class. This
is what the DistributedApplicationTestingBuilder uses internally.

C#

The constructor requires the type of the app host project reference as a parameter.
Optionally, you can provide arguments to the underlying host application builder. These

var postgres = builder.AddPostgres("postgres1");
if (builder.Configuration.GetValue("UseVolumes", true))
{
 postgres.WithDataVolume();
}

public async Task DisableVolumesFromTest()
{
 // Disable volumes in the test builder via arguments:
 using var builder = await DistributedApplicationTestingBuilder
 .CreateAsync<Projects.TestingAppHost1_AppHost>(
 [
 "UseVolumes=false"
]);

 // The container will have no volume annotation since we disabled
volumes by passing UseVolumes=false
 var postgres = builder.Resources.Single(r => r.Name == "postgres1");

 Assert.Empty(postgres.Annotations.OfType<ContainerMountAnnotation>());
}

Use the DistributedApplicationFactory class

public class TestingAspireAppHost()
 : DistributedApplicationFactory(typeof(Projects.AspireApp_AppHost))
{
 // override methods here
}

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.testing.distributedapplicationfactory

arguments control how the app host starts and provide values to the args variable used
by the Program.cs file to start the app host instance.

The DistributionApplicationFactory class provides several lifecycle methods that can
be overridden to provide custom behavior throughout the preparation and creation of
the app host. The available methods are OnBuilderCreating , OnBuilderCreated ,
OnBuilding , and OnBuilt .

For example, we can use the OnBuilderCreating method to set configuration, such as
the subscription and resource group information for Azure, before the app host is
created and any dependent Azure resources are provisioned, resulting in our tests using
the correct Azure environment.

C#

Because of the order of precedence in the .NET configuration system, the environment
variables will be used over anything in the appsettings.json or secrets.json file.

Another scenario you might want to use in the lifecycle is to configure the services used
by the app host. In the following example, consider a scenario where you override the
OnBuilderCreated API to add resilience to the HttpClient :

C#

Lifecycle methods

public class TestingAspireAppHost() :
DistributedApplicationFactory(typeof(Projects.AspireApp_AppHost))
{
 protected override void OnBuilderCreating(DistributedApplicationOptions
applicationOptions, HostApplicationBuilderSettings hostOptions)
 {
 hostOptions.Configuration ??= new();
 hostOptions.Configuration["environment"] = "Development";
 hostOptions.Configuration["AZURE_SUBSCRIPTION_ID"] = "00000000-0000-
0000-0000-000000000000";
 hostOptions.Configuration["AZURE_RESOURCE_GROUP"] = "my-resource-
group";
 }
}

protected override void OnBuilderCreated(
 DistributedApplicationBuilder applicationBuilder)
{
 applicationBuilder.Services.ConfigureHttpClientDefaults(clientBuilder =>
 {
 clientBuilder.AddStandardResilienceHandler();

Write your first .NET Aspire test

 });
}

See also

Access resources in .NET Aspire tests
Article • 02/25/2025

In this article, you learn how to access the resources from the .NET Aspire app host in
your tests. The app host represents the full application environment and contains all the
resources that are available to the application. When writing functional or integration
tests with .NET Aspire, you might need to access these resources to verify the behavior
of your application.

To access an HTTP resource, use the HttpClient to request and receive responses. The
DistributedApplication and the DistributedApplicationFactory both provide a
CreateHttpClient method that's used to create an HttpClient instance for a specific
resource, based on the resource name from the app host. This method also takes an
optional endpointName parameter, so if the resource has multiple endpoints, you can
specify which one to use.

In a test, you might want to access other resources by the connection information they
provide, for example, querying a database to verify the state of the data. For this, you
use the ConfigurationExtensions.GetConnectionString method to retrieve the
connection string for a resource, and then provide that to a client library within the test
to interact with the resource.

Starting with .NET Aspire 9, there's support for waiting on dependent resources to be
available (via the health check mechanism). This is useful in tests that ensure a resource
is available before attempting to access it. The ResourceNotificationService class
provides a ResourceNotificationService.WaitForResourceAsync method that's used to
wait for a named resource to be available. This method takes the resource name and the
desired state of the resource as parameters and returns a Task that yields back when the
resource is available. You can access the ResourceNotificationService via
DistributedApplication.ResourceNotifications, as in the following example.

Access HTTP resources

Access other resources

Ensure resources are available

７ Note

https://learn.microsoft.com/en-us/dotnet/api/system.net.http.httpclient
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.distributedapplication
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.testing.distributedapplicationfactory
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.testing.distributedapplicationfactory.createhttpclient
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.configurationextensions.getconnectionstring
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.resourcenotificationservice
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.resourcenotificationservice.waitforresourceasync
https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.task
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.resourcenotificationservice
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.distributedapplication.resourcenotifications#aspire-hosting-distributedapplication-resourcenotifications

C#

A resource enters the KnownResourceStates.Running state as soon as it starts executing,
but this doesn't mean that it's ready to serve requests. If you want to wait for the
resource to be ready to serve requests, and your resource has health checks, you can
wait for the resource to become healthy by using the
ResourceNotificationService.WaitForResourceHealthyAsync method.

C#

This resource-notification pattern ensures that the resources are available before
running the tests, avoiding potential issues with the tests failing due to the resources
not being ready.

Write your first .NET Aspire test
Managing the app host in .NET Aspire tests

It's recommended to provide a time-out when waiting for resources, to prevent the
test from hanging indefinitely in situations where a resource never becomes
available.

using var cts = new CancellationTokenSource(TimeSpan.FromSeconds(30));
await app.ResourceNotifications.WaitForResourceAsync(
 "webfrontend",
 KnownResourceStates.Running,
 cts.Token);

using var cts = new CancellationTokenSource(TimeSpan.FromSeconds(30));

await app.ResourceNotifications.WaitForResourceHealthyAsync(
 "webfrontend",
 cts.Token);

See also

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.knownresourcestates.running#aspire-hosting-applicationmodel-knownresourcestates-running
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.resourcenotificationservice.waitforresourcehealthyasync

.NET Aspire service discovery
Article • 12/31/2024

In this article, you learn how service discovery works within a .NET Aspire project. .NET
Aspire includes functionality for configuring service discovery at development and
testing time. Service discovery functionality works by providing configuration in the
format expected by the configuration-based endpoint resolver from the .NET Aspire
AppHost project to the individual service projects added to the application model. For
more information, see Service discovery in .NET.

Configuration for service discovery is only added for services that are referenced by a
given project. For example, consider the following AppHost program:

C#

In the preceding example, the frontend project references the catalog project and the
basket project. The two WithReference calls instruct the .NET Aspire project to pass
service discovery information for the referenced projects (catalog, and basket) into the
frontend project.

Some services expose multiple, named endpoints. Named endpoints can be resolved by
specifying the endpoint name in the host portion of the HTTP request URI, following the
format scheme://_endpointName.serviceName . For example, if a service named "basket"
exposes an endpoint named "dashboard", then the URI https+http://_dashboard.basket
can be used to specify this endpoint, for example:

C#

Implicit service discovery by reference

var builder = DistributedApplication.CreateBuilder(args);

var catalog = builder.AddProject<Projects.CatalogService>("catalog");
var basket = builder.AddProject<Projects.BasketService>("basket");

var frontend = builder.AddProject<Projects.MyFrontend>("frontend")
 .WithReference(basket)
 .WithReference(catalog);

Named endpoints

https://learn.microsoft.com/en-us/dotnet/core/extensions/service-discovery
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.resourcebuilderextensions.withreference

In the preceding example, two HttpClient classes are added, one for the core basket
service and one for the basket service's dashboard.

With the configuration-based endpoint resolver, named endpoints can be specified in
configuration by prefixing the endpoint value with _endpointName. , where endpointName
is the endpoint name. For example, consider this appsettings.json configuration which
defined a default endpoint (with no name) and an endpoint named "dashboard":

JSON

In the preceding JSON:

The default endpoint, when resolving https://basket is 10.2.3.4:8080 .
The "dashboard" endpoint, resolved via https://_dashboard.basket is
10.2.3.4:9999 .

C#

builder.Services.AddHttpClient<BasketServiceClient>(
 static client => client.BaseAddress = new("https+http://basket"));

builder.Services.AddHttpClient<BasketServiceDashboardClient>(
 static client => client.BaseAddress =
new("https+http://_dashboard.basket"));

Named endpoints using configuration

{
 "Services": {
 "basket":
 "https": "https://10.2.3.4:8080", /* the https endpoint, requested via
https://basket */
 "dashboard": "https://10.2.3.4:9999" /* the "dashboard" endpoint,
requested via https://_dashboard.basket */
 }
 }
}

Named endpoints in .NET Aspire

var basket = builder.AddProject<Projects.BasketService>("basket")
 .WithHttpsEndpoint(hostPort: 9999, name: "dashboard");

https://learn.microsoft.com/en-us/dotnet/api/system.net.http.httpclient

When deploying to Kubernetes, the DNS SRV service endpoint resolver can be used to
resolve named endpoints. For example, the following resource definition will result in a
DNS SRV record being created for an endpoint named "default" and an endpoint named
"dashboard", both on the service named "basket".

yml

To configure a service to resolve the "dashboard" endpoint on the "basket" service, add
the DNS SRV service endpoint resolver to the host builder as follows:

C#

For more information, see AddServiceDiscoveryCore and
AddDnsSrvServiceEndpointProvider.

The special port name "default" is used to specify the default endpoint, resolved using
the URI https://basket .

As in the previous example, add service discovery to an HttpClient for the basket
service:

C#

Similarly, the "dashboard" endpoint can be targeted as follows:

Named endpoints in Kubernetes using DNS SRV

apiVersion: v1
kind: Service
metadata:
 name: basket
spec:
 selector:
 name: basket-service
 clusterIP: None
 ports:
 - name: default
 port: 8080
 - name: dashboard
 port: 9999

builder.Services.AddServiceDiscoveryCore();
builder.Services.AddDnsSrvServiceEndpointProvider();

builder.Services.AddHttpClient<BasketServiceClient>(
 static client => client.BaseAddress = new("https://basket"));

https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.servicediscoveryservicecollectionextensions.addservicediscoverycore
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.servicediscoverydnsservicecollectionextensions.adddnssrvserviceendpointprovider

C#

Service discovery in .NET
Make HTTP requests with the HttpClient class
IHttpClientFactory with .NET

builder.Services.AddHttpClient<BasketServiceDashboardClient>(
 static client => client.BaseAddress = new("https://_dashboard.basket"));

See also

https://learn.microsoft.com/en-us/dotnet/core/extensions/service-discovery
https://learn.microsoft.com/en-us/dotnet/fundamentals/networking/http/httpclient
https://learn.microsoft.com/en-us/dotnet/core/extensions/httpclient-factory

.NET Aspire service defaults
Article • 11/04/2024

In this article, you learn about the .NET Aspire service defaults project, a set of extension
methods that:

Connect telemetry, health checks, service discovery to your app.
Are customizable and extensible.

Cloud-native applications often require extensive configurations to ensure they work
across different environments reliably and securely. .NET Aspire provides many helper
methods and tools to streamline the management of configurations for OpenTelemetry,
health checks, environment variables, and more.

When you either Enlist in .NET Aspire orchestration or create a new .NET Aspire project,
the YourAppName.ServiceDefaults.csproj project is added to your solution. For example,
when building an API, you call the AddServiceDefaults method in the Program.cs file of
your apps:

C#

The AddServiceDefaults method handles the following tasks:

Configures OpenTelemetry metrics and tracing.
Adds default health check endpoints.
Adds service discovery functionality.
Configures HttpClient to work with service discovery.

For more information, see Provided extension methods for details on the
AddServiceDefaults method.

Explore the service defaults project

builder.AddServiceDefaults();

） Important

The .NET Aspire service defaults project is specifically designed for sharing the
Extensions.cs file and its functionality. Don't include other shared functionality or

https://learn.microsoft.com/en-us/dotnet/api/system.net.http.httpclient

The YourAppName.ServiceDefaults project is a .NET 9.0 library that contains the following
XML:

XML

The service defaults project template imposes a FrameworkReference dependency on
Microsoft.AspNetCore.App .

models in this project. Use a conventional shared class library project for those
purposes.

Project characteristics

<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>
 <TargetFramework>net9.0</TargetFramework>
 <ImplicitUsings>enable</ImplicitUsings>
 <Nullable>enable</Nullable>
 <IsAspireSharedProject>true</IsAspireSharedProject>
 </PropertyGroup>

 <ItemGroup>
 <FrameworkReference Include="Microsoft.AspNetCore.App" />

 <PackageReference Include="Microsoft.Extensions.Http.Resilience"
Version="9.3.0" />
 <PackageReference Include="Microsoft.Extensions.ServiceDiscovery"
Version="9.1.0" />
 <PackageReference Include="OpenTelemetry.Exporter.OpenTelemetryProtocol"
Version="1.11.2" />
 <PackageReference Include="OpenTelemetry.Extensions.Hosting"
Version="1.11.2" />
 <PackageReference Include="OpenTelemetry.Instrumentation.AspNetCore"
Version="1.11.1" />
 <PackageReference Include="OpenTelemetry.Instrumentation.Http"
Version="1.11.1" />
 <PackageReference Include="OpenTelemetry.Instrumentation.Runtime"
Version="1.11.1" />
 </ItemGroup>

</Project>

 Tip

If you don't want to take a dependency on Microsoft.AspNetCore.App , you can
create a custom service defaults project. For more information, see Custom service

The IsAspireSharedProject property is set to true , which indicates that this project is a
shared project. The .NET Aspire tooling uses this project as a reference for other projects
added to a .NET Aspire solution. When you enlist the new project for orchestration, it
automatically references the YourAppName.ServiceDefaults project and updates the
Program.cs file to call the AddServiceDefaults method.

The YourAppName.ServiceDefaults project exposes a single Extensions.cs file that
contains several opinionated extension methods:

AddServiceDefaults : Adds service defaults functionality.
ConfigureOpenTelemetry : Configures OpenTelemetry metrics and tracing.
AddDefaultHealthChecks : Adds default health check endpoints.
MapDefaultEndpoints : Maps the health checks endpoint to /health and the
liveness endpoint to /alive .

The AddServiceDefaults method defines default configurations with the following
opinionated functionality:

C#

defaults.

Provided extension methods

Add service defaults functionality

public static IHostApplicationBuilder AddServiceDefaults(
 this IHostApplicationBuilder builder)
{
 builder.ConfigureOpenTelemetry();

 builder.AddDefaultHealthChecks();

 builder.Services.AddServiceDiscovery();

 builder.Services.ConfigureHttpClientDefaults(http =>
 {
 // Turn on resilience by default
 http.AddStandardResilienceHandler();

 // Turn on service discovery by default
 http.AddServiceDiscovery();
 });

 // Uncomment the following to restrict the allowed schemes for service

The preceding code:

Configures OpenTelemetry metrics and tracing, by calling the
ConfigureOpenTelemetry method.
Adds default health check endpoints, by calling the AddDefaultHealthChecks
method.
Adds service discovery functionality, by calling the AddServiceDiscovery method.
Configures HttpClient defaults, by calling the ConfigureHttpClientDefaults
method—which is based on Build resilient HTTP apps: Key development patterns:

Adds the standard HTTP resilience handler, by calling the
AddStandardResilienceHandler method.
Specifies that the IHttpClientBuilder should use service discovery, by calling the
UseServiceDiscovery method.

Returns the IHostApplicationBuilder instance to allow for method chaining.

Telemetry is a critical part of any cloud-native application. .NET Aspire provides a set of
opinionated defaults for OpenTelemetry, which are configured with the
ConfigureOpenTelemetry method:

C#

discovery.
 // builder.Services.Configure<ServiceDiscoveryOptions>(options =>
 // {
 // options.AllowedSchemes = ["https"];
 // });

 return builder;
}

OpenTelemetry configuration

public static IHostApplicationBuilder ConfigureOpenTelemetry(
 this IHostApplicationBuilder builder)
{
 builder.Logging.AddOpenTelemetry(logging =>
 {
 logging.IncludeFormattedMessage = true;
 logging.IncludeScopes = true;
 });

 builder.Services.AddOpenTelemetry()
 .WithMetrics(metrics =>
 {
 metrics.AddAspNetCoreInstrumentation()
 .AddHttpClientInstrumentation()

https://learn.microsoft.com/en-us/dotnet/api/system.net.http.httpclient
https://learn.microsoft.com/en-us/dotnet/core/resilience/http-resilience
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.ihttpclientbuilder

The ConfigureOpenTelemetry method:

Adds .NET Aspire telemetry logging to include formatted messages and scopes.
Adds OpenTelemetry metrics and tracing that include:

Runtime instrumentation metrics.
ASP.NET Core instrumentation metrics.
HttpClient instrumentation metrics.
In a development environment, the AlwaysOnSampler is used to view all traces.
Tracing details for ASP.NET Core, gRPC and HTTP instrumentation.

Adds OpenTelemetry exporters, by calling AddOpenTelemetryExporters .

The AddOpenTelemetryExporters method is defined privately as follows:

C#

 .AddRuntimeInstrumentation();
 })
 .WithTracing(tracing =>
 {
 if (builder.Environment.IsDevelopment())
 {
 // We want to view all traces in development
 tracing.SetSampler(new AlwaysOnSampler());
 }

 tracing.AddAspNetCoreInstrumentation()
 // Uncomment the following line to enable gRPC
instrumentation
 // (requires the OpenTelemetry.Instrumentation.GrpcNetClient
package)
 //.AddGrpcClientInstrumentation()
 .AddHttpClientInstrumentation();
 });

 builder.AddOpenTelemetryExporters();

 return builder;
}

private static IHostApplicationBuilder AddOpenTelemetryExporters(
 this IHostApplicationBuilder builder)
{
 var useOtlpExporter = !string.IsNullOrWhiteSpace(
 builder.Configuration["OTEL_EXPORTER_OTLP_ENDPOINT"]);

 if (useOtlpExporter)
 {
 builder.Services.Configure<OpenTelemetryLoggerOptions>(
 logging => logging.AddOtlpExporter());
 builder.Services.ConfigureOpenTelemetryMeterProvider(

The AddOpenTelemetryExporters method adds OpenTelemetry exporters based on the
following conditions:

If the OTEL_EXPORTER_OTLP_ENDPOINT environment variable is set, the OpenTelemetry
exporter is added.
Optionally consumers of .NET Aspire service defaults can uncomment some code
to enable the Prometheus exporter, or the Azure Monitor exporter.

For more information, see .NET Aspire telemetry.

Health checks are used by various tools and systems to assess the readiness of your app.
.NET Aspire provides a set of opinionated defaults for health checks, which are
configured with the AddDefaultHealthChecks method:

C#

 metrics => metrics.AddOtlpExporter());
 builder.Services.ConfigureOpenTelemetryTracerProvider(
 tracing => tracing.AddOtlpExporter());
 }

 // Uncomment the following lines to enable the Prometheus exporter
 // (requires the OpenTelemetry.Exporter.Prometheus.AspNetCore package)
 // builder.Services.AddOpenTelemetry()
 // .WithMetrics(metrics => metrics.AddPrometheusExporter());

 // Uncomment the following lines to enable the Azure Monitor exporter
 // (requires the Azure.Monitor.OpenTelemetry.AspNetCore package)
 //if (!string.IsNullOrEmpty(
 // builder.Configuration["APPLICATIONINSIGHTS_CONNECTION_STRING"]))
 //{
 // builder.Services.AddOpenTelemetry()
 // .UseAzureMonitor();
 //}

 return builder;
}

Health checks configuration

public static IHostApplicationBuilder AddDefaultHealthChecks(
 this IHostApplicationBuilder builder)
{
 builder.Services.AddHealthChecks()
 // Add a default liveness check to ensure app is responsive
 .AddCheck("self", () => HealthCheckResult.Healthy(), ["live"]);

The AddDefaultHealthChecks method adds a default liveness check to ensure the app is
responsive. The call to AddHealthChecks registers the HealthCheckService. For more
information, see .NET Aspire health checks.

To expose health checks in a web app, .NET Aspire automatically determines the type of
project being referenced within the solution, and adds the appropriate call to
MapDefaultEndpoints :

C#

The MapDefaultEndpoints method:

Allows consumers to optionally uncomment some code to enable the Prometheus
endpoint.
Maps the health checks endpoint to /health .

 return builder;
}

Web app health checks configuration

public static WebApplication MapDefaultEndpoints(this WebApplication app)
{
 // Uncomment the following line to enable the Prometheus endpoint
 // (requires the OpenTelemetry.Exporter.Prometheus.AspNetCore package)
 // app.MapPrometheusScrapingEndpoint();

 // Adding health checks endpoints to applications in non-development
 // environments has security implications.
 // See https://aka.ms/dotnet/aspire/healthchecks for details before
 // enabling these endpoints in non-development environments.
 if (app.Environment.IsDevelopment())
 {
 // All health checks must pass for app to be considered ready to
 // accept traffic after starting
 app.MapHealthChecks("/health");

 // Only health checks tagged with the "live" tag must pass for
 // app to be considered alive
 app.MapHealthChecks("/alive", new HealthCheckOptions
 {
 Predicate = r => r.Tags.Contains("live")
 });
 }

 return app;
}

https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.healthcheckservicecollectionextensions.addhealthchecks
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.diagnostics.healthchecks.healthcheckservice

Maps the liveness endpoint to /alive route where the health check tag contains
live .

For more information, see .NET Aspire health checks.

If the default service configuration provided by the project template is not sufficient for
your needs, you have the option to create your own service defaults project. This is
especially useful when your consuming project, such as a Worker project or WinForms
project, cannot or does not want to have a FrameworkReference dependency on
Microsoft.AspNetCore.App .

To do this, create a new .NET 9.0 class library project and add the necessary
dependencies to the project file, consider the following example:

XML

Then create an extensions class that contains the necessary methods to configure the
app defaults:

C#

Custom service defaults

<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>
 <OutputType>Library</OutputType>
 <TargetFramework>net9.0</TargetFramework>
 </PropertyGroup>

 <ItemGroup>
 <PackageReference Include="Microsoft.Extensions.Hosting" />
 <PackageReference Include="Microsoft.Extensions.ServiceDiscovery" />
 <PackageReference Include="Microsoft.Extensions.Http.Resilience" />
 <PackageReference Include="OpenTelemetry.Exporter.OpenTelemetryProtocol"
/>
 <PackageReference Include="OpenTelemetry.Extensions.Hosting" />
 <PackageReference Include="OpenTelemetry.Instrumentation.Http" />
 <PackageReference Include="OpenTelemetry.Instrumentation.Runtime" />
 </ItemGroup>
</Project>

using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.Logging;
using OpenTelemetry.Logs;
using OpenTelemetry.Metrics;
using OpenTelemetry.Trace;

namespace Microsoft.Extensions.Hosting;

public static class AppDefaultsExtensions
{
 public static IHostApplicationBuilder AddAppDefaults(
 this IHostApplicationBuilder builder)
 {
 builder.ConfigureAppOpenTelemetry();

 builder.Services.AddServiceDiscovery();

 builder.Services.ConfigureHttpClientDefaults(http =>
 {
 // Turn on resilience by default
 http.AddStandardResilienceHandler();

 // Turn on service discovery by default
 http.AddServiceDiscovery();
 });

 return builder;
 }

 public static IHostApplicationBuilder ConfigureAppOpenTelemetry(
 this IHostApplicationBuilder builder)
 {
 builder.Logging.AddOpenTelemetry(logging =>
 {
 logging.IncludeFormattedMessage = true;
 logging.IncludeScopes = true;
 });

 builder.Services.AddOpenTelemetry()
 .WithMetrics(static metrics =>
 {
 metrics.AddRuntimeInstrumentation();
 })
 .WithTracing(tracing =>
 {
 if (builder.Environment.IsDevelopment())
 {
 // We want to view all traces in development
 tracing.SetSampler(new AlwaysOnSampler());
 }

 tracing.AddGrpcClientInstrumentation()
 .AddHttpClientInstrumentation();
 });

 builder.AddOpenTelemetryExporters();

 return builder;
 }

This is only an example, and you can customize the AppDefaultsExtensions class to meet
your specific needs.

This code is derived from the .NET Aspire Starter Application template and is intended
as a starting point. You're free to modify this code however you deem necessary to meet
your needs. It's important to know that service defaults project and its functionality are
automatically applied to all project resources in a .NET Aspire solution.

Service discovery in .NET Aspire
.NET Aspire SDK
.NET Aspire templates
Health checks in .NET Aspire
.NET Aspire telemetry
Build resilient HTTP apps: Key development patterns

 private static IHostApplicationBuilder AddOpenTelemetryExporters(
 this IHostApplicationBuilder builder)
 {
 var useOtlpExporter =
 !string.IsNullOrWhiteSpace(
 builder.Configuration["OTEL_EXPORTER_OTLP_ENDPOINT"]);

 if (useOtlpExporter)
 {
 builder.Services.Configure<OpenTelemetryLoggerOptions>(
 logging => logging.AddOtlpExporter());
 builder.Services.ConfigureOpenTelemetryMeterProvider(
 metrics => metrics.AddOtlpExporter());
 builder.Services.ConfigureOpenTelemetryTracerProvider(
 tracing => tracing.AddOtlpExporter());
 }

 return builder;
 }
}

Next steps

https://learn.microsoft.com/en-us/dotnet/core/resilience/http-resilience

.NET Aspire and launch profiles
Article • 11/22/2024

.NET Aspire makes use of launch profiles defined in both the app host and service
projects to simplify the process of configuring multiple aspects of the debugging and
publishing experience for .NET Aspire-based distributed applications.

When creating a new .NET application from a template developers will often see a
Properties directory which contains a file named launchSettings.json. The launch
settings file contains a list of launch profiles. Each launch profile is a collection of related
options which defines how you would like dotnet to start your application.

The code below is an example of launch profiles in a launchSettings.json file for an
ASP.NET Core application.

JSON

The launchSettings.json file above defines two launch profiles, http and https . Each has
its own set of environment variables, launch URLs and other options. When launching a

Launch profile basics

{
 "$schema": "http://json.schemastore.org/launchsettings.json",
 "profiles": {
 "http": {
 "commandName": "Project",
 "dotnetRunMessages": true,
 "launchBrowser": false,
 "applicationUrl": "http://localhost:5130",
 "environmentVariables": {
 "ASPNETCORE_ENVIRONMENT": "Development"
 }
 },
 "https": {
 "commandName": "Project",
 "dotnetRunMessages": true,
 "launchBrowser": false,
 "applicationUrl": "https://localhost:7106;http://localhost:5130",
 "environmentVariables": {
 "ASPNETCORE_ENVIRONMENT": "Development"
 }
 }
 }
}

.NET Core application developers can choose which launch profile to use.

.NET CLI

If no launch profile is specified, then the first launch profile is selected by default. It is
possible to launch a .NET Core application without a launch profile using the --no-
launch-profile option. Some fields from the launchSettings.json file are translated to
environment variables. For example, the applicationUrl field is converted to the
ASPNETCORE_URLS environment variable which controls which address and port ASP.NET
Core binds to.

In Visual Studio it's possible to select the launch profile when launching the application
making it easy to switch between configuration scenarios when manually debugging
issues:

When a .NET application is launched with a launch profile a special environment variable
called DOTNET_LAUNCH_PROFILE is populated with the name of the launch profile that was
used when launching the process.

In .NET Aspire, the AppHost is just a .NET application. As a result it has a
launchSettings.json file just like any other application. Here is an example of the
launchSettings.json file generated when creating a new .NET Aspire project from the
starter template (dotnet new aspire-starter).

JSON

dotnet run --launch-profile https



Launch profiles for .NET Aspire app host

{
 "$schema": "https://json.schemastore.org/launchsettings.json",
 "profiles": {
 "https": {
 "commandName": "Project",
 "dotnetRunMessages": true,
 "launchBrowser": true,
 "applicationUrl": "https://localhost:17134;http://localhost:15170",
 "environmentVariables": {
 "ASPNETCORE_ENVIRONMENT": "Development",
 "DOTNET_ENVIRONMENT": "Development",
 "DOTNET_DASHBOARD_OTLP_ENDPOINT_URL": "https://localhost:21030",
 "DOTNET_RESOURCE_SERVICE_ENDPOINT_URL": "https://localhost:22057"

https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/media/launch-profiles/vs-launch-profile-toolbar.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/media/launch-profiles/vs-launch-profile-toolbar.png#lightbox

The .NET Aspire templates have a very similar set of launch profiles to a regular ASP.NET
Core application. When the .NET Aspire app project launches, it starts a
DistributedApplication and hosts a web-server which is used by the .NET Aspire
Dashboard to fetch information about resources which are being orchestrated by .NET
Aspire.

For information about app host configuration options, see .NET Aspire app host
configuration.

In .NET Aspire the app host is responsible for coordinating the launch of multiple service
projects. When you run the app host either via the command line or from Visual Studio
(or other development environment) a launch profile is selected for the app host. In
turn, the app host will attempt to find a matching launch profile in the service projects it
is launching and use those options to control the environment and default networking
configuration for the service project.

When the app host launches a service project it doesn't simply launch the service
project using the --launch-profile option. Therefore, there will be no
DOTNET_LAUNCH_PROFILE environment variable set for service projects. This is because
.NET Aspire modifies the ASPNETCORE_URLS environment variable (derived from the
applicationUrl field in the launch profile) to use a different port. By default, .NET Aspire
inserts a reverse proxy in front of the ASP.NET Core application to allow for multiple
instances of the application using the WithReplicas method.

 }
 },
 "http": {
 "commandName": "Project",
 "dotnetRunMessages": true,
 "launchBrowser": true,
 "applicationUrl": "http://localhost:15170",
 "environmentVariables": {
 "ASPNETCORE_ENVIRONMENT": "Development",
 "DOTNET_ENVIRONMENT": "Development",
 "DOTNET_DASHBOARD_OTLP_ENDPOINT_URL": "http://localhost:19240",
 "DOTNET_RESOURCE_SERVICE_ENDPOINT_URL": "http://localhost:20154"
 }
 }
 }
}

Relationship between app host launch profiles
and service projects

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.distributedapplication
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.projectresourcebuilderextensions.withreplicas

Other settings such as options from the environmentVariables field are passed through
to the application without modification.

Ideally, it's possible to align the launch profile names between the app host and the
service projects to make it easy to switch between configuration options on all projects
coordinated by the app host at once. However, it may be desirable to control launch
profile that a specific project uses. The AddProject extension method provides a
mechanism to do this.

C#

The preceding code shows that the inventoryservice resource (a .NET project) is
launched using the options from the mylaunchprofile launch profile. The launch profile
precedence logic is as follows:

1. Use the launch profile specified by launchProfileName argument if specified.
2. Use the launch profile with the same name as the AppHost (determined by reading

the DOTNET_LAUNCH_PROFILE environment variable).
3. Use the default (first) launch profile in launchSettings.json.
4. Don't use a launch profile.

To force a service project to launch without a launch profile the launchProfileName
argument on the AddProject method can be set to null.

When adding an ASP.NET Core project to the app host, .NET Aspire will parse the
launchSettings.json file selecting the appropriate launch profile and automatically
generate endpoints in the application model based on the URL(s) present in the
applicationUrl field. To modify the endpoints that are automatically injected the
WithEndpoint extension method.

C#

Control launch profile selection

var builder = DistributedApplication.CreateBuilder(args);
builder.AddProject<Projects.InventoryService>(
 "inventoryservice",
 launchProfileName: "mylaunchprofile");

Launch profiles and endpoints

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.projectresourcebuilderextensions.addproject
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.projectresourcebuilderextensions.addproject
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.resourcebuilderextensions.withendpoint

The preceding code shows how to disable the reverse proxy that .NET Aspire deploys in
front for the .NET Core application and instead allows the .NET Core application to
respond directly on requests over HTTP(S). For more information on networking options
within .NET Aspire see .NET Aspire inner loop networking overview.

Kestrel configured endpoints

var builder = DistributedApplication.CreateBuilder(args);
builder.AddProject<Projects.InventoryService>("inventoryservice")
 .WithEndpoint("https", endpoint => endpoint.IsProxied = false);

See also

Health checks in .NET Aspire
Article • 09/24/2024

Health checks provide availability and state information about an app. Health checks are
often exposed as HTTP endpoints, but can also be used internally by the app to write
logs or perform other tasks based on the current health. Health checks are typically used
in combination with an external monitoring service or container orchestrator to check
the status of an app. The data reported by health checks can be used for various
scenarios:

Influence decisions made by container orchestrators, load balancers, API gateways,
and other management services. For instance, if the health check for a
containerized app fails, it might be skipped by a load balancer routing traffic.
Verify that underlying dependencies are available, such as a database or cache, and
return an appropriate status message.
Trigger alerts or notifications when an app isn't responding as expected.

.NET Aspire exposes two default health check HTTP endpoints in Development
environments when the AddServiceDefaults and MapDefaultEndpoints methods are
called from the Program.cs file:

The /health endpoint indicates if the app is running normally where it's ready to
receive requests. All health checks must pass for app to be considered ready to
accept traffic after starting.

HTTP

The /health endpoint returns an HTTP status code 200 and a text/plain value of
Healthy when the app is healthy.

The /alive indicates if an app is running or has crashed and must be restarted.
Only health checks tagged with the live tag must pass for app to be considered
alive.

HTTP

.NET Aspire health check endpoints

GET /health

https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.diagnostics.healthchecks.healthstatus#microsoft-extensions-diagnostics-healthchecks-healthstatus-healthy

The /alive endpoint returns an HTTP status code 200 and a text/plain value of
Healthy when the app is alive.

The AddServiceDefaults and MapDefaultEndpoints methods also apply various
configurations to your app beyond just health checks, such as OpenTelemetry and
service discovery configurations.

In non-development environments, the /health and /alive endpoints are disabled by
default. If you need to enable them, its recommended to protect these endpoints with
various routing features, such as host filtering and/or authorization. For more
information, see Health checks in ASP.NET Core.

Additionally, it may be advantageous to configure request timeouts and output caching
for these endpoints to prevent abuse or denial-of-service attacks. To do so, consider the
following modified AddDefaultHealthChecks method:

C#

The preceding code:

GET /alive

Non-development environments

public static IHostApplicationBuilder AddDefaultHealthChecks(this
IHostApplicationBuilder builder)
{
 builder.Services.AddRequestTimeouts(
 configure: static timeouts =>
 timeouts.AddPolicy("HealthChecks", TimeSpan.FromSeconds(5)));

 builder.Services.AddOutputCache(
 configureOptions: static caching =>
 caching.AddPolicy("HealthChecks",
 build: static policy =>
policy.Expire(TimeSpan.FromSeconds(10))));

 builder.Services.AddHealthChecks()
 // Add a default liveness check to ensure app is responsive
 .AddCheck("self", () => HealthCheckResult.Healthy(), ["live"]);

 return builder;
}

https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.diagnostics.healthchecks.healthstatus#microsoft-extensions-diagnostics-healthchecks-healthstatus-healthy
https://learn.microsoft.com/en-us/aspnet/core/host-and-deploy/health-checks#use-health-checks-routing

Adds a timeout of 5 seconds to the health check requests with a policy named
HealthChecks .
Adds a 10-second cache to the health check responses with a policy named
HealthChecks .

Now consider the updated MapDefaultEndpoints method:

C#

The preceding code:

Groups the health check endpoints under the / path.
Caches the output and specifies a request time with the corresponding
HealthChecks policy.

In addition to the updated AddDefaultHealthChecks and MapDefaultEndpoints methods,
you must also add the corresponding services for both request timeouts and output
caching.

In the appropriate consuming app's entry point (usually the Program.cs file), add the
following code:

C#

public static WebApplication MapDefaultEndpoints(this WebApplication app)
{
 var healthChecks = app.MapGroup("");

 healthChecks
 .CacheOutput("HealthChecks")
 .WithRequestTimeout("HealthChecks");

 // All health checks must pass for app to be
 // considered ready to accept traffic after starting
 healthChecks.MapHealthChecks("/health");

 // Only health checks tagged with the "live" tag
 // must pass for app to be considered alive
 healthChecks.MapHealthChecks("/alive", new()
 {
 Predicate = static r => r.Tags.Contains("live")
 });

 return app;
}

// Wherever your services are being registered.
// Before the call to Build().

For more information, see Request timeouts middleware in ASP.NET Core and Output
caching middleware in ASP.NET Core.

.NET Aspire integrations can also register additional health checks for your app. These
health checks contribute to the returned status of the /health and /alive endpoints.
For example, the .NET Aspire PostgreSQL integration automatically adds a health check
to verify the following conditions:

A database connection could be established
A database query could be executed successfully

If either of these operations fail, the corresponding health check also fails.

You can disable health checks for a given integration using one of the available
configuration options. .NET Aspire integrations support
Microsoft.Extensions.Configurations to apply settings through config files such as
appsettings.json:

JSON

You can also use an inline delegate to configure health checks:

builder.Services.AddRequestTimeouts();
builder.Services.AddOutputCache();

var app = builder.Build();

// Wherever your app has been built, before the call to Run().
app.UseRequestTimeouts();
app.UseOutputCache();

app.Run();

Integration health checks

Configure health checks

{
 "Aspire": {
 "Npgsql": {
 "DisableHealthChecks": true,
 }
 }
}

https://learn.microsoft.com/en-us/aspnet/core/performance/timeouts
https://learn.microsoft.com/en-us/aspnet/core/performance/caching/output
https://learn.microsoft.com/en-us/aspnet/core/performance/caching/output
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration

C#

.NET app health checks in C#
Health checks in ASP.NET Core

builder.AddNpgsqlDbContext<MyDbContext>(
 "postgresdb",
 static settings => settings.DisableHealthChecks = true);

See also

https://learn.microsoft.com/en-us/dotnet/core/diagnostics/diagnostic-health-checks
https://learn.microsoft.com/en-us/aspnet/core/host-and-deploy/health-checks

.NET Aspire telemetry
Article • 08/29/2024

One of the primary objectives of .NET Aspire is to ensure that apps are straightforward
to debug and diagnose. .NET Aspire integrations automatically set up Logging, Tracing,
and Metrics configurations, which are sometimes known as the pillars of observability,
using the .NET OpenTelemetry SDK .

Logging: Log events describe what's happening as an app runs. A baseline set is
enabled for .NET Aspire integrations by default and more extensive logging can be
enabled on-demand to diagnose particular problems.

Tracing: Traces correlate log events that are part of the same logical activity (e.g.
the handling of a single request), even if they're spread across multiple machines
or processes.

Metrics: Metrics expose the performance and health characteristics of an app as
simple numerical values. As a result, they have low performance overhead and
many services configure them as always-on telemetry. This also makes them
suitable for triggering alerts when potential problems are detected.

Together, these types of telemetry allow you to gain insights into your application's
behavior and performance using various monitoring and analysis tools. Depending on
the backing service, some integrations may only support some of these features.

The .NET OpenTelemetry SDK includes features for gathering data from several .NET
APIs, including ILogger, Activity, Meter, and Instrument<T>. These APIs correspond to
telemetry features like logging, tracing, and metrics. .NET Aspire projects define
OpenTelemetry SDK configurations in the ServiceDefaults project. For more information,
see .NET Aspire service defaults.

By default, the ConfigureOpenTelemetry method enables logging, tracing, and metrics for
the app. It also adds exporters for these data points so they can be collected by other
monitoring tools.

The .NET OpenTelemetry SDK facilitates the export of this telemetry data to a data store
or reporting tool. The telemetry export mechanism relies on the OpenTelemetry

.NET Aspire OpenTelemetry integration

Export OpenTelemetry data for monitoring

https://github.com/open-telemetry/opentelemetry-dotnet
https://github.com/open-telemetry/opentelemetry-dotnet
https://learn.microsoft.com/en-us/dotnet/core/diagnostics/logging-tracing
https://learn.microsoft.com/en-us/dotnet/core/diagnostics/distributed-tracing
https://learn.microsoft.com/en-us/dotnet/core/diagnostics/metrics
https://github.com/open-telemetry/opentelemetry-dotnet
https://github.com/open-telemetry/opentelemetry-dotnet
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.logging.ilogger
https://learn.microsoft.com/en-us/dotnet/api/system.activities.activity
https://learn.microsoft.com/en-us/dotnet/api/system.diagnostics.metrics.meter
https://learn.microsoft.com/en-us/dotnet/api/system.diagnostics.metrics.instrument-1
https://opentelemetry.io/docs/specs/otel/protocol

protocol (OTLP) , which serves as a standardized approach for transmitting telemetry
data through REST or gRPC. The ConfigureOpenTelemetry method also registers
exporters to provide your telemetry data to other monitoring tools, such as Prometheus
or Azure Monitor. For more information, see OpenTelemetry configuration.

OpenTelemetry has a list of known environment variables that configure the most
important behavior for collecting and exporting telemetry. OpenTelemetry SDKs,
including the .NET SDK, support reading these variables.

.NET Aspire projects launch with environment variables that configure the name and ID
of the app in exported telemetry and set the address endpoint of the OTLP server to
export data. For example:

OTEL_SERVICE_NAME = myfrontend
OTEL_RESOURCE_ATTRIBUTES = service.instance.id=1a5f9c1e-e5ba-451b-95ee-
ced1ee89c168
OTEL_EXPORTER_OTLP_ENDPOINT = http://localhost:4318

The environment variables are automatically set in local development.

When you create a .NET Aspire project, the .NET Aspire dashboard provides a UI for
viewing app telemetry by default. Telemetry data is sent to the dashboard using OTLP,
and the dashboard implements an OTLP server to receive telemetry data and store it in
memory. The .NET Aspire debugging workflow is as follows:

Developer starts the .NET Aspire project with debugging, presses F5 .
.NET Aspire dashboard and developer control plane (DCP) start.
App configuration is run in the AppHost project.

OpenTelemetry environment variables are automatically added to .NET projects
during app configuration.
DCP provides the name (OTEL_SERVICE_NAME) and ID (OTEL_RESOURCE_ATTRIBUTES)
of the app in exported telemetry.
The OTLP endpoint is an HTTP/2 port started by the dashboard. This endpoint is
set in the OTEL_EXPORTER_OTLP_ENDPOINT environment variable on each project.
That tells projects to export telemetry back to the dashboard.
Small export intervals (OTEL_BSP_SCHEDULE_DELAY , OTEL_BLRP_SCHEDULE_DELAY ,
OTEL_METRIC_EXPORT_INTERVAL) so data is quickly available in the dashboard.

OpenTelemetry environment variables

.NET Aspire local development

https://opentelemetry.io/docs/specs/otel/protocol
https://opentelemetry.io/docs/specs/otel/protocol
https://opentelemetry.io/docs/specs/otel/configuration/sdk-environment-variables/
https://opentelemetry.io/docs/specs/otel/configuration/sdk-environment-variables/

Small values are used in local development to prioritize dashboard
responsiveness over efficiency.

The DCP starts configured projects, containers, and executables.
Once started, apps send telemetry to the dashboard.
Dashboard displays near real-time telemetry of all .NET Aspire projects.

All of these steps happen internally, so in most cases the developer simply needs to run
the app to see this process in action.

.NET Aspire deployment environments should configure OpenTelemetry environment
variables that make sense for their environment. For example,
OTEL_EXPORTER_OTLP_ENDPOINT should be configured to the environment's local OTLP
collector or monitoring service.

.NET Aspire telemetry works best in environments that support OTLP. OTLP exporting is
disabled if OTEL_EXPORTER_OTLP_ENDPOINT isn't configured.

For more information, see .NET Aspire deployments.

.NET Aspire deployment

.NET Aspire integrations overview
Article • 02/06/2025

.NET Aspire integrations are a curated suite of NuGet packages selected to facilitate the
integration of cloud-native applications with prominent services and platforms, such as
Redis and PostgreSQL. Each integration furnishes essential cloud-native functionalities
through either automatic provisioning or standardized configuration patterns.

Most .NET Aspire integrations are made up of two separate libraries, each with a
different responsibility. One type represents resources within the app host project—
known as hosting integrations. The other type of integration represents client libraries
that connect to the resources modeled by hosting integrations, and they're known as
client integrations.

Hosting integrations configure applications by provisioning resources (like containers or
cloud resources) or pointing to existing instances (such as a local SQL server). These
packages model various services, platforms, or capabilities, including caches, databases,
logging, storage, and messaging systems.

Hosting integrations extend the IDistributedApplicationBuilder interface, enabling the
app host project to express resources within its app model. The official hosting
integration NuGet packages are tagged with aspire , integration , and hosting . In
addition to the official hosting integrations, the community has created hosting
integrations for various services and platforms as part of the Community Toolkit.

For information on creating a custom hosting integration, see Create custom .NET Aspire
hosting integration.

 Tip

Always strive to use the latest version of .NET Aspire integrations to take advantage
of the latest features, improvements, and security updates.

Integration responsibilities

Hosting integrations

Client integrations

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.idistributedapplicationbuilder
https://www.nuget.org/packages?q=owner%3A+aspire+tags%3A+aspire+hosting+integration&includeComputedFrameworks=true&prerel=true&sortby=relevance
https://www.nuget.org/packages?q=owner%3A+aspire+tags%3A+aspire+hosting+integration&includeComputedFrameworks=true&prerel=true&sortby=relevance
https://www.nuget.org/packages?q=owner%3A+aspire+tags%3A+aspire+hosting+integration&includeComputedFrameworks=true&prerel=true&sortby=relevance

Client integrations wire up client libraries to dependency injection (DI), define
configuration schema, and add health checks, resiliency, and telemetry where applicable.
.NET Aspire client integration libraries are prefixed with Aspire. and then include the
full package name that they integrate with, such as Aspire.StackExchange.Redis .

These packages configure existing client libraries to connect to hosting integrations.
They extend the IHostApplicationBuilder interface allowing client-consuming projects,
such as your web app or API, to use the connected resource. The official client
integration NuGet packages are tagged with aspire , integration , and client . In
addition to the official client integrations, the community has created client integrations
for various services and platforms as part of the Community Toolkit.

For more information on creating a custom client integration, see Create custom .NET
Aspire client integrations.

Hosting and client integrations are best when used together, but are not coupled and
can be used separately. Some hosting integrations don't have a corresponding client
integration. Configuration is what makes the hosting integration work with the client
integration.

Consider the following diagram that depicts the relationship between hosting and client
integrations:

The app host project is where hosting integrations are used. Configuration, specifically
environment variables, is injected into projects, executables, and containers, allowing
client integrations to connect to the hosting integrations.

Relationship between hosting and client integrations



Integration features

https://learn.microsoft.com/en-us/dotnet/core/extensions/dependency-injection
https://learn.microsoft.com/en-us/dotnet/core/resilience
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.ihostapplicationbuilder
https://www.nuget.org/packages?q=owner%3A+aspire+tags%3A+aspire+client+integration&includeComputedFrameworks=true&prerel=true&sortby=relevance
https://www.nuget.org/packages?q=owner%3A+aspire+tags%3A+aspire+client+integration&includeComputedFrameworks=true&prerel=true&sortby=relevance
https://www.nuget.org/packages?q=owner%3A+aspire+tags%3A+aspire+client+integration&includeComputedFrameworks=true&prerel=true&sortby=relevance
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/media/integrations.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/fundamentals/media/integrations.png#lightbox

When you add a client integration to a project within your .NET Aspire solution, service
defaults are automatically applied to that project; meaning the Service Defaults project
is referenced and the AddServiceDefaults extension method is called. These defaults are
designed to work well in most scenarios and can be customized as needed. The
following service defaults are applied:

Observability and telemetry: Automatically sets up logging, tracing, and metrics
configurations:

Logging: A technique where code is instrumented to produce logs of
interesting events that occurred while the program was running.
Tracing: A specialized form of logging that helps you localize failures and
performance issues within applications distributed across multiple machines or
processes.
Metrics: Numerical measurements recorded over time to monitor application
performance and health. Metrics are often used to generate alerts when
potential problems are detected.

Health checks: Exposes HTTP endpoints to provide basic availability and state
information about an app. Health checks are used to influence decisions made by
container orchestrators, load balancers, API gateways, and other management
services.

Resiliency: The ability of your system to react to failure and still remain functional.
Resiliency extends beyond preventing failures to include recovering and
reconstructing your cloud-native environment back to a healthy state.

Hosting and client integrations are updated each release to target the latest stable
versions of dependent resources. When container images are updated with new image
versions, the hosting integrations update to these new versions. Similarly, when a new
NuGet version is available for a dependent client library, the corresponding client
integration updates to the new version. This ensures the latest features and security
updates are available to applications. The .NET Aspire update type (major, minor, patch)
doesn't necessarily indicate the type of update in dependent resources. For example, a
new major version of a dependent resource may be updated in a .NET Aspire patch
release, if necessary.

When major breaking changes happen in dependent resources, integrations may
temporarily split into version-dependent packages to ease updating across the breaking
change. For more information, see the first example of such a breaking change .

Versioning considerations

https://learn.microsoft.com/en-us/dotnet/core/diagnostics/logging-tracing
https://learn.microsoft.com/en-us/dotnet/core/diagnostics/distributed-tracing
https://learn.microsoft.com/en-us/dotnet/core/diagnostics/metrics
https://learn.microsoft.com/en-us/dotnet/core/resilience/http-resilience
https://github.com/dotnet/aspire/issues/3956
https://github.com/dotnet/aspire/issues/3956

.NET Aspire provides many integrations to help you build cloud-native applications.
These integrations are designed to work seamlessly with the .NET Aspire app host and
client libraries. The following sections detail cloud-agnostic, Azure-specific, Amazon
Web Services (AWS), and Community Toolkit integrations.

The following section details cloud-agnostic .NET Aspire integrations with links to their
respective docs and NuGet packages, and provides a brief description of each
integration.

Integration docs and NuGet packages Description

- Learn more: 📄 Apache Kafka
- Hosting: 📦 Aspire.Hosting.Kafka
- Client: 📦 Aspire.Confluent.Kafka

A library for producing and
consuming messages from an
Apache Kafka broker.

- Learn more: 📄 Dapr
- Hosting: 📦 Aspire.Hosting.Dapr
- Client: N/A

A library for modeling Dapr as
a .NET Aspire resource.

- Learn more: 📄 Elasticsearch
- Hosting: 📦 Aspire.Hosting.Elasticsearch
- Client: 📦 Aspire.Elastic.Clients.Elasticsearch

A library for accessing
Elasticsearch databases.

- Learn more: 📄 Keycloak
- Hosting: 📦 Aspire.Hosting.Keycloak
- Client: 📦 Aspire.Keycloak.Authentication

A library for accessing Keycloak
authentication.

- Learn more: 📄 Milvus
- Hosting: 📦 Aspire.Hosting.Milvus
- Client: 📦 Aspire.Milvus.Client

A library for accessing Milvus
databases.

- Learn more: 📄 MongoDB Driver
- Hosting: 📦 Aspire.Hosting.MongoDB
- Client: 📦 Aspire.MongoDB.Driver

A library for accessing
MongoDB databases.

- Learn more: 📄 MySqlConnector
- Hosting: 📦 Aspire.Hosting.MySql
- Client: 📦 Aspire.MySqlConnector

A library for accessing
MySqlConnector databases.

- Learn more: 📄 NATS
- Hosting: 📦 Aspire.Hosting.Nats

A library for accessing NATS
messaging.

Official integrations

Cloud-agnostic integrations

ﾉ Expand table

https://www.nuget.org/packages/Aspire.Hosting.Kafka
https://www.nuget.org/packages/Aspire.Hosting.Kafka
https://www.nuget.org/packages/Aspire.Confluent.Kafka
https://www.nuget.org/packages/Aspire.Confluent.Kafka
https://kafka.apache.org/
https://kafka.apache.org/
https://www.nuget.org/packages/Aspire.Hosting.Dapr
https://www.nuget.org/packages/Aspire.Hosting.Dapr
https://dapr.io/
https://dapr.io/
https://www.nuget.org/packages/Aspire.Hosting.Elasticsearch
https://www.nuget.org/packages/Aspire.Hosting.Elasticsearch
https://www.nuget.org/packages/Aspire.Elastic.Clients.Elasticsearch
https://www.nuget.org/packages/Aspire.Elastic.Clients.Elasticsearch
https://www.elastic.co/guide/en/elasticsearch/client/index.html
https://www.elastic.co/guide/en/elasticsearch/client/index.html
https://www.nuget.org/packages/Aspire.Hosting.Keycloak
https://www.nuget.org/packages/Aspire.Hosting.Keycloak
https://www.nuget.org/packages/Aspire.Keycloak.Authentication
https://www.nuget.org/packages/Aspire.Keycloak.Authentication
https://www.keycloak.org/docs/latest/server_admin/index.html
https://www.keycloak.org/docs/latest/server_admin/index.html
https://www.nuget.org/packages/Aspire.Hosting.Milvus
https://www.nuget.org/packages/Aspire.Hosting.Milvus
https://www.nuget.org/packages/Aspire.Milvus.Client
https://www.nuget.org/packages/Aspire.Milvus.Client
https://milvus.io/
https://milvus.io/
https://www.nuget.org/packages/Aspire.Hosting.MongoDB
https://www.nuget.org/packages/Aspire.Hosting.MongoDB
https://www.nuget.org/packages/Aspire.MongoDB.Driver
https://www.nuget.org/packages/Aspire.MongoDB.Driver
https://www.mongodb.com/docs
https://www.mongodb.com/docs
https://www.nuget.org/packages/Aspire.Hosting.MySql
https://www.nuget.org/packages/Aspire.Hosting.MySql
https://www.nuget.org/packages/Aspire.MySqlConnector
https://www.nuget.org/packages/Aspire.MySqlConnector
https://mysqlconnector.net/
https://mysqlconnector.net/
https://www.nuget.org/packages/Aspire.Hosting.Nats
https://www.nuget.org/packages/Aspire.Hosting.Nats
https://nats.io/
https://nats.io/

Integration docs and NuGet packages Description
- Client: 📦 Aspire.NATS.Net

- Learn more: 📄 Oracle - EF Core
- Hosting: 📦 Aspire.Hosting.Oracle
- Client: 📦 Aspire.Oracle.EntityFrameworkCore

A library for accessing Oracle
databases with Entity Framework
Core.

- Learn more: 📄 Orleans
- Hosting: 📦 Aspire.Hosting.Orleans
- Client: N/A

A library for modeling Orleans as
a .NET Aspire resource.

- Learn more: 📄 Pomelo MySQL - EF Core
- Hosting: 📦 Aspire.Hosting.MySql
- Client: 📦 Aspire.Pomelo.EntityFrameworkCore.MySql

A library for accessing MySql
databases with Entity Framework
Core.

- Learn more: 📄 PostgreSQL - EF Core
- Hosting: 📦 Aspire.Hosting.PostgreSQL
- Client: 📦 Aspire.Npgsql.EntityFrameworkCore.PostgreSQL

A library for accessing
PostgreSQL databases using
Entity Framework Core .

- Learn more: 📄 PostgreSQL
- Hosting: 📦 Aspire.Hosting.PostgreSQL
- Client: 📦 Aspire.Npgsql

A library for accessing
PostgreSQL databases.

- Learn more: 📄 Qdrant
- Hosting: 📦 Aspire.Hosting.Qdrant
- Client: 📦 Aspire.Qdrant.Client

A library for accessing Qdrant
databases.

- Learn more: 📄 RabbitMQ
- Hosting: 📦 Aspire.Hosting.RabbitMQ
- Client: 📦 Aspire.RabbitMQ.Client

A library for accessing
RabbitMQ .

- Learn more: 📄 Redis Distributed Caching
- Hosting: 📦 Aspire.Hosting.Redis , 📦
Aspire.Hosting.Garnet , or 📦 Aspire.Hosting.Valkey
- Client: 📦 Aspire.StackExchange.Redis.DistributedCaching

A library for accessing Redis
caches for distributed caching.

- Learn more: 📄 Redis Output Caching
- Hosting: 📦 Aspire.Hosting.Redis , 📦
Aspire.Hosting.Garnet , or 📦 Aspire.Hosting.Valkey
- Client: 📦 Aspire.StackExchange.Redis.OutputCaching

A library for accessing Redis
caches for output caching.

- Learn more: 📄 Redis
- Hosting: 📦 Aspire.Hosting.Redis , 📦
Aspire.Hosting.Garnet , or 📦 Aspire.Hosting.Valkey
- Client: 📦 Aspire.StackExchange.Redis

A library for accessing Redis
caches.

- Learn more: 📄 Seq
- Hosting: 📦 Aspire.Hosting.Seq
- Client: 📦 Aspire.Seq

A library for logging to Seq .

https://www.nuget.org/packages/Aspire.Hosting.Nats
https://www.nuget.org/packages/Aspire.Hosting.Nats
https://www.nuget.org/packages/Aspire.NATS.Net
https://www.nuget.org/packages/Aspire.NATS.Net
https://www.nuget.org/packages/Aspire.Hosting.Oracle
https://www.nuget.org/packages/Aspire.Hosting.Oracle
https://www.nuget.org/packages/Aspire.Oracle.EntityFrameworkCore
https://www.nuget.org/packages/Aspire.Oracle.EntityFrameworkCore
https://learn.microsoft.com/en-us/ef/core
https://learn.microsoft.com/en-us/ef/core
https://www.nuget.org/packages/Aspire.Hosting.Orleans
https://www.nuget.org/packages/Aspire.Hosting.Orleans
https://learn.microsoft.com/en-us/dotnet/Orleans
https://www.nuget.org/packages/Aspire.Hosting.MySql
https://www.nuget.org/packages/Aspire.Hosting.MySql
https://www.nuget.org/packages/Aspire.Pomelo.EntityFrameworkCore.MySql
https://www.nuget.org/packages/Aspire.Pomelo.EntityFrameworkCore.MySql
https://learn.microsoft.com/en-us/ef/core
https://learn.microsoft.com/en-us/ef/core
https://www.nuget.org/packages/Aspire.Hosting.PostgreSQL
https://www.nuget.org/packages/Aspire.Hosting.PostgreSQL
https://www.nuget.org/packages/Aspire.Npgsql.EntityFrameworkCore.PostgreSQL
https://www.nuget.org/packages/Aspire.Npgsql.EntityFrameworkCore.PostgreSQL
https://www.npgsql.org/efcore/index.html
https://www.npgsql.org/efcore/index.html
https://www.nuget.org/packages/Aspire.Hosting.PostgreSQL
https://www.nuget.org/packages/Aspire.Hosting.PostgreSQL
https://www.nuget.org/packages/Aspire.Npgsql
https://www.nuget.org/packages/Aspire.Npgsql
https://www.npgsql.org/doc/index.html
https://www.npgsql.org/doc/index.html
https://www.nuget.org/packages/Aspire.Hosting.Qdrant
https://www.nuget.org/packages/Aspire.Hosting.Qdrant
https://www.nuget.org/packages/Aspire.Qdrant.Client
https://www.nuget.org/packages/Aspire.Qdrant.Client
https://qdrant.tech/
https://qdrant.tech/
https://www.nuget.org/packages/Aspire.Hosting.RabbitMQ
https://www.nuget.org/packages/Aspire.Hosting.RabbitMQ
https://www.nuget.org/packages/Aspire.RabbitMQ.Client
https://www.nuget.org/packages/Aspire.RabbitMQ.Client
https://www.rabbitmq.com/dotnet.html
https://www.rabbitmq.com/dotnet.html
https://www.nuget.org/packages/Aspire.Hosting.Redis
https://www.nuget.org/packages/Aspire.Hosting.Redis
https://www.nuget.org/packages/Aspire.Hosting.Garnet
https://www.nuget.org/packages/Aspire.Hosting.Garnet
https://www.nuget.org/packages/Aspire.Hosting.Garnet
https://www.nuget.org/packages/Aspire.Hosting.Valkey
https://www.nuget.org/packages/Aspire.Hosting.Valkey
https://www.nuget.org/packages/Aspire.StackExchange.Redis.DistributedCaching
https://www.nuget.org/packages/Aspire.StackExchange.Redis.DistributedCaching
https://stackexchange.github.io/StackExchange.Redis/
https://stackexchange.github.io/StackExchange.Redis/
https://learn.microsoft.com/en-us/aspnet/core/performance/caching/distributed
https://www.nuget.org/packages/Aspire.Hosting.Redis
https://www.nuget.org/packages/Aspire.Hosting.Redis
https://www.nuget.org/packages/Aspire.Hosting.Garnet
https://www.nuget.org/packages/Aspire.Hosting.Garnet
https://www.nuget.org/packages/Aspire.Hosting.Garnet
https://www.nuget.org/packages/Aspire.Hosting.Valkey
https://www.nuget.org/packages/Aspire.Hosting.Valkey
https://www.nuget.org/packages/Aspire.StackExchange.Redis.OutputCaching
https://www.nuget.org/packages/Aspire.StackExchange.Redis.OutputCaching
https://stackexchange.github.io/StackExchange.Redis/
https://stackexchange.github.io/StackExchange.Redis/
https://learn.microsoft.com/en-us/aspnet/core/performance/caching/output
https://www.nuget.org/packages/Aspire.Hosting.Redis
https://www.nuget.org/packages/Aspire.Hosting.Redis
https://www.nuget.org/packages/Aspire.Hosting.Garnet
https://www.nuget.org/packages/Aspire.Hosting.Garnet
https://www.nuget.org/packages/Aspire.Hosting.Garnet
https://www.nuget.org/packages/Aspire.Hosting.Valkey
https://www.nuget.org/packages/Aspire.Hosting.Valkey
https://www.nuget.org/packages/Aspire.StackExchange.Redis
https://www.nuget.org/packages/Aspire.StackExchange.Redis
https://stackexchange.github.io/StackExchange.Redis/
https://stackexchange.github.io/StackExchange.Redis/
https://www.nuget.org/packages/Aspire.Hosting.Seq
https://www.nuget.org/packages/Aspire.Hosting.Seq
https://www.nuget.org/packages/Aspire.Seq
https://www.nuget.org/packages/Aspire.Seq
https://datalust.co/seq
https://datalust.co/seq

Integration docs and NuGet packages Description

- Learn more: 📄 SQL Server - EF Core
- Hosting: 📦 Aspire.Hosting.SqlServer
- Client: 📦 Aspire.Microsoft.EntityFrameworkCore.SqlServer

A library for accessing SQL Server
databases using EF Core.

- Learn more: 📄 SQL Server
- Hosting: 📦 Aspire.Hosting.SqlServer
- Client: 📦 Aspire.Microsoft.Data.SqlClient

A library for accessing SQL Server
databases.

For more information on working with .NET Aspire integrations in Visual Studio, see
Visual Studio tooling.

Azure integrations configure applications to use Azure resources. These hosting
integrations are available in the Aspire.Hosting.Azure.* NuGet packages, while their
client integrations are available in the Aspire.* NuGet packages:

Integration Docs and NuGet packages Description

- Learn more: 📄 Azure App Configuration
- Hosting: 📦 Aspire.Hosting.Azure.AppConfiguration
- Client: N/A

A library for
interacting with
Azure App
Configuration.

- Learn more: 📄 Azure Application Insights
- Hosting: 📦 Aspire.Hosting.Azure.ApplicationInsights
- Client: N/A

A library for
interacting with
Azure Application
Insights.

- Learn more: 📄 Azure Cache for Redis
- Hosting: 📦 Aspire.Hosting.Azure.Redis
- Client: 📦 Aspire.StackExchange.Redis or 📦
Aspire.StackExchange.Redis.DistributedCaching or 📦
Aspire.StackExchange.Redis.OutputCaching

A library for
accessing Azure
Cache for Redis.

- Learn more: 📄 Azure Cosmos DB - EF Core
- Hosting: 📦 Aspire.Hosting.Azure.CosmosDB
- Client: 📦 Aspire.Microsoft.EntityFrameworkCore.Cosmos

A library for
accessing Azure
Cosmos DB
databases with
Entity Framework
Core.

Azure integrations

ﾉ Expand table

https://www.nuget.org/packages/Aspire.Hosting.SqlServer
https://www.nuget.org/packages/Aspire.Hosting.SqlServer
https://www.nuget.org/packages/Aspire.Microsoft.EntityFrameworkCore.SqlServer
https://www.nuget.org/packages/Aspire.Microsoft.EntityFrameworkCore.SqlServer
https://learn.microsoft.com/en-us/ef/core/providers/sql-server/
https://learn.microsoft.com/en-us/ef/core/providers/sql-server/
https://www.nuget.org/packages/Aspire.Hosting.SqlServer
https://www.nuget.org/packages/Aspire.Hosting.SqlServer
https://www.nuget.org/packages/Aspire.Microsoft.Data.SqlClient
https://www.nuget.org/packages/Aspire.Microsoft.Data.SqlClient
https://learn.microsoft.com/en-us/sql/sql-server/
https://github.com/dotnet/aspire/blob/main/src/Aspire.Hosting.Azure.AppConfiguration/README.md
https://github.com/dotnet/aspire/blob/main/src/Aspire.Hosting.Azure.AppConfiguration/README.md
https://www.nuget.org/packages/Aspire.Hosting.Azure.AppConfiguration
https://www.nuget.org/packages/Aspire.Hosting.Azure.AppConfiguration
https://learn.microsoft.com/en-us/azure/azure-app-configuration/
https://learn.microsoft.com/en-us/azure/azure-app-configuration/
https://github.com/dotnet/aspire/blob/main/src/Aspire.Hosting.Azure.ApplicationInsights/README.md
https://github.com/dotnet/aspire/blob/main/src/Aspire.Hosting.Azure.ApplicationInsights/README.md
https://www.nuget.org/packages/Aspire.Hosting.Azure.ApplicationInsights
https://www.nuget.org/packages/Aspire.Hosting.Azure.ApplicationInsights
https://learn.microsoft.com/en-us/azure/azure-monitor/app/app-insights-overview
https://learn.microsoft.com/en-us/azure/azure-monitor/app/app-insights-overview
https://www.nuget.org/packages/Aspire.Hosting.Azure.Redis
https://www.nuget.org/packages/Aspire.Hosting.Azure.Redis
https://www.nuget.org/packages/Aspire.StackExchange.Redis
https://www.nuget.org/packages/Aspire.StackExchange.Redis
https://www.nuget.org/packages/Aspire.StackExchange.Redis.DistributedCaching
https://www.nuget.org/packages/Aspire.StackExchange.Redis.DistributedCaching
https://www.nuget.org/packages/Aspire.StackExchange.Redis.DistributedCaching
https://www.nuget.org/packages/Aspire.StackExchange.Redis.OutputCaching
https://www.nuget.org/packages/Aspire.StackExchange.Redis.OutputCaching
https://www.nuget.org/packages/Aspire.StackExchange.Redis.OutputCaching
https://learn.microsoft.com/en-us/azure/azure-cache-for-redis/
https://learn.microsoft.com/en-us/azure/azure-cache-for-redis/
https://www.nuget.org/packages/Aspire.Hosting.Azure.CosmosDB
https://www.nuget.org/packages/Aspire.Hosting.Azure.CosmosDB
https://www.nuget.org/packages/Aspire.Microsoft.EntityFrameworkCore.Cosmos
https://www.nuget.org/packages/Aspire.Microsoft.EntityFrameworkCore.Cosmos
https://learn.microsoft.com/en-us/ef/core/providers/cosmos/
https://learn.microsoft.com/en-us/ef/core/providers/cosmos/

Integration Docs and NuGet packages Description

- Learn more: 📄 Azure Cosmos DB
- Hosting: 📦 Aspire.Hosting.Azure.CosmosDB
- Client: 📦 Aspire.Microsoft.Azure.Cosmos

A library for
accessing Azure
Cosmos DB
databases.

- Learn more: 📄 Azure Event Hubs
- Hosting: 📦 Aspire.Hosting.Azure.EventHubs
- Client: 📦 Aspire.Azure.Messaging.EventHubs

A library for
accessing Azure
Event Hubs.

- Learn more: 📄 Azure Functions
- Hosting: 📦 Aspire.Hosting.Azure.Functions
- Client: N/A

A library for
integrating with
Azure Functions.

- Learn more: 📄 Azure Key Vault
- Hosting: 📦 Aspire.Hosting.Azure.KeyVault
- Client: 📦 Aspire.Azure.Security.KeyVault

A library for
accessing Azure Key
Vault.

- Learn more: 📄 Azure Operational Insights
- Hosting: 📦 Aspire.Hosting.Azure.OperationalInsights
- Client: N/A

A library for
interacting with
Azure Operational
Insights.

- Learn more: 📄 Azure AI OpenAI
- Hosting: 📦 Aspire.Hosting.Azure.CognitiveServices
- Client: 📦 Aspire.Azure.AI.OpenAI

A library for
accessing Azure AI
OpenAI or OpenAI
functionality.

- Learn more: 📄 Azure PostgreSQL
- Hosting: 📦 Aspire.Hosting.Azure.PostgreSQL
- Client: N/A

A library for
interacting with
Azure Database for
PostgreSQL.

- Learn more: 📄 Azure AI Search
- Hosting: 📦 Aspire.Hosting.Azure.Search
- Client: 📦 Aspire.Azure.Search.Documents

A library for
accessing Azure AI
Search functionality.

- Learn more: 📄 Azure Service Bus
- Hosting: 📦 Aspire.Hosting.Azure.ServiceBus
- Client: 📦 Aspire.Azure.Messaging.ServiceBus

A library for
accessing Azure
Service Bus.

- Learn more: 📄 Azure SignalR Service
- Hosting: 📦 Aspire.Hosting.Azure.SignalR
- Client: Microsoft.Azure.SignalR

A library for
accessing Azure
SignalR Service.

https://www.nuget.org/packages/Aspire.Hosting.Azure.CosmosDB
https://www.nuget.org/packages/Aspire.Hosting.Azure.CosmosDB
https://www.nuget.org/packages/Aspire.Microsoft.Azure.Cosmos
https://www.nuget.org/packages/Aspire.Microsoft.Azure.Cosmos
https://learn.microsoft.com/en-us/azure/cosmos-db/introduction
https://learn.microsoft.com/en-us/azure/cosmos-db/introduction
https://www.nuget.org/packages/Aspire.Hosting.Azure.EventHubs
https://www.nuget.org/packages/Aspire.Hosting.Azure.EventHubs
https://www.nuget.org/packages/Aspire.Azure.Messaging.EventHubs
https://www.nuget.org/packages/Aspire.Azure.Messaging.EventHubs
https://learn.microsoft.com/en-us/azure/event-hubs/event-hubs-about
https://learn.microsoft.com/en-us/azure/event-hubs/event-hubs-about
https://www.nuget.org/packages/Aspire.Hosting.Azure.Functions
https://www.nuget.org/packages/Aspire.Hosting.Azure.Functions
https://learn.microsoft.com/en-us/azure/azure-functions/
https://www.nuget.org/packages/Aspire.Hosting.Azure.KeyVault
https://www.nuget.org/packages/Aspire.Hosting.Azure.KeyVault
https://www.nuget.org/packages/Aspire.Azure.Security.KeyVault
https://www.nuget.org/packages/Aspire.Azure.Security.KeyVault
https://learn.microsoft.com/en-us/azure/key-vault/general/overview
https://learn.microsoft.com/en-us/azure/key-vault/general/overview
https://github.com/dotnet/aspire/blob/main/src/Aspire.Hosting.Azure.OperationalInsights/README.md
https://github.com/dotnet/aspire/blob/main/src/Aspire.Hosting.Azure.OperationalInsights/README.md
https://www.nuget.org/packages/Aspire.Hosting.Azure.OperationalInsights
https://www.nuget.org/packages/Aspire.Hosting.Azure.OperationalInsights
https://learn.microsoft.com/en-us/azure/azure-monitor/logs/log-analytics-workspace-overview
https://learn.microsoft.com/en-us/azure/azure-monitor/logs/log-analytics-workspace-overview
https://www.nuget.org/packages/Aspire.Hosting.Azure.CognitiveServices
https://www.nuget.org/packages/Aspire.Hosting.Azure.CognitiveServices
https://www.nuget.org/packages/Aspire.Azure.AI.OpenAI
https://www.nuget.org/packages/Aspire.Azure.AI.OpenAI
https://learn.microsoft.com/en-us/azure/ai-services/openai/overview
https://learn.microsoft.com/en-us/azure/ai-services/openai/overview
https://github.com/dotnet/aspire/blob/main/src/Aspire.Hosting.Azure.PostgreSQL/README.md
https://github.com/dotnet/aspire/blob/main/src/Aspire.Hosting.Azure.PostgreSQL/README.md
https://www.nuget.org/packages/Aspire.Hosting.Azure.PostgreSQL
https://www.nuget.org/packages/Aspire.Hosting.Azure.PostgreSQL
https://learn.microsoft.com/en-us/azure/postgresql/
https://learn.microsoft.com/en-us/azure/postgresql/
https://www.nuget.org/packages/Aspire.Hosting.Azure.Search
https://www.nuget.org/packages/Aspire.Hosting.Azure.Search
https://www.nuget.org/packages/Aspire.Azure.Search.Documents
https://www.nuget.org/packages/Aspire.Azure.Search.Documents
https://learn.microsoft.com/en-us/azure/search/search-what-is-azure-search
https://learn.microsoft.com/en-us/azure/search/search-what-is-azure-search
https://www.nuget.org/packages/Aspire.Hosting.Azure.ServiceBus
https://www.nuget.org/packages/Aspire.Hosting.Azure.ServiceBus
https://www.nuget.org/packages/Aspire.Azure.Messaging.ServiceBus
https://www.nuget.org/packages/Aspire.Azure.Messaging.ServiceBus
https://learn.microsoft.com/en-us/azure/service-bus-messaging/service-bus-messaging-overview
https://learn.microsoft.com/en-us/azure/service-bus-messaging/service-bus-messaging-overview
https://www.nuget.org/packages/Aspire.Hosting.Azure.SignalR
https://www.nuget.org/packages/Aspire.Hosting.Azure.SignalR
https://www.nuget.org/packages/Microsoft.Azure.SignalR
https://www.nuget.org/packages/Microsoft.Azure.SignalR
https://learn.microsoft.com/en-us/azure/azure-signalr/signalr-overview
https://learn.microsoft.com/en-us/azure/azure-signalr/signalr-overview

Integration Docs and NuGet packages Description

- Learn more: 📄 Azure Blob Storage
- Hosting: 📦 Aspire.Hosting.Azure.Storage
- Client: 📦 Aspire.Azure.Storage.Blobs

A library for
accessing Azure Blob
Storage.

- Learn more: 📄 Azure Storage Queues
- Hosting: 📦 Aspire.Hosting.Azure.Storage
- Client: 📦 Aspire.Azure.Storage.Queues

A library for
accessing Azure
Storage Queues.

- Learn more: 📄 Azure Table Storage
- Hosting: 📦 Aspire.Hosting.Azure.Storage
- Client: 📦 Aspire.Azure.Data.Tables

A library for
accessing the Azure
Table service.

- Learn more: 📄 Azure Web PubSub
- Hosting: 📦 Aspire.Hosting.Azure.WebPubSub
- Client: 📦 Aspire.Azure.Messaging.WebPubSub

A library for
accessing the Azure
Web PubSub service.

Integration docs and NuGet packages Description

- Learn more: 📄 AWS Hosting
- Hosting: 📦 Aspire.Hosting.AWS
- Client: N/A

A library for modeling AWS resources .

For more information, see GitHub: Aspire.Hosting.AWS library .

Amazon Web Services (AWS) hosting integrations
ﾉ Expand table

Community Toolkit integrations

７ Note

The Community Toolkit integrations are community-driven and maintained by the
.NET Aspire community. These integrations are not officially supported by the .NET
Aspire team.

ﾉ Expand table

https://www.nuget.org/packages/Aspire.Hosting.Azure.Storage
https://www.nuget.org/packages/Aspire.Hosting.Azure.Storage
https://www.nuget.org/packages/Aspire.Azure.Storage.Blobs
https://www.nuget.org/packages/Aspire.Azure.Storage.Blobs
https://learn.microsoft.com/en-us/azure/storage/blobs/storage-blobs-introduction
https://learn.microsoft.com/en-us/azure/storage/blobs/storage-blobs-introduction
https://www.nuget.org/packages/Aspire.Hosting.Azure.Storage
https://www.nuget.org/packages/Aspire.Hosting.Azure.Storage
https://www.nuget.org/packages/Aspire.Azure.Storage.Queues
https://www.nuget.org/packages/Aspire.Azure.Storage.Queues
https://learn.microsoft.com/en-us/azure/storage/queues/storage-queues-introduction
https://learn.microsoft.com/en-us/azure/storage/queues/storage-queues-introduction
https://www.nuget.org/packages/Aspire.Hosting.Azure.Storage
https://www.nuget.org/packages/Aspire.Hosting.Azure.Storage
https://www.nuget.org/packages/Aspire.Azure.Data.Tables
https://www.nuget.org/packages/Aspire.Azure.Data.Tables
https://learn.microsoft.com/en-us/azure/storage/tables/table-storage-overview
https://learn.microsoft.com/en-us/azure/storage/tables/table-storage-overview
https://www.nuget.org/packages/Aspire.Hosting.Azure.WebPubSub
https://www.nuget.org/packages/Aspire.Hosting.Azure.WebPubSub
https://www.nuget.org/packages/Aspire.Azure.Messaging.WebPubSub
https://www.nuget.org/packages/Aspire.Azure.Messaging.WebPubSub
https://learn.microsoft.com/en-us/azure/azure-web-pubsub/
https://learn.microsoft.com/en-us/azure/azure-web-pubsub/
https://github.com/aws/integrations-on-dotnet-aspire-for-aws/blob/main/src/Aspire.Hosting.AWS/README.md
https://github.com/aws/integrations-on-dotnet-aspire-for-aws/blob/main/src/Aspire.Hosting.AWS/README.md
https://www.nuget.org/packages/Aspire.Hosting.AWS
https://www.nuget.org/packages/Aspire.Hosting.AWS
https://aws.amazon.com/cdk/
https://aws.amazon.com/cdk/
https://github.com/aws/integrations-on-dotnet-aspire-for-aws/tree/main/src/Aspire.Hosting.AWS
https://github.com/aws/integrations-on-dotnet-aspire-for-aws/tree/main/src/Aspire.Hosting.AWS

Integration docs and NuGet packages Description

- Learn More: 📄 Azure Static Web Apps emulator
- Hosting: 📦
CommunityToolkit.Aspire.Hosting.Azure.StaticWebApps
- Client: N/A

A hosting integration for the Azure
Static Web Apps emulator (Note:
this does not support deployment
of a project to Azure Static Web
Apps).

- Learn More: 📄 Bun hosting
- Hosting: 📦 CommunityToolkit.Aspire.Hosting.Bun
- Client: N/A

A hosting integration for Bun apps.

- Learn More: 📄 Deno hosting
- Hosting: 📦 CommunityToolkit.Aspire.Hosting.Deno
- Client: N/A

A hosting integration for Deno
apps.

- Learn More: 📄 Go hosting
- Hosting: 📦 CommunityToolkit.Aspire.Hosting.Golang
- Client: N/A

A hosting integration for Go apps.

- Learn More: 📄 Java/Spring hosting
- Hosting: 📦 CommunityToolkit.Aspire.Hosting.Java
- Client: N/A

A integration for running Java code
in .NET Aspire either using the local
JDK or using a container.

- Learn More: 📄 Node.js hosting extensions
- Hosting: 📦
CommunityToolkit.Aspire.Hosting.NodeJs.Extensions
- Client: N/A

An integration that contains some
additional extensions for running
Node.js applications

- Learn More: 📄 Ollama
- Hosting: 📦 CommunityToolkit.Aspire.Hosting.Ollama
- Client: 📦 Aspire.CommunitToolkit.OllamaSharp

An Aspire component leveraging
the Ollama container with
support for downloading a model
on startup.

- Learn More: 📄 Meilisearch hosting
- Hosting: 📦
CommunityToolkit.Aspire.Hosting.Meilisearch
- Client: 📦 Aspire.CommunitToolkit.Meilisearch

An Aspire component leveraging
the Meilisearch container.

- Learn More: 📄 Rust hosting
- Hosting: 📦 CommunityToolkit.Aspire.Hosting.Rust
- Client: N/A

A hosting integration for Rust apps.

- Learn More: 📄 SQL Database projects hosting
- Hosting: 📦
CommunityToolkit.Aspire.Hosting.SqlDatabaseProjects
- Client: N/A

An Aspire hosting integration for
SQL Database Projects.

For more information, see .NET Aspire Community Toolkit.

https://nuget.org/packages/CommunityToolkit.Aspire.Hosting.Azure.StaticWebApps
https://nuget.org/packages/CommunityToolkit.Aspire.Hosting.Azure.StaticWebApps
https://nuget.org/packages/CommunityToolkit.Aspire.Hosting.Azure.StaticWebApps
https://learn.microsoft.com/en-us/azure/static-web-apps/static-web-apps-cli-overview
https://learn.microsoft.com/en-us/azure/static-web-apps/static-web-apps-cli-overview
https://nuget.org/packages/CommunityToolkit.Aspire.Hosting.Bun
https://nuget.org/packages/CommunityToolkit.Aspire.Hosting.Bun
https://nuget.org/packages/CommunityToolkit.Aspire.Hosting.Deno
https://nuget.org/packages/CommunityToolkit.Aspire.Hosting.Deno
https://nuget.org/packages/CommunityToolkit.Aspire.Hosting.Golang
https://nuget.org/packages/CommunityToolkit.Aspire.Hosting.Golang
https://nuget.org/packages/CommunityToolkit.Aspire.Hosting.Java
https://nuget.org/packages/CommunityToolkit.Aspire.Hosting.Java
https://nuget.org/packages/CommunityToolkit.Aspire.Hosting.NodeJS.Extensions
https://nuget.org/packages/CommunityToolkit.Aspire.Hosting.NodeJS.Extensions
https://nuget.org/packages/CommunityToolkit.Aspire.Hosting.NodeJS.Extensions
https://nuget.org/packages/CommunityToolkit.Aspire.Hosting.Ollama
https://nuget.org/packages/CommunityToolkit.Aspire.Hosting.Ollama
https://nuget.org/packages/CommunityToolkit.Aspire.OllamaSharp
https://nuget.org/packages/CommunityToolkit.Aspire.OllamaSharp
https://ollama.com/
https://ollama.com/
https://nuget.org/packages/CommunityToolkit.Aspire.Hosting.Meilisearch
https://nuget.org/packages/CommunityToolkit.Aspire.Hosting.Meilisearch
https://nuget.org/packages/CommunityToolkit.Aspire.Hosting.Meilisearch
https://nuget.org/packages/CommunityToolkit.Aspire.Meilisearch
https://nuget.org/packages/CommunityToolkit.Aspire.Meilisearch
https://meilisearch.com/
https://meilisearch.com/
https://nuget.org/packages/CommunityToolkit.Aspire.Hosting.Rust
https://nuget.org/packages/CommunityToolkit.Aspire.Hosting.Rust
https://nuget.org/packages/CommunityToolkit.Aspire.Hosting.SqlDatabaseProjects
https://nuget.org/packages/CommunityToolkit.Aspire.Hosting.SqlDatabaseProjects
https://nuget.org/packages/CommunityToolkit.Aspire.Hosting.SqlDatabaseProjects

Tutorial: Implement caching with .NET
Aspire integrations
Article • 02/05/2025

Cloud-native apps often require various types of scalable caching solutions to improve
performance. .NET Aspire integrations simplify the process of connecting to popular
caching services such as Redis. In this article, you'll learn how to:

This article explores how to use two different types of ASP.NET Core caching using .NET
Aspire and Redis:

Output caching: A configurable, extensible caching method for storing entire HTTP
responses for future requests.
Distributed caching: A cache shared by multiple app servers that allows you to
cache specific pieces of data. A distributed cache is typically maintained as an
external service to the app servers that access it and can improve the performance
and scalability of an ASP.NET Core app.

To work with .NET Aspire, you need the following installed locally:

.NET 8.0 or .NET 9.0
An OCI compliant container runtime, such as:

Docker Desktop or Podman . For more information, see Container runtime.
An Integrated Developer Environment (IDE) or code editor, such as:

Visual Studio 2022 version 17.9 or higher (Optional)
Visual Studio Code (Optional)

C# Dev Kit: Extension (Optional)
JetBrains Rider with .NET Aspire plugin (Optional)

For more information, see .NET Aspire setup and tooling, and .NET Aspire SDK.

1. At the top of Visual Studio, navigate to File > New > Project....

Create a basic ASP.NET core app that is set up to use .NET Aspire.＂

Add .NET Aspire integrations to connect to Redis and implement caching.＂

Configure the .NET Aspire integrations to meet specific requirements.＂

Prerequisites

Create the project

https://learn.microsoft.com/en-us/aspnet/core/performance/caching/output
https://learn.microsoft.com/en-us/aspnet/core/performance/caching/distributed
https://dotnet.microsoft.com/download/dotnet/8.0
https://dotnet.microsoft.com/download/dotnet/8.0
https://dotnet.microsoft.com/download/dotnet/9.0
https://dotnet.microsoft.com/download/dotnet/9.0
https://www.docker.com/products/docker-desktop
https://www.docker.com/products/docker-desktop
https://podman.io/
https://podman.io/
https://visualstudio.microsoft.com/vs/
https://visualstudio.microsoft.com/vs/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://marketplace.visualstudio.com/items?itemName=ms-dotnettools.csdevkit
https://marketplace.visualstudio.com/items?itemName=ms-dotnettools.csdevkit
https://blog.jetbrains.com/dotnet/2024/02/19/jetbrains-rider-and-the-net-aspire-plugin/
https://blog.jetbrains.com/dotnet/2024/02/19/jetbrains-rider-and-the-net-aspire-plugin/

2. In the dialog window, enter .NET Aspire into the project template search box and
select .NET Aspire Starter Application. Choose Next.

3. On the Configure your new project screen:

Enter a Project name of AspireRedis.
Leave the rest of the values at their defaults and select Next.

4. On the Additional information screen:

Make sure .NET 9.0 is selected.
Uncheck Use Redis for caching. You will implement your own caching setup.
Select Create.

Visual Studio creates a new .NET Aspire solution that consists of the following projects:

AspireRedis.Web - A Blazor UI project with default .NET Aspire configurations.

https://learn.microsoft.com/en-us/dotnet/core/resilience/http-resilience
https://learn.microsoft.com/en-us/dotnet/aspire/telemetry
https://www.nuget.org/packages/Aspire.Hosting.Redis
https://www.nuget.org/packages/Aspire.Hosting.Redis
https://learn.microsoft.com/en-us/dotnet/core/tools/dotnet-add-package
https://learn.microsoft.com/en-us/dotnet/core/tools/dependencies
https://learn.microsoft.com/en-us/dotnet/core/tools/dependencies

The preceding code creates a local Redis container instance and configures the UI and
API to use the instance automatically for both output and distributed caching. The code
also configures communication between the frontend UI and the backend API using
service discovery. With .NET Aspire's implicit service discovery, setting up and managing
service connections is streamlined for developer productivity. In the context of this
tutorial, the feature simplifies how you connect to Redis.

Traditionally, you'd manually specify the Redis connection string in each project's
appsettings.json file:

JSON

Configuring connection string with this method, while functional, requires duplicating
the connection string across multiple projects, which can be cumbersome and error-
prone.

1. Add the .NET Aspire Stack Exchange Redis output caching integration packages to
your AspireRedis.Web app:

.NET CLI

var builder = DistributedApplication.CreateBuilder(args);

var redis = builder.AddRedis("cache");

var apiservice = builder.AddProject<Projects.AspireRedis_ApiService>
("apiservice")
 .WithReference(redis);

builder.AddProject<Projects.AspireRedis_Web>("webfrontend")
 .WithExternalHttpEndpoints()
 .WithReference(apiservice)
 .WithReference(redis);

builder.Build().Run();

{
 "ConnectionStrings": {
 "cache": "localhost:6379"
 }
}

Configure the UI with output caching

dotnet add package Aspire.StackExchange.Redis.OutputCaching

2. In the Program.cs file of the AspireRedis.Web Blazor project, immediately after the
line var builder = WebApplication.CreateBuilder(args); , add a call to the
AddRedisOutputCache extension method:

C#

This method accomplishes the following tasks:

Configures ASP.NET Core output caching to use a Redis instance with the
specified connection name.
Automatically enables corresponding health checks, logging, and telemetry.

3. Replace the contents of the Home.razor file of the AspireRedis.Web Blazor project
with the following:

razor

The integration include the [OutputCache] attribute, which caches the entire
rendered response. The page also include a call to @DateTime.Now to help verify
that the response is cached.

1. Add the .NET Aspire Stack Exchange Redis distributed caching integration
packages to your AspireRedis.ApiService app:

.NET CLI

2. Towards the top of the Program.cs file, add a call to AddRedisDistributedCache:

C#

builder.AddRedisOutputCache("cache");

@page "/"
@attribute [OutputCache(Duration = 10)]

<PageTitle>Home</PageTitle>

<h1>Hello, world!</h1>

Welcome to your new app on @DateTime.Now

Configure the API with distributed caching

dotnet add package Aspire.StackExchange.Redis.DistributedCaching

https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.aspireredisoutputcacheextensions.addredisoutputcache
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.aspireredisdistributedcacheextensions.addredisdistributedcache

3. In the Program.cs file, add the following using statements:

C#

4. In the Program.cs file, replace the existing /weatherforecast endpoint code with
the following:

C#

builder.AddRedisDistributedCache("cache");

using System.Text;
using System.Text.Json;
using Microsoft.Extensions.Caching.Distributed;

app.MapGet("/weatherforecast", async (IDistributedCache cache) =>
{
 var cachedForecast = await cache.GetAsync("forecast");

 if (cachedForecast is null)
 {
 var summaries = new[] { "Freezing", "Bracing", "Chilly",
"Cool", "Mild", "Warm", "Balmy", "Hot", "Sweltering", "Scorching" };
 var forecast = Enumerable.Range(1, 5).Select(index =>
 new WeatherForecast
 (
 DateOnly.FromDateTime(DateTime.Now.AddDays(index)),
 Random.Shared.Next(-20, 55),
 summaries[Random.Shared.Next(summaries.Length)]
))
 .ToArray();

 await cache.SetAsync("forecast",
Encoding.UTF8.GetBytes(JsonSerializer.Serialize(forecast)), new ()
 {
 AbsoluteExpiration = DateTime.Now.AddSeconds(10)
 });

 return forecast;
 }

 return JsonSerializer.Deserialize<IEnumerable<WeatherForecast>>
(cachedForecast);
})
.WithName("GetWeatherForecast");

Test the app locally

Test the caching behavior of your app using the following steps:

1. Run the app using Visual Studio by pressing F5 .
2. If the Start Docker Desktop dialog appears, select Yes to start the service.
3. The .NET Aspire Dashboard loads in the browser and lists the UI and API projects.

Test the output cache:

1. On the projects page, in the webfrontend row, click the localhost link in the
Endpoints column to open the UI of your app.

2. The application will display the current time on the home page.
3. Refresh the browser every few seconds to see the same page returned by output

caching. After 10 seconds the cache expires and the page reloads with an updated
time.

Test the distributed cache:

1. Navigate to the Weather page on the Blazor UI to load a table of randomized
weather data.

2. Refresh the browser every few seconds to see the same weather data returned by
output caching. After 10 seconds the cache expires and the page reloads with
updated weather data.

Congratulations! You configured a ASP.NET Core app to use output and distributed
caching with .NET Aspire.

Tutorial: Connect an ASP.NET Core app
to SQL Server using .NET Aspire and
Entity Framework Core
Article • 03/04/2025

In this tutorial, you create an ASP.NET Core app that uses a .NET Aspire Entity
Framework Core SQL Server integration to connect to SQL Server to read and write
support ticket data. Entity Framework Core is a lightweight, extensible, open source
object-relational mapper that enables .NET developers to work with databases using
.NET objects. You'll learn how to:

To work with .NET Aspire, you need the following installed locally:

.NET 8.0 or .NET 9.0
An OCI compliant container runtime, such as:

Docker Desktop or Podman . For more information, see Container runtime.
An Integrated Developer Environment (IDE) or code editor, such as:

Visual Studio 2022 version 17.9 or higher (Optional)
Visual Studio Code (Optional)

C# Dev Kit: Extension (Optional)
JetBrains Rider with .NET Aspire plugin (Optional)

For more information, see .NET Aspire setup and tooling, and .NET Aspire SDK.

1. At the top of Visual Studio, navigate to File > New > Project.
2. In the dialog window, search for Blazor and select Blazor Web App. Choose Next.
3. On the Configure your new project screen:

Enter a Project Name of AspireSQLEFCore.
Leave the rest of the values at their defaults and select Next.

Create a basic .NET app that is set up to use .NET Aspire integrations＂

Add a .NET Aspire integration to connect to SQL Server＂

Configure and use .NET Aspire Component features to read and write from the
database

＂

Prerequisites

Create the sample solution

https://learn.microsoft.com/en-us/ef/core/
https://dotnet.microsoft.com/download/dotnet/8.0
https://dotnet.microsoft.com/download/dotnet/8.0
https://dotnet.microsoft.com/download/dotnet/9.0
https://dotnet.microsoft.com/download/dotnet/9.0
https://www.docker.com/products/docker-desktop
https://www.docker.com/products/docker-desktop
https://podman.io/
https://podman.io/
https://visualstudio.microsoft.com/vs/
https://visualstudio.microsoft.com/vs/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://marketplace.visualstudio.com/items?itemName=ms-dotnettools.csdevkit
https://marketplace.visualstudio.com/items?itemName=ms-dotnettools.csdevkit
https://blog.jetbrains.com/dotnet/2024/02/19/jetbrains-rider-and-the-net-aspire-plugin/
https://blog.jetbrains.com/dotnet/2024/02/19/jetbrains-rider-and-the-net-aspire-plugin/

4. On the Additional information screen:

Make sure .NET 9.0 is selected.
Ensure the Interactive render mode is set to None.
Check the Enlist in .NET Aspire orchestration option and select Create.

Visual Studio creates a new ASP.NET Core solution that is structured to use .NET Aspire.
The solution consists of the following projects:

AspireSQLEFCore: A Blazor project that depends on service defaults.
AspireSQLEFCore.AppHost: An orchestrator project designed to connect and
configure the different projects and services of your app. The orchestrator should
be set as the startup project.
AspireSQLEFCore.ServiceDefaults: A shared class library to hold configurations
that can be reused across the projects in your solution.

To represent a user submitted support request, add the following SupportTicket model
class at the root of the AspireSQLEFCore project.

C#

Add the following TicketDbContext data context class at the root of the
AspireSQLEFCore project. The class inherits System.Data.Entity.DbContext to work with
Entity Framework and represent your database.

C#

Create the database model and context classes

using System.ComponentModel.DataAnnotations;

namespace AspireSQLEFCore;

public sealed class SupportTicket
{
 public int Id { get; set; }
 [Required]
 public string Title { get; set; } = string.Empty;
 [Required]
 public string Description { get; set; } = string.Empty;
}

using Microsoft.EntityFrameworkCore;
using System.Reflection.Metadata;

namespace AspireSQLEFCore;

https://learn.microsoft.com/en-us/dotnet/api/system.data.entity.dbcontext

Add the .NET Aspire Entity Framework Core Sql Server library package to your
AspireSQLEFCore project:

.NET CLI

Your AspireSQLEFCore project is now set up to use .NET Aspire integrations. Here's the
updated AspireSQLEFCore.csproj file:

XML

public class TicketContext(DbContextOptions options) : DbContext(options)
{
 public DbSet<SupportTicket> Tickets => Set<SupportTicket>();
}

Add the .NET Aspire integration to the Blazor
app

dotnet add package Aspire.Microsoft.EntityFrameworkCore.SqlServer

<Project Sdk="Microsoft.NET.Sdk.Web">

 <PropertyGroup>
 <TargetFramework>net9.0</TargetFramework>
 <Nullable>enable</Nullable>
 <ImplicitUsings>enable</ImplicitUsings>
 </PropertyGroup>

 <ItemGroup>
 <PackageReference
Include="Aspire.Microsoft.EntityFrameworkCore.SqlServer" Version="9.1.0" />
 </ItemGroup>

 <ItemGroup>
 <ProjectReference
Include="..\AspireSQLEFCore.ServiceDefaults\AspireSQLEFCore.ServiceDefaults.
csproj" />
 </ItemGroup>

</Project>

Configure the .NET Aspire integration

In the Program.cs file of the AspireSQLEFCore project, add a call to the
AddSqlServerDbContext extension method after the creation of the builder but before
the call to AddServiceDefaults . For more information, see .NET Aspire service defaults.
Provide the name of your connection string as a parameter.

C#

This method accomplishes the following tasks:

Registers a TicketContext with the DI container for connecting to the
containerized Azure SQL Database.
Automatically enable corresponding health checks, logging, and telemetry.

While developing locally, you need to create a database inside the SQL Server container.
Update the Program.cs file with the following code:

C#

using AspireSQLEFCore;
using AspireSQLEFCore.Components;

var builder = WebApplication.CreateBuilder(args);
builder.AddSqlServerDbContext<TicketContext>("sqldata");

builder.AddServiceDefaults();

// Add services to the container.
builder.Services.AddRazorComponents().AddInteractiveServerComponents();

var app = builder.Build();

app.MapDefaultEndpoints();

Create the database

using AspireSQLEFCore;
using AspireSQLEFCore.Components;

var builder = WebApplication.CreateBuilder(args);
builder.AddSqlServerDbContext<TicketContext>("sqldata");

builder.AddServiceDefaults();

// Add services to the container.
builder.Services.AddRazorComponents().AddInteractiveServerComponents();

var app = builder.Build();

https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.aspiresqlserverefcoresqlclientextensions.addsqlserverdbcontext

The preceding code:

Checks if the app is running in a development environment.
If it is, it retrieves the TicketContext service from the DI container and calls
Database.EnsureCreated() to create the database if it doesn't already exist.

The app requires a form for the user to be able to submit support ticket information and
save the entry to the database.

Use the following Razor markup to create a basic form, replacing the contents of the
Home.razor file in the AspireSQLEFCore/Components/Pages directory:

razor

app.MapDefaultEndpoints();

if (app.Environment.IsDevelopment())
{
 using (var scope = app.Services.CreateScope())
 {
 var context =
scope.ServiceProvider.GetRequiredService<TicketContext>();
 context.Database.EnsureCreated();
 }
}
else
{
 app.UseExceptionHandler("/Error", createScopeForErrors: true);
 // The default HSTS value is 30 days.
 // You may want to change this for production scenarios, see
https://aka.ms/aspnetcore-hsts.
 app.UseHsts();
}

７ Note

Note that EnsureCreated() is not suitable for production environments, and it only
creates the database as defined in the context. It doesn't apply any migrations. For
more information on Entity Framework Core migrations in .NET Aspire, see Apply
Entity Framework Core migrations in .NET Aspire.

Create the form

@page "/"
@inject TicketContext context
@using Microsoft.EntityFrameworkCore

<div class="row">
 <div class="col-md-6">
 <div>
 <h1 class="display-4">Request Support</h1>
 </div>
 <EditForm Model="@Ticket" FormName="Tickets" method="post"
 OnValidSubmit="@HandleValidSubmit" class="mb-4">
 <DataAnnotationsValidator />
 <div class="mb-4">
 <label>Issue Title</label>
 <InputText class="form-control" @bind-Value="@Ticket.Title"
/>
 <ValidationMessage For="() => Ticket.Title" />
 </div>
 <div class="mb-4">
 <label>Issue Description</label>
 <InputText class="form-control" @bind-
Value="@Ticket.Description" />
 <ValidationMessage For="() => Ticket.Description" />
 </div>
 <button class="btn btn-primary" type="submit">Submit</button>
 <button class="btn btn-danger mx-2" type="reset"
@onclick=@ClearForm>Clear</button>
 </EditForm>

 <table class="table table-striped">
 @foreach (var ticket in Tickets)
 {
 <tr>
 <td>@ticket.Id</td>
 <td>@ticket.Title</td>
 <td>@ticket.Description</td>
 </tr>
 }
 </table>
 </div>
</div>

@code {
 [SupplyParameterFromForm(FormName = "Tickets")]
 private SupportTicket Ticket { get; set; } = new();

 private List<SupportTicket> Tickets = [];

 private void ClearForm() => Ticket = new();

 protected override async Task OnInitializedAsync()
 {
 Tickets = await context.Tickets.ToListAsync();
 }

 private async Task HandleValidSubmit()
 {
 context.Tickets.Add(Ticket);

For more information about creating forms in Blazor, see ASP.NET Core Blazor forms
overview.

The AspireSQLEFCore.AppHost project is the orchestrator for your app. It's responsible
for connecting and configuring the different projects and services of your app. The
orchestrator should be set as the startup project.

Add the .NET Aspire Hosting Sql Server NuGet package to your AspireStorage.AppHost
project:

.NET CLI

Replace the contents of the Program.cs file in the AspireSQLEFCore.AppHost project with
the following code:

C#

The preceding code adds a SQL Server Container resource to your app and configures a
connection to a database called sqldata . The Entity Framework classes you configured
earlier will automatically use this connection when migrating and connecting to the
database.

 await context.SaveChangesAsync();

 Tickets = await context.Tickets.ToListAsync();

 ClearForm();
 }
}

Configure the AppHost

dotnet add package Aspire.Hosting.SqlServer

var builder = DistributedApplication.CreateBuilder(args);

var

https://learn.microsoft.com/en-us/aspnet/core/blazor/forms
https://learn.microsoft.com/en-us/aspnet/core/blazor/forms

The sample app is now ready for testing. Verify that the submitted form data is persisted
to the database by completing the following steps:

1. Select the run button at the top of Visual Studio (or F5) to launch your .NET Aspire
project dashboard in the browser.

2. On the projects page, in the AspireSQLEFCore row, click the link in the Endpoints
column to open the UI of your app.

3. Enter sample data into the Title and Description form fields.

4. Select the Submit button, and the form submits the support ticket for processing
— (then select Clear to clear the form).

5. The data you submitted displays in the table at the bottom of the page when the
page reloads.

6. Close the web browser tabs that display the AspireSQL web app and the .NET
Aspire dashboard.

7. Switch to Visual Studio and, to stop debugging, select the stop button or press
Shift + F5 .

8. To start debugging a second time, select the run button at the top of Visual Studio
(or F5).

9. In the .NET Aspire dashboard, on the projects page, in the AspireSQLEFCore row,
click the link in the Endpoints column to open the UI of your app.

Run and test the app locally



https://learn.microsoft.com/en-us/dotnet/aspire/docs/database/media/app-home-screen.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/database/media/app-home-screen.png#lightbox

10. Notice that the page doesn't display the ticket you created in the previous run.

11. Close the web browser tabs that display the AspireSQL web app and the .NET
Aspire dashboard.

12. Switch to Visual Studio and, to stop debugging, select the stop button or press
Shift + F5 .

Developers often prefer their data to persist across restarts in the development
environment for a more realistic database to run code against. To implement persistence
in .NET Aspire, use the WithDataVolume method. This methods adds a Docker volume
to your database container, which won't be destroyed every time you restart debugging.

1. In Visual Studio, in the AspireSQLEFCore.AppHost project, double-click the
Program.cs code file.

2. Locate the following code:

C#

3. Modify that code to match the following:

C#

Let's examine how the data volume changes the behavior of the solution:

1. Select the run button at the top of Visual Studio (or F5) to launch your .NET Aspire
project dashboard in the browser.

2. On the projects page, in the AspireSQLEFCore row, click the link in the Endpoints
column to open the UI of your app.

3. Enter sample data into the Title and Description form fields.

Persist data across restarts

var sql = builder.AddSqlServer("sql")
 .AddDatabase("sqldata");

var sql = builder.AddSqlServer("sql")
 .WithDataVolume()
 .AddDatabase("sqldata");

Run and test the data persistence

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.sqlserverbuilderextensions.withdatavolume

4. Select the Submit button, and the form submits the support ticket for processing
— (then select Clear to clear the form).

5. The data you submitted displays in the table at the bottom of the page when the
page reloads.

6. Close the web browser tabs that display the AspireSQL web app and the .NET
Aspire dashboard.

7. Switch to Visual Studio and, to stop debugging, select the stop button or press
Shift + F5 .

8. To start debugging a second time, select the run button at the top of Visual Studio
(or F5).

9. In the .NET Aspire dashboard, on the projects page, in the AspireSQLEFCore row,
click the link in the Endpoints column to open the UI of your app.

10. Notice that the page now displays the ticket you created in the previous run.

.NET Aspire with SQL Database deployment

.NET Aspire deployment via Azure Container Apps
Deploy a .NET Aspire project using GitHub Actions

See also

Tutorial: Connect a .NET Aspire
microservice to an existing database
Article • 03/28/2025

.NET Aspire is designed to make it easy and quick to develop cloud-native solutions. It
uses containers to host the services, such as databases, that underpin each microservice.
However, if you want your microservice to query a database that already exists, you
must connect your microservice to it instead of creating a database container whenever
you run the solution.

In this tutorial, you create a .NET Aspire solution with an API that connects to an existing
database. You'll learn how to:

To work with .NET Aspire, you need the following installed locally:

.NET 8.0 or .NET 9.0
An OCI compliant container runtime, such as:

Docker Desktop or Podman . For more information, see Container runtime.
An Integrated Developer Environment (IDE) or code editor, such as:

Visual Studio 2022 version 17.9 or higher (Optional)
Visual Studio Code (Optional)

C# Dev Kit: Extension (Optional)
JetBrains Rider with .NET Aspire plugin (Optional)

For more information, see .NET Aspire setup and tooling, and .NET Aspire SDK.

Create an API microservice that interacts with a database.＂

Configure the .NET Aspire App Host project with a connection string for the existing
database.

＂

Pass the connection string to the API and use it to connect to the database.＂

Prerequisites

） Important

This tutorial also assumes you have a Microsoft SQL Server instance running on
your local machine. You can connect to a database elsewhere by providing an
appropriate connection string instead of the one suggested in this article. To create
a new local instance, download and install SQL Server Developer Edition .

https://dotnet.microsoft.com/download/dotnet/8.0
https://dotnet.microsoft.com/download/dotnet/8.0
https://dotnet.microsoft.com/download/dotnet/9.0
https://dotnet.microsoft.com/download/dotnet/9.0
https://www.docker.com/products/docker-desktop
https://www.docker.com/products/docker-desktop
https://podman.io/
https://podman.io/
https://visualstudio.microsoft.com/vs/
https://visualstudio.microsoft.com/vs/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://marketplace.visualstudio.com/items?itemName=ms-dotnettools.csdevkit
https://marketplace.visualstudio.com/items?itemName=ms-dotnettools.csdevkit
https://blog.jetbrains.com/dotnet/2024/02/19/jetbrains-rider-and-the-net-aspire-plugin/
https://blog.jetbrains.com/dotnet/2024/02/19/jetbrains-rider-and-the-net-aspire-plugin/
https://www.microsoft.com/sql-server/sql-server-downloads
https://www.microsoft.com/sql-server/sql-server-downloads

Let's start by creating a new solution with the .NET Aspire Starter template.

1. In Visual Studio, select File > New > Project.

2. In the Create a new project dialog window, search for .NET Aspire, select .NET
Aspire Starter App, and then select Next.

3. In the Configure your new project page:

Enter a Solution name of AspireExistingDB.
Leave the other values at their defaults and then select Next.

4. In the Additional information page:

Make sure that .NET 9.0 is selected.
Leave the other values at their defaults and then select Create.

Visual Studio creates a new .NET Aspire solution with an API and a web front end. The
solution consists of the following projects:

AspireExistingDB.ApiService: A web API project that returns weather forecasts.
AspireExistingDB.AppHost: An orchestrator project designed to connect and
configure the different projects and services of your app. The orchestrator should
be set as the startup project.
AspireExistingDB.ServiceDefaults: A shared class library to hold configurations
that can be reused across the projects in your solution.
AspireExistingDB.Web: A Blazor app that implements a web user interface for the
solution.

First, install EF Core in the AspireExistingDB.ApiService project.

 Tip

In this tutorial, you use .NET Aspire EF Core integrations to access the database.
Other database integrations, which don't use EF Core, can use the same approach
to connect to an existing database.

Create a new .NET Aspire solution

Create the database model and context classes

1. In Solution Explorer, right-click the AspireExistingDB.ApiService project, and then
select Manage NuGet Packages.

1. Select the Browse tab, and then search for Aspire.Microsoft.EntityFrameworkCore.
2. Select the Aspire.Microsoft.EntityFrameworkCore.SqlServer package, and then

select Install.

1. If the Preview Changes dialog appears, select Apply.
2. In the License Acceptance dialog, select I Accept.

To represent a weather report, add the following WeatherReport model class at the root
of the AspireExistingDB.ApiService project:

C#

Add the following WeatherDbContext data context class at the root of the
AspireExistingDB.ApiService project. The class inherits System.Data.Entity.DbContext to
work with EF Core and represent your database.

C#

using System.ComponentModel.DataAnnotations;

namespace AspireExistingDB.ApiService;

public sealed class WeatherReport
{
 public int Id { get; set; }
 [Required]
 public DateTime Date { get; set; } = DateTime.Now;
 [Required]
 public int TemperatureC { get; set; } = 10;
 public string? Summary { get; set; }
}

using Microsoft.EntityFrameworkCore;

namespace AspireExistingDB.ApiService;

public class WeatherDbContext(DbContextOptions options) : DbContext(options)
{
 public DbSet<WeatherReport> Forecasts => Set<WeatherReport>();
}

Add the Scalar user interface to the API project

https://learn.microsoft.com/en-us/dotnet/api/system.data.entity.dbcontext

You'll use the Scalar UI to test the AspireExistingDB.ApiService project. Let's install and
configure it:

1. In Visual Studio, in the Solution Explorer, right-click the
AspireExistingDB.ApiService project, and then select Manage NuGet Packages.

2. Select the Browse tab, and then search for Scalar.

3. Select the Scalar.AspNetCore package, and then select Install.

4. If the Preview Changes dialog appears, select Apply.

5. In the License Acceptance dialog, select I Accept.

6. In the AspireExistingDB.ApiService project, open the Program.cs file.

7. Locate the following lines of code:

C#

8. Modify that code to match the following lines:

C#

Usually, when you create a cloud-native solution with .NET Aspire, you call the
AddSqlServer method to initiate a container that runs the SQL Server instance. You pass
that resource to other projects in your solution that need access to the database.

In this case, however, you want to work with an existing database outside of any
container. There are three differences in the App Host project:

if (app.Environment.IsDevelopment())
{
 app.MapOpenApi();
}

if (app.Environment.IsDevelopment())
{
 app.MapOpenApi();
 app.MapScalarApiReference(_ => _.Servers = []);
}

Configure a connection string in the App Host
project

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.sqlserverbuilderextensions.addsqlserver

You don't need to install the Aspire.Hosting.SqlServer hosting integration.
You add a connection string in a configuration file, such as appsetting.json.
You call AddConnectionString to create a resource that you pass to other projects.
Those projects use this resource to connect to the existing database.

Let's implement that configuration:

1. In Visual Studio, in the AspireExistingDB.AppHost project, open the appsetting.json
file.

2. Replace the entire contents of the file with the following code:

JSON

3. In the AspireExistingDB.AppHost project, open the Program.cs file.

4. Locate the following line of code:

C#

5. Immediately after that line, add this line of code, which obtains the connection
string from the configuration file:

C#

1. Locate the following line of code, which creates a resource for the
AspireExistingDB.ApiService project:

{
 "ConnectionStrings": {
 "sql":
"Server=localhost;Trusted_Connection=True;TrustServerCertificate=True;I
nitial Catalog=WeatherForecasts;"
 },
 "Logging": {
 "LogLevel": {
 "Default": "Information",
 "Microsoft.AspNetCore": "Warning",
 "Aspire.Hosting.Dcp": "Warning"
 }
 }
}

var builder = DistributedApplication.CreateBuilder(args);

var connectionString = builder.AddConnectionString("sql");

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.parameterresourcebuilderextensions.addconnectionstring

C#

2. Modify that line to match the following, which creates the resource and passes the
connection string to it:

C#

3. To save your changes, select File > Save All.

Returning to the AspireExistingDB.ApiService project, you must obtain the connection
string resource from the App Host, and then use it to create the database:

1. In Visual Studio, in the AspireExistingDB.ApiService project, open the Program.cs
file.

2. Locate the following line of code:

C#

1. Immediately after that line, add this line of code:

C#

1. Locate the following line of code:

C#

var apiService =
builder.AddProject<Projects.AspireExistingDB_ApiService>("apiservice");

var apiService =
builder.AddProject<Projects.AspireExistingDB_ApiService>("apiservice")
 .WithReference(connectionString);

Use the database in the API project

var builder = WebApplication.CreateBuilder(args);

builder.AddSqlServerDbContext<WeatherDbContext>("sql");

app.MapDefaultEndpoints();

C#

3. Locate the following code:

C#

4. Replace that code with the following lines:

C#

5. Locate and remove the following code:

C#

using Microsoft.AspNetCore.Mvc;
using Microsoft.EntityFrameworkCore;

string[] summaries = ["Freezing", "Bracing", "Chilly", "Cool", "Mild",
"Warm", "Balmy", "Hot", "Sweltering", "Scorching"];

app.MapGet("/weatherforecast", () =>
{
 var forecast = Enumerable.Range(1, 5).Select(index =>
 new WeatherForecast
 (
 DateOnly.FromDateTime(DateTime.Now.AddDays(index)),
 Random.Shared.Next(-20, 55),
 summaries[Random.Shared.Next(summaries.Length)]
))
 .ToArray();
 return forecast;
})
.WithName("GetWeatherForecast");

app.MapGet("/weatherforecast", async ([FromServices] WeatherDbContext
context) =>
{
 var forecast = await context.Forecasts.ToArrayAsync();
 return forecast;
})
.WithName("GetWeatherForecast");

record WeatherForecast(DateOnly Date, int TemperatureC, string?
Summary)
{
 public int TemperatureF => 32 + (int)(TemperatureC / 0.5556);
}

Finally, let's add a POST method to the API, which will add records to the database:

1. In Visual Studio, in the Program.cs file for the AspireExistingDB.ApiService project,
locate the following code:

C#

2. Immediately before that line, add the following code, which creates and saves a
new forecast:

C#

The sample app is ready to test. Before you start debugging, make sure that:

Docker Desktop or Podman is running to host containers for the solution.
SQL Server is running to host the database.

Let's connect to the SQL Server instance and check the databases that exist.

1. Start Microsoft SQL Server Management Studio.

2. Connect to the SQL Server instance on the local machine. Ensure that Trust server
certificate is selected.

Add code to insert a new forecast into the
database

app.MapDefaultEndpoints();

app.MapPost("/weatherforecast", async ([FromBody] WeatherReport
forecast, [FromServices] WeatherDbContext context, HttpResponse
response) =>
{
 context.Forecasts.Add(forecast);
 await context.SaveChangesAsync();
 response.StatusCode = 200;
 response.Headers.Location = $"weatherforecast/{forecast.Id}";
})
.Accepts<WeatherReport>("application/json")
.Produces<WeatherReport>(StatusCodes.Status201Created)
.WithName("PostWeatherForecast").WithTags("Setters");

Run and test the app locally

3. In the Object Explorer expand Databases. There is no database named
WeatherForecasts.

Now, let's test the solution:

1. In Visual Studio, select the run button (or press F5) to launch your .NET Aspire
project dashboard in the browser.

2. In the navigation on the left, select Console.

3. In the Resource drop down list, select apiservice. Notice the CREATE TABLE SQL
command, which has created the Forecasts table in the WeatherForecasts
database.



https://learn.microsoft.com/en-us/dotnet/aspire/docs/database/media/connect-to-existing-database/connect-ssms.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/database/media/connect-to-existing-database/connect-ssms.png#lightbox

4. Switch to SQL Server Management Studio. In the Object Explorer, right-click
Databases and then select Refresh.

5. Expand the new WeatherForecasts database and then expand Tables. Notice the
new dbo.Forecasts table.

6. Right-click the dbo.Forecasts table and then select Select Top 1000 Rows. The
query runs but returns no results because the table is empty.

7. In the .NET Aspire dashboard, in the navigation on the left, select Resources.

8. Select one of the endpoints for the apiservice resource.

9. In the browser window, append /scalar to the web address and then press Enter .

10. In the navigation on the left, expand Setters and then select /weatherforecast
POST.

11. Select Test Request. Under Body, in the JSON window, delete the id and date lines
and fill in your own values for temperatureC and summary.

12. Select Send.





https://learn.microsoft.com/en-us/dotnet/aspire/docs/database/media/connect-to-existing-database/console-log-create-table.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/database/media/connect-to-existing-database/console-log-create-table.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/database/media/connect-to-existing-database/dashboard-select-api-endpoint.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/database/media/connect-to-existing-database/dashboard-select-api-endpoint.png#lightbox

13. In the navigation on the left, select /weatherforecast GET and then select Test
Request.

14. Select Send. The call should return JSON with the weather reported you posted.

15. Switch to SQL Server Management Studio. In the query window for the Forecasts
table, select Execute or press F5 . Your weather forecast is displayed.

.NET Aspire SQL Server Entity Framework Core integration
Tutorial: Connect an ASP.NET Core app to SQL Server using .NET Aspire and Entity
Framework Core
Use openAPI documents



See also

https://learn.microsoft.com/en-us/aspnet/core/fundamentals/openapi/using-openapi-documents
https://learn.microsoft.com/en-us/dotnet/aspire/docs/database/media/connect-to-existing-database/scalar-text-get.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/database/media/connect-to-existing-database/scalar-text-get.png#lightbox

Tutorial: Connect an ASP.NET Core app
to .NET Aspire storage integrations
Article • 11/08/2024

Cloud-native apps often require scalable storage solutions that provide capabilities like
blob storage, queues, or semi-structured NoSQL databases. .NET Aspire integrations
simplify connections to various storage services, such as Azure Blob Storage. In this
tutorial, you'll create an ASP.NET Core app that uses .NET Aspire integrations to connect
to Azure Blob Storage and Azure Queue Storage to submit support tickets. The app
sends the tickets to a queue for processing and uploads an attachment to storage. You'll
learn how to:

To work with .NET Aspire, you need the following installed locally:

.NET 8.0 or .NET 9.0
An OCI compliant container runtime, such as:

Docker Desktop or Podman . For more information, see Container runtime.
An Integrated Developer Environment (IDE) or code editor, such as:

Visual Studio 2022 version 17.9 or higher (Optional)
Visual Studio Code (Optional)

C# Dev Kit: Extension (Optional)
JetBrains Rider with .NET Aspire plugin (Optional)

For more information, see .NET Aspire setup and tooling, and .NET Aspire SDK.

A completed version of the sample app from this tutorial is available on GitHub. The
project is also structured as a template for the Azure Developer CLI, meaning you can
use the azd up command to automate Azure resource provisioning if you have the tool
installed.

Bash

Create a basic .NET app that is set up to use .NET Aspire integrations＂

Add .NET Aspire integrations to connect to multiple storage services＂

Configure and use .NET Aspire Component features to send and receive data＂

Prerequisites

Explore the completed sample app

https://dotnet.microsoft.com/download/dotnet/8.0
https://dotnet.microsoft.com/download/dotnet/8.0
https://dotnet.microsoft.com/download/dotnet/9.0
https://dotnet.microsoft.com/download/dotnet/9.0
https://www.docker.com/products/docker-desktop
https://www.docker.com/products/docker-desktop
https://podman.io/
https://podman.io/
https://visualstudio.microsoft.com/vs/
https://visualstudio.microsoft.com/vs/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://marketplace.visualstudio.com/items?itemName=ms-dotnettools.csdevkit
https://marketplace.visualstudio.com/items?itemName=ms-dotnettools.csdevkit
https://blog.jetbrains.com/dotnet/2024/02/19/jetbrains-rider-and-the-net-aspire-plugin/
https://blog.jetbrains.com/dotnet/2024/02/19/jetbrains-rider-and-the-net-aspire-plugin/
https://learn.microsoft.com/en-us/azure/developer/azure-developer-cli/overview
https://learn.microsoft.com/en-us/azure/developer/azure-developer-cli/install-azd

For this article, you'll need to create a blob container and storage queue resource in
your local development environment using an emulator. To do so, use Azurite. Azurite is
a free, open source, cross-platform Azure Storage API compatible server (emulator) that
runs in a Docker container.

To use the emulator you need to install Azurite.

Create a .NET Aspire project using either Visual Studio or the .NET CLI.

1. At the top of Visual Studio, navigate to File > New > Project.
2. In the dialog window, search for Aspire and select .NET Aspire Starter

Application. Choose Next.
3. On the Configure your new project screen:

Enter a Solution Name of AspireStorage and select Next.

4. On the Additional information screen:

Uncheck Use Redis for caching (not required for this tutorial).
Select Create.

Visual Studio creates a new ASP.NET Core solution that is structured to use .NET
Aspire.

The solution consists of the following projects:

AspireStorage.ApiService - An API project with default .NET Aspire service
configurations.
AspireStorage.AppHost - An orchestrator project designed to connect and
configure the different projects and services of your app. The orchestrator should
be set as the startup project.
AspireStorage.ServiceDefaults - A shared class library to hold code that can be
reused across the projects in your solution.

git clone https://github.com/Azure-Samples/dotnet-aspire-connect-storage.git

Set up the Azure Storage resources

Create the sample solution

Visual Studio

https://learn.microsoft.com/en-us/azure/storage/common/storage-use-azurite#install-azurite

AspireStorage.Web - A Blazor Server project that serves as the front end of your
app.

Next, add a Worker Service project to the solution to retrieve and process messages as
they are added to the Azure Storage queue.

1. In the solution explorer, right click on the top level AspireStorage solution
node and select Add > New project.

2. Search for and select the Worker Service template and choose Next.
3. For the Project name, enter AspireStorage.WorkerService and select Next.
4. On the Additional information screen:

Make sure .NET 9.0 is selected.
Make sure Enlist in .NET Aspire orchestration is checked and select
Create.

Visual Studio adds the project to your solution and updates the Program.cs file of
the AspireStorage.AppHost project with a new line of code:

C#

Visual Studio tooling added this line of code to register your new project with the
IDistributedApplicationBuilder object, which enables orchestration features. For
more information, see .NET Aspire orchestration overview.

The completed solution structure should resemble the following:

Add the Worker Service project

Visual Studio

builder.AddProject<Projects.AspireStorage_WorkerService>(
 "aspirestorage-workerservice");

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.idistributedapplicationbuilder

Add the .NET Aspire Azure Blob Storage integration and .NET Aspire Azure Queue
Storage integration packages to your AspireStorage.Web project:

.NET CLI

Your AspireStorage.Web project is now set up to use .NET Aspire integrations. Here's
the updated AspireStorage.Web.csproj file:

XML

Add the .NET Aspire integrations to the Blazor
app

dotnet add package Aspire.Azure.Storage.Blobs
dotnet add package Aspire.Azure.Storage.Queues

The next step is to add the integrations to the app.

In the Program.cs file of the AspireStorage.Web project, add calls to the
AddAzureBlobClient and AddAzureQueueClient extension methods after the creation of
the builder but before the call to AddServiceDefaults . For more information, see .NET
Aspire service defaults. Provide the name of your connection string as a parameter.

C#

<Project Sdk="Microsoft.NET.Sdk.Web">

 <PropertyGroup>
 <TargetFramework>net9.0</TargetFramework>
 <ImplicitUsings>enable</ImplicitUsings>
 <Nullable>enable</Nullable>
 </PropertyGroup>

 <ItemGroup>
 <ProjectReference
Include="..\AspireStorage.ServiceDefaults\AspireStorage.ServiceDefaults.cspr
oj" />
 </ItemGroup>

 <ItemGroup>
 <PackageReference Include="Aspire.Azure.Storage.Blobs" Version="9.1.0"
/>
 <PackageReference Include="Aspire.Azure.Storage.Queues" Version="9.1.0"
/>
 </ItemGroup>

</Project>

using AspireStorage.Web;
using AspireStorage.Web.Components;

using Azure.Storage.Blobs;
using Azure.Storage.Queues;

var builder = WebApplication.CreateBuilder(args);

builder.AddAzureBlobClient("BlobConnection");
builder.AddAzureQueueClient("QueueConnection");

// Add service defaults & Aspire components.
builder.AddServiceDefaults();

// Add services to the container.
builder.Services.AddRazorComponents()
 .AddInteractiveServerComponents();

builder.Services.AddOutputCache();

https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.aspireblobstorageextensions.addazureblobclient
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.aspirequeuestorageextensions.addazurequeueclient

With the additional using statements, these methods accomplish the following tasks:

Register a Azure.Storage.Blobs.BlobServiceClient and a
Azure.Storage.Queues.QueueServiceClient with the DI container for connecting to

builder.Services.AddHttpClient<WeatherApiClient>(client =>
 {
 // This URL uses "https+http://" to indicate HTTPS is preferred over
HTTP.
 // Learn more about service discovery scheme resolution at
https://aka.ms/dotnet/sdschemes.
 client.BaseAddress = new("https+http://apiservice");
 });

var app = builder.Build();

if (!app.Environment.IsDevelopment())
{
 app.UseExceptionHandler("/Error", createScopeForErrors: true);
 // The default HSTS value is 30 days. You may want to change this for
production scenarios, see https://aka.ms/aspnetcore-hsts.
 app.UseHsts();
}
else
{
 // In development, create the blob container and queue if they don't
exist.
 var blobService = app.Services.GetRequiredService<BlobServiceClient>();
 var docsContainer = blobService.GetBlobContainerClient("fileuploads");

 await docsContainer.CreateIfNotExistsAsync();

 var queueService = app.Services.GetRequiredService<QueueServiceClient>
();
 var queueClient = queueService.GetQueueClient("tickets");

 await queueClient.CreateIfNotExistsAsync();
}

app.UseHttpsRedirection();

app.UseStaticFiles();
app.UseAntiforgery();

app.UseOutputCache();

app.MapRazorComponents<App>()
 .AddInteractiveServerRenderMode();

app.MapDefaultEndpoints();

app.Run();

https://learn.microsoft.com/en-us/dotnet/api/azure.storage.blobs.blobserviceclient
https://learn.microsoft.com/en-us/dotnet/api/azure.storage.queues.queueserviceclient

Azure Storage.
Automatically enable corresponding health checks, logging, and telemetry for the
respective services.

When the AspireStorage.Web project starts, it will create a fileuploads container in
Azurite Blob Storage and a tickets queue in Azurite Queue Storage. This is conditional
when the app is running in a development environment. When the app is running in a
production environment, the container and queue are assumed to have already been
created.

The worker service handles pulling messages off of the Azure Storage queue for
processing. Add the .NET Aspire Azure Queue Storage integration integration package
to your AspireStorage.WorkerService app:

.NET CLI

In the Program.cs file of the AspireStorage.WorkerService project, add a call to the
AddAzureQueueClient extension method after the creation of the builder but before
the call to AddServiceDefaults :

C#

This method handles the following tasks:

Register a QueueServiceClient with the DI container for connecting to Azure
Storage Queues.

Add the .NET Aspire integration to the Worker
Service

dotnet add package Aspire.Azure.Storage.Queues

using AspireStorage.WorkerService;

var builder = Host.CreateApplicationBuilder(args);

builder.AddAzureQueueClient("QueueConnection");

builder.AddServiceDefaults();
builder.Services.AddHostedService<WorkerService>();

var host = builder.Build();
host.Run();

https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.aspirequeuestorageextensions.addazurequeueclient
https://learn.microsoft.com/en-us/dotnet/api/azure.storage.queues.queueserviceclient

Automatically enable corresponding health checks, logging, and telemetry for the
respective services.

The app requires a form for the user to be able to submit support ticket information and
upload an attachment. The app uploads the attached file on the Document (IFormFile)
property to Azure Blob Storage using the injected BlobServiceClient. The
QueueServiceClient sends a message composed of the Title and Description to the
Azure Storage Queue.

Use the following Razor markup to create a basic form, replacing the contents of the
Home.razor file in the AspireStorage.Web/Components/Pages directory:

razor

Create the form

@page "/"

@using System.ComponentModel.DataAnnotations
@using Azure.Storage.Blobs
@using Azure.Storage.Queues

@inject BlobServiceClient BlobClient
@inject QueueServiceClient QueueServiceClient

<PageTitle>Home</PageTitle>

<div class="text-center">
 <h1 class="display-4">Request Support</h1>
</div>

<EditForm Model="@Ticket" FormName="Tickets" method="post"
 OnValidSubmit="@HandleValidSubmit" enctype="multipart/form-data">
 <DataAnnotationsValidator />
 <ValidationSummary />

 <div class="mb-4">
 <label>Issue Title</label>
 <InputText class="form-control" @bind-Value="@Ticket.Title" />
 <ValidationMessage For="() => Ticket.Title" />
 </div>
 <div class="mb-4">
 <label>Issue Description</label>
 <InputText class="form-control" @bind-Value="@Ticket.Description" />
 <ValidationMessage For="() => Ticket.Description" />
 </div>
 <div class="mb-4">
 <label>Attachment</label>
 <InputFile class="form-control" name="Ticket.Document" />
 <ValidationMessage For="() => Ticket.Document" />

https://learn.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.iformfile
https://learn.microsoft.com/en-us/dotnet/api/azure.storage.blobs.blobserviceclient
https://learn.microsoft.com/en-us/dotnet/api/azure.storage.queues.queueserviceclient

For more information about creating forms in Blazor, see ASP.NET Core Blazor forms
overview.

The AspireStorage.AppHost project is the orchestrator for your app. It's responsible for
connecting and configuring the different projects and services of your app. The
orchestrator should be set as the startup project.

To add Azure Storage hosting support to your IDistributedApplicationBuilder, install the
📦 Aspire.Hosting.Azure.Storage NuGet package.

 </div>
 <button class="btn btn-primary" type="submit">Submit</button>
 <button class="btn btn-danger mx-2" type="reset"
@onclick=@ClearForm>Clear</button>
</EditForm>

@code {
 [SupplyParameterFromForm(FormName = "Tickets")]
 private SupportTicket Ticket { get; set; } = new();

 private async Task HandleValidSubmit()
 {
 var docsContainer =
BlobClient.GetBlobContainerClient("fileuploads");

 // Upload file to blob storage
 await docsContainer.UploadBlobAsync(
 Ticket.Document.FileName,
 Ticket.Document.OpenReadStream());

 // Send message to queue
 var queueClient = QueueServiceClient.GetQueueClient("tickets");

 await queueClient.SendMessageAsync(
 $"{Ticket.Title} - {Ticket.Description}");

 ClearForm();
 }

 private void ClearForm() => Ticket = new();

 private class SupportTicket()
 {
 [Required] public string Title { get; set; } = default!;
 [Required] public string Description { get; set; } = default!;
 [Required] public IFormFile Document { get; set; } = default!;
 }
}

Update the AppHost

https://learn.microsoft.com/en-us/aspnet/core/blazor/forms
https://learn.microsoft.com/en-us/aspnet/core/blazor/forms
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.idistributedapplicationbuilder
https://www.nuget.org/packages/Aspire.Hosting.Azure.Storage
https://www.nuget.org/packages/Aspire.Hosting.Azure.Storage

.NET CLI

Replace the contents of the Program.cs file in the AspireStorage.AppHost project with the
following code:

C#

The preceding code adds Azure storage, blobs, and queues, and when in development
mode, it uses the emulator. Each project defines references for these resources that they
depend on.

.NET CLI

dotnet add package Aspire.Hosting.Azure.Storage

using Microsoft.Extensions.Hosting;

var builder = DistributedApplication.CreateBuilder(args);

var storage = builder.AddAzureStorage("Storage");

if (builder.Environment.IsDevelopment())
{
 storage.RunAsEmulator();
}

var blobs = storage.AddBlobs("BlobConnection");
var queues = storage.AddQueues("QueueConnection");

var apiService = builder.AddProject<Projects.AspireStorage_ApiService>
("apiservice");

builder.AddProject<Projects.AspireStorage_Web>("webfrontend")
 .WithExternalHttpEndpoints()
 .WithReference(apiService)
 .WithReference(blobs)
 .WithReference(queues);

builder.AddProject<Projects.AspireStorage_WorkerService>("aspirestorage-
workerservice")
 .WithReference(queues);

builder.Build().Run();

Process the items in the queue

When a new message is placed on the tickets queue, the worker service should
retrieve, process, and delete the message. Update the Worker.cs class, replacing the
contents with the following code:

C#

Before the worker service can process messages, it needs to be able to connect to the
Azure Storage queue. With Azurite, you need to ensure that the queue is available
before the worker service starts executing message queue processing.

using Azure.Storage.Queues;
using Azure.Storage.Queues.Models;

namespace AspireStorage.WorkerService;

public sealed class WorkerService(
 QueueServiceClient client,
 ILogger<WorkerService> logger) : BackgroundService
{
 protected override async Task ExecuteAsync(CancellationToken
stoppingToken)
 {
 var queueClient = client.GetQueueClient("tickets");
 await queueClient.CreateIfNotExistsAsync(cancellationToken:
stoppingToken);

 while (!stoppingToken.IsCancellationRequested)
 {
 QueueMessage[] messages =
 await queueClient.ReceiveMessagesAsync(
 maxMessages: 25, cancellationToken: stoppingToken);

 foreach (var message in messages)
 {
 logger.LogInformation(
 "Message from queue: {Message}", message.MessageText);

 await queueClient.DeleteMessageAsync(
 message.MessageId,
 message.PopReceipt,
 cancellationToken: stoppingToken);
 }

 // TODO: Determine an appropriate time to wait
 // before checking for more messages.
 await Task.Delay(TimeSpan.FromSeconds(15), stoppingToken);
 }
 }
}

The worker service processes message in the queue and deletes them when they've
been processed.

The sample app is now ready for testing. Verify that the submitted form data is sent to
Azure Blob Storage and Azure Queue Storage by completing the following steps:

1. Press the run button at the top of Visual Studio to launch your .NET Aspire
project dashboard in the browser.

2. On the resources page, in the aspirestorage.web row, click the link in the
Endpoints column to open the UI of your app.

3. Enter sample data into the Title and Description form fields and select a
simple file to upload.

4. Select the Submit button, and the form submits the support ticket for
processing — and clears the form.

5. In a separate browser tab, use the Azure portal to navigate to the Storage
browser in your Azure Storage Account.

6. Select Containers and then navigate into the Documents container to see the
uploaded file.

7. You can verify the message on the queue was processed by looking at the
Project logs of the .NET Aspire dashboard, and selecting the
aspirestorage.workerservice from the dropdown.

Run and test the app locally

Visual Studio



https://learn.microsoft.com/en-us/dotnet/aspire/docs/storage/media/support-app.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/storage/media/support-app.png#lightbox

The example app that you built demonstrates persisting blobs from an ASP.NET Core
Blazor Web App and processing queues in a .NET Worker Service. Your app connects to
Azure Storage using .NET Aspire integrations. The app sends the support tickets to a
queue for processing and uploads an attachment to storage.

Since you choose to use Azurite, there's no need to clean up these resources when
you're done testing them, as you created them locally in the context of an emulator. The
emulator enabled you to test your app locally without incurring any costs, as no Azure
resources were provisioned or created.



Summary

https://learn.microsoft.com/en-us/dotnet/core/extensions/workers
https://learn.microsoft.com/en-us/dotnet/aspire/docs/storage/media/queue-output.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/storage/media/queue-output.png#lightbox

Tutorial: Use .NET Aspire messaging
integrations in ASP.NET Core
Article • 03/20/2025

Cloud-native apps often require scalable messaging solutions that provide capabilities
such as messaging queues and topics and subscriptions. .NET Aspire integrations
simplify the process of connecting to various messaging providers, such as Azure
Service Bus. In this tutorial, you'll create an ASP.NET Core app that uses .NET Aspire
integrations to connect to Azure Service Bus to create a notification system. Submitted
messages will be sent to a Service Bus topic for consumption by subscribers. You'll learn
how to:

To work with .NET Aspire, you need the following installed locally:

.NET 8.0 or .NET 9.0
An OCI compliant container runtime, such as:

Docker Desktop or Podman . For more information, see Container runtime.
An Integrated Developer Environment (IDE) or code editor, such as:

Visual Studio 2022 version 17.9 or higher (Optional)
Visual Studio Code (Optional)

C# Dev Kit: Extension (Optional)
JetBrains Rider with .NET Aspire plugin (Optional)

For more information, see .NET Aspire setup and tooling, and .NET Aspire SDK.

In addition to the preceding prerequisites, you also need to install the Azure CLI. To
install the Azure CLI, follow the instructions in the Azure CLI installation guide.

For this tutorial, you'll need access to an Azure Service Bus namespace with a topic and
subscription configured. Use one of the following options to set up the require
resources:

Create a basic .NET app that is set up to use .NET Aspire integrations＂

Add an .NET Aspire integration to connect to Azure Service Bus＂

Configure and use .NET Aspire integration features to send and receive data＂

Prerequisites

Set up the Azure Service Bus account

https://dotnet.microsoft.com/download/dotnet/8.0
https://dotnet.microsoft.com/download/dotnet/8.0
https://dotnet.microsoft.com/download/dotnet/9.0
https://dotnet.microsoft.com/download/dotnet/9.0
https://www.docker.com/products/docker-desktop
https://www.docker.com/products/docker-desktop
https://podman.io/
https://podman.io/
https://visualstudio.microsoft.com/vs/
https://visualstudio.microsoft.com/vs/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://marketplace.visualstudio.com/items?itemName=ms-dotnettools.csdevkit
https://marketplace.visualstudio.com/items?itemName=ms-dotnettools.csdevkit
https://blog.jetbrains.com/dotnet/2024/02/19/jetbrains-rider-and-the-net-aspire-plugin/
https://blog.jetbrains.com/dotnet/2024/02/19/jetbrains-rider-and-the-net-aspire-plugin/
https://learn.microsoft.com/en-us/cli/azure/install-azure-cli

Azure portal: Create a service bus account with a topic and subscription.

Alternatively:

Azure CLI: Run the following commands in the Azure CLI or CloudShell to set up
the required Azure Service Bus resources:

Azure CLI

This quickstart can be completed using either passwordless authentication or a
connection string. Passwordless connections use Azure Active Directory and role-based
access control (RBAC) to connect to a Service Bus namespace. You don't need to worry
about having hard-coded connection string in your code, a configuration file, or in
secure storage such as Azure Key Vault.

You can also use a connection string to connect to a Service Bus namespace, but the
passwordless approach is recommended for real-world applications and production
environments. For more information, read about Authentication and authorization or
visit the passwordless overview page.

On your Service Bus namespace, assign the following role to the user account you
logged into Visual Studio or the Azure CLI with:

az group create -n <your-resource-group-name> --location eastus
az servicebus namespace create -g <your-resource-group-name> --name
<your-namespace-name> --location eastus
az servicebus topic create -g <your-resource-group-name> --namespace-
name <your-namespace-name> --name notifications
az servicebus topic subscription create -g <your-resource-group-name> -
-namespace-name <your-namespace-name> --topic-name notifications --name
mobile

７ Note

Replace the your-resource-group-name and your-namespace-name
placeholders with your own values. Service Bus namespace names must be
globally unique across Azure.

Azure authentication

Passwordless (Recommended)

https://learn.microsoft.com/en-us/azure/service-bus-messaging/service-bus-quickstart-topics-subscriptions-portal
https://learn.microsoft.com/en-us/azure/service-bus-messaging/service-bus-authentication-and-authorization
https://learn.microsoft.com/en-us/dotnet/azure/sdk/authentication?tabs=command-line

Service Bus Data Owner: Assign an Azure RBAC role

To create a new .NET Aspire Starter Application, you can use either Visual Studio, Visual
Studio Code, or the .NET CLI.

Visual Studio provides .NET Aspire templates that handle some initial setup
configurations for you. Complete the following steps to create a project for this
quickstart:

1. At the top of Visual Studio, navigate to File > New > Project.

2. In the dialog window, search for Aspire and select .NET Aspire Starter App. Select
Next.

Create the sample solution



https://learn.microsoft.com/en-us/azure/storage/queues/assign-azure-role-data-access?tabs=portal
https://learn.microsoft.com/en-us/dotnet/aspire/docs/media/aspire-templates.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/media/aspire-templates.png#lightbox

3. On the Configure your new project screen:

Enter a Project Name of AspireSample.
Leave the rest of the values at their defaults and select Next.

4. On the Additional information screen:

Make sure .NET 9.0 (Standard Term Support) is selected.
Ensure that Use Redis for caching (requires a supported container runtime)
is checked and select Create.
Optionally, you can select Create a tests project. For more information, see
Write your first .NET Aspire test.

Visual Studio creates a new solution that is structured to use .NET Aspire.

Next, add a Worker Service project to the solution to retrieve and process messages to
and from Azure Service Bus.

1. In the solution explorer, right click on the top level AspireSample solution node
and select Add > New project.

2. Search for and select the Worker Service template and choose Next.
3. For the Project name, enter AspireSample.WorkerService and select Next.
4. On the Additional information screen:

Make sure .NET 9.0 is selected.
Make sure Enlist in .NET Aspire orchestration is checked and select Create.

Visual Studio adds the project to your solution and updates the Program.cs file of the
AspireSample.AppHost project with a new line of code:

C#

Visual Studio tooling added this line of code to register your new project with the
IDistributedApplicationBuilder object, which enables orchestration features you'll
explore later.

The completed solution structure should resemble the following, assuming the top-level
directory is named aspire-messaging:

Add the Worker Service project

builder.AddProject<Projects.AspireSample_WorkerService>(
 "aspiresample-workerservice");

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.idistributedapplicationbuilder

Directory

└───📂 aspire-messaging
 ├───📂 AspireSample.WorkerService
 │ ├───📂 Properties
 │ │ └─── launchSettings.json
 │ ├─── appsettings.Development.json
 │ ├─── appsettings.json
 │ ├─── AspireSample.WorkerService.csproj
 │ ├─── Program.cs
 │ └─── Worker.cs
 ├───📂 AspireSample.ApiService
 │ ├───📂 Properties
 │ │ └─── launchSettings.json
 │ ├─── appsettings.Development.json
 │ ├─── appsettings.json
 │ ├─── AspireSample.ApiService.csproj
 │ └─── Program.cs
 ├───📂 AspireSample.AppHost
 │ ├───📂 Properties
 │ │ └─── launchSettings.json
 │ ├─── appsettings.Development.json
 │ ├─── appsettings.json
 │ ├─── AspireSample.AppHost.csproj
 │ └─── Program.cs
 ├───📂 AspireSample.ServiceDefaults
 │ ├─── AspireSample.ServiceDefaults.csproj
 │ └─── Extensions.cs
 ├───📂 AspireSample.Web
 │ ├───📂 Components
 │ │ ├───📂 Layout
 │ │ │ ├─── MainLayout.razor
 │ │ │ ├─── MainLayout.razor.css
 │ │ │ ├─── NavMenu.razor
 │ │ │ └─── NavMenu.razor.css
 │ │ ├───📂 Pages
 │ │ │ ├─── Counter.razor
 │ │ │ ├─── Error.razor
 │ │ │ ├─── Home.razor
 │ │ │ └─── Weather.razor
 │ │ ├─── _Imports.razor
 │ │ ├─── App.razor
 │ │ └─── Routes.razor
 │ ├───📂 Properties
 │ │ └─── launchSettings.json
 │ ├───📂 wwwroot
 │ │ ├───📂 bootstrap
 │ │ │ ├─── bootstrap.min.css
 │ │ │ └─── bootstrap.min.css.map
 │ │ ├─── app.css
 │ │ └─── favicon.png
 │ ├─── appsettings.Development.json
 │ ├─── appsettings.json
 │ ├─── AspireSample.Web.csproj

Add the .NET Aspire Azure Service Bus integration to your AspireSample.ApiService
app:

1. In the Solution Explorer, double-click the AspireSample.ApiService.csproj file to
open its XML file.

2. Add the following <PackageReference> item to the <ItemGroup> element:

XML

In the Program.cs file of the AspireSample.ApiService project, add a call to the
AddAzureServiceBusClient extension method immediately after the existing call to
AddServiceDefaults :

C#

For more information, see AddAzureServiceBusClient.

This method accomplishes the following tasks:

Registers a ServiceBusClient with the DI container for connecting to Azure Service
Bus.
Automatically enables corresponding health checks, logging, and telemetry for the
respective services.

In the appsettings.json file of the same project, add the corresponding connection
information:

 │ ├─── Program.cs
 │ └─── WeatherApiClient.cs
 └─── AspireSample.sln

Add the .NET Aspire integration to the API

<ItemGroup>
 <PackageReference Include="Aspire.Azure.Messaging.ServiceBus"
 Version="9.1.0" />
</ItemGroup>

// Add service defaults & Aspire integrations.
builder.AddServiceDefaults();
builder.AddAzureServiceBusClient("serviceBusConnection");

Passwordless (Recommended)

https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.aspireservicebusextensions.addazureservicebusclient
https://learn.microsoft.com/en-us/dotnet/api/microsoft.azure.commands.servicebus.servicebusclient

JSON

The API must provide an endpoint to receive data and publish it to the Service Bus topic
and broadcast to subscribers. Add the following endpoint to the
AspireSample.ApiService project to send a message to the Service Bus topic. Replace all
of the contents of the Program.cs file with the following C# code:

C#

{
 // Existing configuration is omitted for brevity.
 "ConnectionStrings": {
 "serviceBusConnection": "{your_namespace}.servicebus.windows.net"
 }
}

７ Note

Make sure to replace {your_namespace} in the service URIs with the name of
your own Service Bus namespace.

Create the API endpoint

using Azure.Messaging.ServiceBus;

var builder = WebApplication.CreateBuilder(args);

// Add service defaults & Aspire integrations.
builder.AddServiceDefaults();
builder.AddAzureServiceBusClient("serviceBusConnection");

// Add services to the container.
builder.Services.AddProblemDetails();

var app = builder.Build();

// Configure the HTTP request pipeline.
app.UseExceptionHandler();

app.MapPost("/notify", static async (ServiceBusClient client, string
message) =>
{
 var sender = client.CreateSender("notifications");

 // Create a batch
 using ServiceBusMessageBatch messageBatch =

https://nuget.org/packages/Aspire.Azure.Messaging.ServiceBus
https://nuget.org/packages/Aspire.Azure.Messaging.ServiceBus

Registers a ServiceBusClient with the DI container for connecting to Azure Service
Bus.
Automatically enables corresponding health checks, logging, and telemetry for the
respective services.

In the appsettings.json file of the AspireSample.WorkerService project, add the
corresponding connection information:

JSON

When a new message is placed on the messages queue, the worker service should
retrieve, process, and delete the message. Update the Worker.cs class to match the
following code:

C#

Passwordless (Recommended)

{
 // Existing configuration is omitted for brevity.
 "ConnectionStrings": {
 "serviceBusConnection": "{your_namespace}.servicebus.windows.net"
 }
}

７ Note

Make sure to replace {your_namespace} in the Service URIs with the name of
your own Service Bus namespace.

Process the message from the subscriber

using Azure.Messaging.ServiceBus;

namespace AspireSample.WorkerService;

public sealed class Worker(
 ILogger<Worker> logger,
 ServiceBusClient client) : BackgroundService
{
 protected override async Task ExecuteAsync(CancellationToken
stoppingToken)
 {
 while (!stoppingToken.IsCancellationRequested)

https://learn.microsoft.com/en-us/dotnet/api/microsoft.azure.commands.servicebus.servicebusclient

 {
 var processor = client.CreateProcessor(
 "notifications",
 "mobile",
 new ServiceBusProcessorOptions());

 // Add handler to process messages
 processor.ProcessMessageAsync += MessageHandler;

 // Add handler to process any errors
 processor.ProcessErrorAsync += ErrorHandler;

 // Start processing
 await processor.StartProcessingAsync();

 logger.LogInformation("""
 Wait for a minute and then press any key to end the
processing
 """);

 Console.ReadKey();

 // Stop processing
 logger.LogInformation("""

 Stopping the receiver...
 """);

 await processor.StopProcessingAsync();

 logger.LogInformation("Stopped receiving messages");
 }
 }

 async Task MessageHandler(ProcessMessageEventArgs args)
 {
 string body = args.Message.Body.ToString();

 logger.LogInformation("Received: {Body} from subscription.", body);

 // Complete the message. messages is deleted from the subscription.
 await args.CompleteMessageAsync(args.Message);
 }

 // Handle any errors when receiving messages
 Task ErrorHandler(ProcessErrorEventArgs args)
 {
 logger.LogError(args.Exception, "{Error}", args.Exception.Message);

 return Task.CompletedTask;
 }
}

The sample app is now ready for testing. Verify that the data submitted to the API is sent
to the Azure Service Bus topic and consumed by the subscriber worker service:

1. Launch the .NET Aspire project by selecting the Start debugging button, or by
pressing F5 . The .NET Aspire dashboard app should open in the browser.

2. On the resources page, in the apiservice row, find the link in the Endpoints that
opens the weatherforecast endpoint. Note the HTTPS port number.

3. On the .NET Aspire dashboard, navigate to the logs for the aspiresample-
workerservice project.

4. In a terminal window, use the curl command to send a test message to the API:

Bash

Be sure to replace {port} with the port number you noted earlier.

5. Switch back to the aspiresample-workerservice logs. You should see the test
message printed in the output logs.

Congratulations! You created and configured an ASP.NET Core API that connects to
Azure Service Bus using Aspire integrations.

Run the following Azure CLI command to delete the resource group when you no longer
need the Azure resources you created. Deleting the resource group also deletes the
resources contained inside of it.

Azure CLI

For more information, see Clean up resources in Azure.

Run and test the app locally

curl -X POST -H "Content-Type: application/json" https://localhost:
{port}/notify?message=hello%20aspire

Clean up resources

az group delete --name <your-resource-group-name>

https://learn.microsoft.com/en-us/cli/azure/group?view=azure-cli-latest#az-group-delete

.NET Aspire Apache Kafka integration
Article • 10/15/2024

Includes: Hosting integration and Client integration

Apache Kafka is an open-source distributed event streaming platform. It's useful for
building real-time data pipelines and streaming applications. The .NET Aspire Apache
Kafka integration enables you to connect to existing Kafka instances, or create new
instances from .NET with the docker.io/confluentinc/confluent-local container image .

The Apache Kafka hosting integration models a Kafka server as the KafkaServerResource
type. To access this type, install the 📦 Aspire.Hosting.Kafka NuGet package in the
app host project, then add it with the builder.

.NET CLI

For more information, see dotnet add package or Manage package dependencies in
.NET applications.

In your app host project, call AddKafka on the builder instance to add a Kafka server
resource:

C#

Hosting integration

.NET CLI

dotnet add package Aspire.Hosting.Kafka

Add Kafka server resource

var builder = DistributedApplication.CreateBuilder(args);

var kafka = builder.AddKafka("kafka");

builder.AddProject<Projects.ExampleProject>()
 .WithReference(kafka);

// After adding all resources, run the app...

https://kafka.apache.org/
https://kafka.apache.org/
https://hub.docker.com/r/confluentinc/cp-kafka
https://hub.docker.com/r/confluentinc/cp-kafka
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.kafkaserverresource
https://www.nuget.org/packages/Aspire.Hosting.Kafka
https://www.nuget.org/packages/Aspire.Hosting.Kafka
https://learn.microsoft.com/en-us/dotnet/core/tools/dotnet-add-package
https://learn.microsoft.com/en-us/dotnet/core/tools/dependencies
https://learn.microsoft.com/en-us/dotnet/core/tools/dependencies
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.kafkabuilderextensions.addkafka

When .NET Aspire adds a container image to the app host, as shown in the preceding
example with the docker.io/confluentinc/confluent-local image, it creates a new Kafka
server instance on your local machine. A reference to your Kafka server (the kafka
variable) is added to the ExampleProject . The Kafka server resource includes default
ports

The WithReference method configures a connection in the ExampleProject named
"kafka" . For more information, see Container resource lifecycle.

To add the Kafka UI to the Kafka server resource, call the WithKafkaUI method:

C#

The Kafka UI is a free, open-source web UI to monitor and manage Apache Kafka
clusters. .NET Aspire adds another container image docker.io/provectuslabs/kafka-ui
to the app host that runs the Kafka UI.

To change the Kafka UI host port, chain a call to the WithHostPort method:

C#

 Tip

If you'd rather connect to an existing Kafka server, call AddConnectionString
instead. For more information, see Reference existing resources.

Add Kafka UI

var builder = DistributedApplication.CreateBuilder(args);

var kafka = builder.AddKafka("kafka")
 .WithKafkaUI();

builder.AddProject<Projects.ExampleProject>()
 .WithReference(kafka);

// After adding all resources, run the app...

Change the Kafka UI host port

var builder = DistributedApplication.CreateBuilder(args);

var kafka = builder.AddKafka("kafka")
 .WithKafkaUI(kafkaUI => kafkaUI.WithHostPort(9100));

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.resourcebuilderextensions.withreference
https://hub.docker.com/r/provectuslabs/kafka-ui
https://hub.docker.com/r/provectuslabs/kafka-ui
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.kafkabuilderextensions.withkafkaui
https://hub.docker.com/r/provectuslabs/kafka-ui
https://hub.docker.com/r/provectuslabs/kafka-ui
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.kafkabuilderextensions.withhostport
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.parameterresourcebuilderextensions.addconnectionstring

The Kafka UI is accessible at http://localhost:9100 in the preceding example.

To add a data volume to the Kafka server resource, call the WithDataVolume method on
the Kafka server resource:

C#

The data volume is used to persist the Kafka server data outside the lifecycle of its
container. The data volume is mounted at the /var/lib/kafka/data path in the Kafka
server container and when a name parameter isn't provided, the name is generated at
random. For more information on data volumes and details on why they're preferred
over bind mounts, see Docker docs: Volumes .

To add a data bind mount to the Kafka server resource, call the WithDataBindMount
method:

C#

builder.AddProject<Projects.ExampleProject>()
 .WithReference(kafka);

// After adding all resources, run the app...

Add Kafka server resource with data volume

var builder = DistributedApplication.CreateBuilder(args);

var kafka = builder.AddKafka("kafka")
 .WithDataVolume(isReadOnly: false);

builder.AddProject<Projects.ExampleProject>()
 .WithReference(kafka);

// After adding all resources, run the app...

Add Kafka server resource with data bind mount

var builder = DistributedApplication.CreateBuilder(args);

var kafka = builder.AddKafka("kafka")
 .WithDataBindMount(
 source: @"C:\Kafka\Data",
 isReadOnly: false);

builder.AddProject<Projects.ExampleProject>()

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.kafkabuilderextensions.withdatavolume
https://docs.docker.com/engine/storage/volumes
https://docs.docker.com/engine/storage/volumes
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.kafkabuilderextensions.withdatabindmount

Data bind mounts rely on the host machine's filesystem to persist the Kafka server data
across container restarts. The data bind mount is mounted at the C:\Kafka\Data on
Windows (or /Kafka/Data on Unix) path on the host machine in the Kafka server
container. For more information on data bind mounts, see Docker docs: Bind mounts .

The Kafka hosting integration automatically adds a health check for the Kafka server
resource. The health check verifies that a Kafka producer with the specified connection
name is able to connect and persist a topic to the Kafka server.

The hosting integration relies on the 📦 AspNetCore.HealthChecks.Kafka NuGet
package.

To get started with the .NET Aspire Apache Kafka integration, install the 📦
Aspire.Confluent.Kafka NuGet package in the client-consuming project, that is, the
project for the application that uses the Apache Kafka client.

.NET CLI

 .WithReference(kafka);

// After adding all resources, run the app...

） Important

Data bind mounts have limited functionality compared to volumes , which
offer better performance, portability, and security, making them more suitable for
production environments. However, bind mounts allow direct access and
modification of files on the host system, ideal for development and testing where
real-time changes are needed.

Hosting integration health checks

Client integration

.NET CLI

dotnet add package Aspire.Confluent.Kafka

Add Kafka producer

https://docs.docker.com/engine/storage/bind-mounts
https://docs.docker.com/engine/storage/bind-mounts
https://www.nuget.org/packages/AspNetCore.HealthChecks.Kafka
https://www.nuget.org/packages/AspNetCore.HealthChecks.Kafka
https://www.nuget.org/packages/Aspire.Confluent.Kafka
https://www.nuget.org/packages/Aspire.Confluent.Kafka
https://www.nuget.org/packages/Aspire.Confluent.Kafka
https://docs.docker.com/engine/storage/bind-mounts/
https://docs.docker.com/engine/storage/bind-mounts/
https://docs.docker.com/engine/storage/volumes/
https://docs.docker.com/engine/storage/volumes/

In the Program.cs file of your client-consuming project, call the AddKafkaProducer
extension method to register an IProducer<TKey, TValue> for use via the dependency
injection container. The method takes two generic parameters corresponding to the
type of the key and the type of the message to send to the broker. These generic
parameters are used by AddKafkaProducer to create an instance of
ProducerBuilder<TKey, TValue> . This method also takes connection name parameter.

C#

You can then retrieve the IProducer<TKey, TValue> instance using dependency injection.
For example, to retrieve the producer from an IHostedService :

C#

For more information on workers, see Worker services in .NET.

To register an IConsumer<TKey, TValue> for use via the dependency injection container,
call the AddKafkaConsumer extension method in the Program.cs file of your client-
consuming project. The method takes two generic parameters corresponding to the
type of the key and the type of the message to receive from the broker. These generic
parameters are used by AddKafkaConsumer to create an instance of
ConsumerBuilder<TKey, TValue> . This method also takes connection name parameter.

C#

You can then retrieve the IConsumer<TKey, TValue> instance using dependency injection.
For example, to retrieve the consumer from an IHostedService :

C#

builder.AddKafkaProducer<string, string>("messaging");

internal sealed class Worker(IProducer<string, string> producer) :
BackgroundService
{
 // Use producer...
}

Add Kafka consumer

builder.AddKafkaConsumer<string, string>("messaging");

https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.aspirekafkaproducerextensions.addkafkaproducer
https://learn.microsoft.com/en-us/dotnet/core/extensions/workers
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.aspirekafkaconsumerextensions.addkafkaconsumer

There might be situations where you want to register multiple producer or consumer
instances with different connection names. To register keyed Kafka producers or
consumers, call the appropriate API:

AddKeyedKafkaProducer: Registers a keyed Kafka producer.
AddKeyedKafkaConsumer: Registers a keyed Kafka consumer.

For more information on keyed services, see .NET dependency injection: Keyed services.

The .NET Aspire Apache Kafka integration provides multiple options to configure the
connection based on the requirements and conventions of your project.

When using a connection string from the ConnectionStrings configuration section, you
can provide the name of the connection string when calling builder.AddKafkaProducer()
or builder.AddKafkaProducer() :

C#

Then the connection string is retrieved from the ConnectionStrings configuration
section:

JSON

internal sealed class Worker(IConsumer<string, string> consumer) :
BackgroundService
{
 // Use consumer...
}

Add keyed Kafka producers or consumers

Configuration

Use a connection string

builder.AddKafkaProducer<string, string>("kafka-producer");

{
 "ConnectionStrings": {
 "kafka-producer": "broker:9092"
 }
}

https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.aspirekafkaproducerextensions.addkeyedkafkaproducer
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.aspirekafkaconsumerextensions.addkeyedkafkaconsumer
https://learn.microsoft.com/en-us/dotnet/core/extensions/dependency-injection#keyed-services

The connection string value is set to the BootstrapServers property of the produced
IProducer<TKey, TValue> or IConsumer<TKey, TValue> instance. For more information,
see BootstrapServers .

The .NET Aspire Apache Kafka integration supports Microsoft.Extensions.Configuration.
It loads the KafkaProducerSettings or KafkaConsumerSettings from configuration by
respectively using the Aspire:Confluent:Kafka:Producer and
Aspire.Confluent:Kafka:Consumer keys. The following snippet is an example of a
appsettings.json file that configures some of the options:

JSON

The Config properties of both Aspire:Confluent:Kafka:Producer and
Aspire.Confluent:Kafka:Consumer configuration sections respectively bind to instances
of ProducerConfig and ConsumerConfig .

Confluent.Kafka.Consumer<TKey, TValue> requires the ClientId property to be set to let
the broker track consumed message offsets.

For the complete Kafka client integration JSON schema, see
Aspire.Confluent.Kafka/ConfigurationSchema.json .

There are several inline delegates available to configure various options.

Use configuration providers

{
 "Aspire": {
 "Confluent": {
 "Kafka": {
 "Producer": {
 "DisableHealthChecks": false,
 "Config": {
 "Acks": "All"
 }
 }
 }
 }
 }
}

Use inline delegates

Configure

https://docs.confluent.io/platform/current/clients/confluent-kafka-dotnet/_site/api/Confluent.Kafka.ClientConfig.html#Confluent_Kafka_ClientConfig_BootstrapServers
https://docs.confluent.io/platform/current/clients/confluent-kafka-dotnet/_site/api/Confluent.Kafka.ClientConfig.html#Confluent_Kafka_ClientConfig_BootstrapServers
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration
https://learn.microsoft.com/en-us/dotnet/api/aspire.confluent.kafka.kafkaproducersettings
https://learn.microsoft.com/en-us/dotnet/api/aspire.confluent.kafka.kafkaconsumersettings
https://docs.confluent.io/platform/current/clients/confluent-kafka-dotnet/_site/api/Confluent.Kafka.ProducerConfig.html
https://docs.confluent.io/platform/current/clients/confluent-kafka-dotnet/_site/api/Confluent.Kafka.ProducerConfig.html
https://docs.confluent.io/platform/current/clients/confluent-kafka-dotnet/_site/api/Confluent.Kafka.ConsumerConfig.html
https://docs.confluent.io/platform/current/clients/confluent-kafka-dotnet/_site/api/Confluent.Kafka.ConsumerConfig.html
https://github.com/dotnet/aspire/blob/v9.1.0/src/Components/Aspire.Confluent.Kafka/ConfigurationSchema.json
https://github.com/dotnet/aspire/blob/v9.1.0/src/Components/Aspire.Confluent.Kafka/ConfigurationSchema.json

You can pass the Action<KafkaProducerSettings> configureSettings delegate to set up
some or all the options inline, for example to disable health checks from code:

C#

You can configure inline a consumer from code:

C#

To configure Confluent.Kafka builders, pass an Action<ProducerBuilder<TKey, TValue>>
(or Action<ConsumerBuilder<TKey, TValue>>):

C#

When registering producers and consumers, if you need to access a service registered in
the DI container, you can pass an Action<IServiceProvider, ProducerBuilder<TKey,
TValue>> or Action<IServiceProvider, ConsumerBuilder<TKey, TValue>> respectively:

AddKafkaProducer<TKey,TValue>(IHostApplicationBuilder, String,
Action<IServiceProvider,ProducerBuilder<TKey,TValue>>)
AddKafkaConsumer<TKey,TValue>(IHostApplicationBuilder, String,
Action<IServiceProvider,ConsumerBuilder<TKey,TValue>>)

Consider the following producer registration example:

C#

builder.AddKafkaProducer<string, string>(
 "messaging",
 static settings => settings.DisableHealthChecks = true);

builder.AddKafkaConsumer<string, string>(
 "messaging",
 static settings => settings.DisableHealthChecks = true);

Configure ProducerBuilder<TKey, TValue> and
ConsumerBuilder<TKey, TValue>

builder.AddKafkaProducer<string, MyMessage>(
 "messaging",
 static producerBuilder =>
 {
 var messageSerializer = new MyMessageSerializer();
 producerBuilder.SetValueSerializer(messageSerializer);
 })

https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.aspirekafkaproducerextensions.addkafkaproducer#microsoft-extensions-hosting-aspirekafkaproducerextensions-addkafkaproducer-2(microsoft-extensions-hosting-ihostapplicationbuilder-system-string-system-action((system-iserviceprovider-confluent-kafka-producerbuilder((-0-1)))))
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.aspirekafkaproducerextensions.addkafkaproducer#microsoft-extensions-hosting-aspirekafkaproducerextensions-addkafkaproducer-2(microsoft-extensions-hosting-ihostapplicationbuilder-system-string-system-action((system-iserviceprovider-confluent-kafka-producerbuilder((-0-1)))))
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.aspirekafkaconsumerextensions.addkafkaconsumer#microsoft-extensions-hosting-aspirekafkaconsumerextensions-addkafkaconsumer-2(microsoft-extensions-hosting-ihostapplicationbuilder-system-string-system-action((system-iserviceprovider-confluent-kafka-consumerbuilder((-0-1)))))
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.aspirekafkaconsumerextensions.addkafkaconsumer#microsoft-extensions-hosting-aspirekafkaconsumerextensions-addkafkaconsumer-2(microsoft-extensions-hosting-ihostapplicationbuilder-system-string-system-action((system-iserviceprovider-confluent-kafka-consumerbuilder((-0-1)))))

For more information, see ProducerBuilder<TKey, TValue> and
ConsumerBuilder<TKey, TValue> API documentation.

By default, .NET Aspire integrations enable health checks for all services. For more
information, see .NET Aspire integrations overview.

The .NET Aspire Apache Kafka integration handles the following health check scenarios:

Adds the Aspire.Confluent.Kafka.Producer health check when
KafkaProducerSettings.DisableHealthChecks is false .
Adds the Aspire.Confluent.Kafka.Consumer health check when
KafkaConsumerSettings.DisableHealthChecks is false .
Integrates with the /health HTTP endpoint, which specifies all registered health
checks must pass for app to be considered ready to accept traffic.

.NET Aspire integrations automatically set up Logging, Tracing, and Metrics
configurations, which are sometimes known as the pillars of observability. For more
information about integration observability and telemetry, see .NET Aspire integrations
overview. Depending on the backing service, some integrations may only support some
of these features. For example, some integrations support logging and tracing, but not
metrics. Telemetry features can also be disabled using the techniques presented in the
Configuration section.

The .NET Aspire Apache Kafka integration uses the following log categories:

Aspire.Confluent.Kafka

builder.AddKafkaProducer<string, MyMessage>(
 "messaging",
 static (serviceProvider, producerBuilder) =>
 {
 var messageSerializer =
serviceProvider.GetRequiredServices<MyMessageSerializer>();
 producerBuilder.SetValueSerializer(messageSerializer);
 })

Client integration health checks

Observability and telemetry

Logging

https://docs.confluent.io/platform/current/clients/confluent-kafka-dotnet/_site/api/Confluent.Kafka.ProducerBuilder-2.html
https://docs.confluent.io/platform/current/clients/confluent-kafka-dotnet/_site/api/Confluent.Kafka.ProducerBuilder-2.html
https://docs.confluent.io/platform/current/clients/confluent-kafka-dotnet/_site/api/Confluent.Kafka.ConsumerBuilder-2.html
https://docs.confluent.io/platform/current/clients/confluent-kafka-dotnet/_site/api/Confluent.Kafka.ConsumerBuilder-2.html
https://learn.microsoft.com/en-us/dotnet/api/aspire.confluent.kafka.kafkaproducersettings.disablehealthchecks#aspire-confluent-kafka-kafkaproducersettings-disablehealthchecks
https://learn.microsoft.com/en-us/dotnet/api/aspire.confluent.kafka.kafkaconsumersettings.disablehealthchecks#aspire-confluent-kafka-kafkaconsumersettings-disablehealthchecks

The .NET Aspire Apache Kafka integration dos not emit distributed traces.

The .NET Aspire Apache Kafka integration emits the following metrics using
OpenTelemetry:

Aspire.Confluent.Kafka

messaging.kafka.network.tx

messaging.kafka.network.transmitted

messaging.kafka.network.rx

messaging.kafka.network.received

messaging.publish.messages

messaging.kafka.message.transmitted

messaging.receive.messages

messaging.kafka.message.received

Apache Kafka
Confluent
Confluent Kafka .NET client docs
.NET Aspire integrations
.NET Aspire GitHub repo

Tracing

Metrics

See also

https://kafka.apache.org/
https://kafka.apache.org/
https://www.confluent.io/
https://www.confluent.io/
https://docs.confluent.io/platform/current/clients/confluent-kafka-dotnet/_site/api/Confluent.Kafka.html
https://docs.confluent.io/platform/current/clients/confluent-kafka-dotnet/_site/api/Confluent.Kafka.html
https://github.com/dotnet/aspire
https://github.com/dotnet/aspire

.NET Aspire Azure integrations overview
Article • 03/10/2025

Azure is the most popular cloud platform for building and deploying .NET applications. The Azure
SDK for .NET allows for easy management and use of Azure services. .NET Aspire provides a set of
integrations with Azure services, where you're free to add new resources or connect to existing
ones. This article details some common aspects of all Azure integrations in .NET Aspire and aims
to help you understand how to use them.

All .NET Aspire Azure hosting integrations expose Azure resources and by convention are added
using AddAzure* APIs. When you add these resources to your .NET Aspire app host, they represent
an Azure service. The

https://learn.microsoft.com/en-us/azure
https://learn.microsoft.com/en-us/dotnet/azure
https://learn.microsoft.com/en-us/dotnet/azure/sdk/azure-sdk-for-dotnet
https://learn.microsoft.com/en-us/dotnet/azure/sdk/azure-sdk-for-dotnet
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.iresourcebuilder-1
https://learn.microsoft.com/en-us/partner-center/developer/product-resources#sku

Hosting
integration

Description

Azure Cosmos
DB

Call AzureCosmosExtensions.RunAsEmulator on the
IResourceBuilder<AzureCosmosDBResource> to configure the Cosmos DB resource to be
emulated with the NoSQL API.

Azure Event
Hubs

Call AzureEventHubsExtensions.RunAsEmulator on the
IResourceBuilder<AzureEventHubsResource> to configure the Event Hubs resource to be
emulated.

Azure Service
Bus

Call AzureServiceBusExtensions.RunAsEmulator on the
IResourceBuilder<AzureServiceBusResource> to configure the Service Bus resource to be
emulated with Service Bus emulator.

Azure SignalR
Service

Call AzureSignalRExtensions.RunAsEmulator on the
IResourceBuilder<AzureSignalRResource> to configure the SignalR resource to be emulated
with Azure SignalR emulator.

Azure Storage Call AzureStorageExtensions.RunAsEmulator on the
IResourceBuilder<AzureStorageResource> to configure the Storage resource to be emulated
with Azurite.

To have your Azure resources use the local emulators, chain a call the RunAsEmulator method on
the Azure resource builder. This method configures the Azure resource to use the local emulator
instead of the actual Azure service.

Some Azure resources can be substituted locally using open-source or on-premises containers. To
substitute an Azure resource locally in a container, chain a call to the RunAsContainer method on
the Azure resource builder. This method configures the Azure resource to use a containerized
version of the service for local development and testing, rather than the actual Azure service.

Currently, .NET Aspire supports the following Azure services as containers:

Hosting
integration

Details

Azure Cache for
Redis

Call AzureRedisExtensions.RunAsContainer on the
IResourceBuilder<AzureRedisCacheResource> to configure it to run locally in a container,

） Important

Calling any of the available RunAsEmulator APIs on an Azure resource builder doesn't effect
the publishing manifest. When you publish your app, generated Bicep file reflects the actual
Azure service, not the local emulator.

Local containers

ﾉ Expand table

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azurecosmosextensions.runasemulator
https://learn.microsoft.com/en-us/azure/cosmos-db/how-to-develop-emulator
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azureeventhubsextensions.runasemulator
https://learn.microsoft.com/en-us/azure/event-hubs/overview-emulator
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azureservicebusextensions.runasemulator
https://learn.microsoft.com/en-us/azure/service-bus-messaging/overview-emulator
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azuresignalrextensions.runasemulator
https://learn.microsoft.com/en-us/azure/azure-signalr/signalr-howto-emulator
https://learn.microsoft.com/en-us/azure/azure-signalr/signalr-howto-emulator
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azurestorageextensions.runasemulator
https://learn.microsoft.com/en-us/azure/storage/common/storage-use-azurite
https://learn.microsoft.com/en-us/azure/storage/common/storage-use-azurite
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azureredisextensions.runascontainer

Hosting
integration

Details

based on the docker.io/library/redis image.

Azure
PostgreSQL
Flexible Server

Call AzurePostgresExtensions.RunAsContainer on the
IResourceBuilder<AzurePostgresFlexibleServerResource> to configure it to run locally in a
container, based on the docker.io/library/postgres image.

Azure SQL
Server

Call AzureSqlExtensions.RunAsContainer on the
IResourceBuilder<AzureSqlServerResource> to configure it to run locally in a container,
based on the mcr.microsoft.com/mssql/server image.

.NET Aspire's strength lies in its ability to provide an amazing developer inner-loop. The Azure
integrations are no different. They provide a set of common APIs and patterns that are shared
across all Azure resources. These APIs and patterns are designed to make it easy to work with
Azure resources in a consistent manner.

In the preceding containers section, you saw how to run Azure services locally in containers. If
you're familiar with .NET Aspire, you might wonder how calling
AddAzureRedis("redis").RunAsContainer() to get a local docker.io/library/redis container differs
from AddRedis("redis")—as they both result in the same local container.

The answer is that there's no difference when running locally. However, when they're published
you get different resources:

API Run mode Publish mode

AddAzureRedis("redis").RunAsContainer() Local Redis container Azure Cache for Redis

AddRedis("redis") Local Redis container Azure Container App with Redis image

The same is true for SQL and PostgreSQL services:

７ Note

Like emulators, calling RunAsContainer on an Azure resource builder doesn't effect the
publishing manifest. When you publish your app, the generated Bicep file reflects the actual
Azure service, not the local container.

Understand Azure integration APIs

ﾉ Expand table

ﾉ Expand table

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azureredisextensions.runascontainer
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azurepostgresextensions.runascontainer
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azuresqlextensions.runascontainer
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azureredisextensions.runascontainer
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.redisbuilderextensions.addredis

API Run mode Publish mode

�$�3�,�$�3�,

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azurepostgresextensions.runascontainer
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.postgresbuilderextensions.addpostgres
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azuresqlextensions.runascontainer
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.sqlserverbuilderextensions.addsqlserver
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.distributedapplicationoperation#aspire-hosting-distributedapplicationoperation-run
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.distributedapplicationoperation#aspire-hosting-distributedapplicationoperation-publish
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azureresourceextensions.publishasconnectionstring#aspire-hosting-azureresourceextensions-publishasconnectionstring-1(aspire-hosting-applicationmodel-iresourcebuilder((-0)))
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.existingazureresourceextensions.publishasexisting

Operation API Description
is deployed
instead of
creating a
new one.

Run AzureSqlExtensions.RunAsContainer(IResourceBuilder<AzureSqlServerResource>,
Action<IResourceBuilder<SqlServerServerResource>>)
AzureRedisExtensions.RunAsContainer(IResourceBuilder<AzureRedisCacheResource>,
Action<IResourceBuilder<RedisResource>>)
RunAsContainer(IResourceBuilder<AzurePostgresFlexibleServerResource>,
Action<IResourceBuilder<PostgresServerResource>>)

Configures
an
equivalent
container to
run locally.
For more
information,
see Local
containers.

Run AzureCosmosExtensions.RunAsEmulator(IResourceBuilder<AzureCosmosDBResource>,
Action<IResourceBuilder<AzureCosmosDBEmulatorResource>>)
AzureSignalRExtensions.RunAsEmulator(IResourceBuilder<AzureSignalRResource>,
Action<IResourceBuilder<AzureSignalREmulatorResource>>)
AzureStorageExtensions.RunAsEmulator(IResourceBuilder<AzureStorageResource>,
Action<IResourceBuilder<AzureStorageEmulatorResource>>)
AzureEventHubsExtensions.RunAsEmulator(IResourceBuilder<AzureEventHubsResource>,
Action<IResourceBuilder<AzureEventHubsEmulatorResource>>)
AzureServiceBusExtensions.RunAsEmulator(IResourceBuilder<AzureServiceBusResource>,
Action<IResourceBuilder<AzureServiceBusEmulatorResource>>)

Configures
the Azure
resource to
be
emulated.
For more
information,
see Local
emulators.

Run RunAsExisting Uses an
existing
resource
when the
application
is running
instead of
creating a
new one.

Publish
and Run

AsExisting<T>(IResourceBuilder<T>, IResourceBuilder<ParameterResource>,
IResourceBuilder<ParameterResource>)

Uses an
existing
resource
regardless
of the
operation.

For more information on execution modes, see Execution context.

７ Note

Not all APIs are available on all Azure resources. For example, some Azure resources can be
containerized or emulated, while others can't.

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azuresqlextensions.runascontainer#aspire-hosting-azuresqlextensions-runascontainer(aspire-hosting-applicationmodel-iresourcebuilder((aspire-hosting-azure-azuresqlserverresource))-system-action((aspire-hosting-applicationmodel-iresourcebuilder((aspire-hosting-applicationmodel-sqlserverserverresource)))))
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azuresqlextensions.runascontainer#aspire-hosting-azuresqlextensions-runascontainer(aspire-hosting-applicationmodel-iresourcebuilder((aspire-hosting-azure-azuresqlserverresource))-system-action((aspire-hosting-applicationmodel-iresourcebuilder((aspire-hosting-applicationmodel-sqlserverserverresource)))))
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azureredisextensions.runascontainer#aspire-hosting-azureredisextensions-runascontainer(aspire-hosting-applicationmodel-iresourcebuilder((aspire-hosting-azure-azurerediscacheresource))-system-action((aspire-hosting-applicationmodel-iresourcebuilder((aspire-hosting-applicationmodel-redisresource)))))
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azureredisextensions.runascontainer#aspire-hosting-azureredisextensions-runascontainer(aspire-hosting-applicationmodel-iresourcebuilder((aspire-hosting-azure-azurerediscacheresource))-system-action((aspire-hosting-applicationmodel-iresourcebuilder((aspire-hosting-applicationmodel-redisresource)))))
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azurepostgresextensions.runascontainer#aspire-hosting-azurepostgresextensions-runascontainer(aspire-hosting-applicationmodel-iresourcebuilder((aspire-hosting-azure-azurepostgresflexibleserverresource))-system-action((aspire-hosting-applicationmodel-iresourcebuilder((aspire-hosting-applicationmodel-postgresserverresource)))))
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azurepostgresextensions.runascontainer#aspire-hosting-azurepostgresextensions-runascontainer(aspire-hosting-applicationmodel-iresourcebuilder((aspire-hosting-azure-azurepostgresflexibleserverresource))-system-action((aspire-hosting-applicationmodel-iresourcebuilder((aspire-hosting-applicationmodel-postgresserverresource)))))
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azurecosmosextensions.runasemulator#aspire-hosting-azurecosmosextensions-runasemulator(aspire-hosting-applicationmodel-iresourcebuilder((aspire-hosting-azurecosmosdbresource))-system-action((aspire-hosting-applicationmodel-iresourcebuilder((aspire-hosting-azure-azurecosmosdbemulatorresource)))))
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azurecosmosextensions.runasemulator#aspire-hosting-azurecosmosextensions-runasemulator(aspire-hosting-applicationmodel-iresourcebuilder((aspire-hosting-azurecosmosdbresource))-system-action((aspire-hosting-applicationmodel-iresourcebuilder((aspire-hosting-azure-azurecosmosdbemulatorresource)))))
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azuresignalrextensions.runasemulator#aspire-hosting-azuresignalrextensions-runasemulator(aspire-hosting-applicationmodel-iresourcebuilder((aspire-hosting-applicationmodel-azuresignalrresource))-system-action((aspire-hosting-applicationmodel-iresourcebuilder((aspire-hosting-azure-azuresignalremulatorresource)))))
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azuresignalrextensions.runasemulator#aspire-hosting-azuresignalrextensions-runasemulator(aspire-hosting-applicationmodel-iresourcebuilder((aspire-hosting-applicationmodel-azuresignalrresource))-system-action((aspire-hosting-applicationmodel-iresourcebuilder((aspire-hosting-azure-azuresignalremulatorresource)))))
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azurestorageextensions.runasemulator#aspire-hosting-azurestorageextensions-runasemulator(aspire-hosting-applicationmodel-iresourcebuilder((aspire-hosting-azure-azurestorageresource))-system-action((aspire-hosting-applicationmodel-iresourcebuilder((aspire-hosting-azure-azurestorageemulatorresource)))))
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azurestorageextensions.runasemulator#aspire-hosting-azurestorageextensions-runasemulator(aspire-hosting-applicationmodel-iresourcebuilder((aspire-hosting-azure-azurestorageresource))-system-action((aspire-hosting-applicationmodel-iresourcebuilder((aspire-hosting-azure-azurestorageemulatorresource)))))
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azureeventhubsextensions.runasemulator#aspire-hosting-azureeventhubsextensions-runasemulator(aspire-hosting-applicationmodel-iresourcebuilder((aspire-hosting-azure-azureeventhubsresource))-system-action((aspire-hosting-applicationmodel-iresourcebuilder((aspire-hosting-azure-azureeventhubsemulatorresource)))))
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azureeventhubsextensions.runasemulator#aspire-hosting-azureeventhubsextensions-runasemulator(aspire-hosting-applicationmodel-iresourcebuilder((aspire-hosting-azure-azureeventhubsresource))-system-action((aspire-hosting-applicationmodel-iresourcebuilder((aspire-hosting-azure-azureeventhubsemulatorresource)))))
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azureservicebusextensions.runasemulator#aspire-hosting-azureservicebusextensions-runasemulator(aspire-hosting-applicationmodel-iresourcebuilder((aspire-hosting-azure-azureservicebusresource))-system-action((aspire-hosting-applicationmodel-iresourcebuilder((aspire-hosting-azure-azureservicebusemulatorresource)))))
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azureservicebusextensions.runasemulator#aspire-hosting-azureservicebusextensions-runasemulator(aspire-hosting-applicationmodel-iresourcebuilder((aspire-hosting-azure-azureservicebusresource))-system-action((aspire-hosting-applicationmodel-iresourcebuilder((aspire-hosting-azure-azureservicebusemulatorresource)))))
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.existingazureresourceextensions.runasexisting
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.existingazureresourceextensions.asexisting#aspire-hosting-existingazureresourceextensions-asexisting-1(aspire-hosting-applicationmodel-iresourcebuilder((-0))-aspire-hosting-applicationmodel-iresourcebuilder((aspire-hosting-applicationmodel-parameterresource))-aspire-hosting-applicationmodel-iresourcebuilder((aspire-hosting-applicationmodel-parameterresource)))
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.existingazureresourceextensions.asexisting#aspire-hosting-existingazureresourceextensions-asexisting-1(aspire-hosting-applicationmodel-iresourcebuilder((-0))-aspire-hosting-applicationmodel-iresourcebuilder((aspire-hosting-applicationmodel-parameterresource))-aspire-hosting-applicationmodel-iresourcebuilder((aspire-hosting-applicationmodel-parameterresource)))

Use RunAsExisting when you need to dynamically interact with an existing resource during
runtime without needing to deploy or update it. Use PublishAsExisting when declaring existing
resources as part of a deployment configuration, ensuring the correct scopes and permissions are
applied. Finally, use AsExisting<T>(IResourceBuilder<T>, IResourceBuilder<ParameterResource>,
IResourceBuilder<ParameterResource>) when declaring existing resources in both configurations,
with a requirement to parameterize the references.

You can query whether a resource is marked as an existing resource, by calling the
IsExisting(IResource) extension method on the IResource. For more information, see Use existing
Azure resources.

.NET Aspire provides support for referencing existing Azure resources. You mark an existing
resource through the PublishAsExisting , RunAsExisting , and AsExisting APIs. These APIs allow
developers to reference already-deployed Azure resources, configure them, and generate
appropriate deployment manifests using Bicep templates.

Existing resources referenced with these APIs can be enhanced with role assignments and other
customizations that are available with .NET Aspire's infrastructure as code capabilities. These APIs
are limited to Azure resources that can be deployed with Bicep templates.

The RunAsExisting method is used when a distributed application is executing in "run" mode. In
this mode, it assumes that the referenced Azure resource already exists and integrates with it
during execution without provisioning the resource. To mark an Azure resource as existing, call the
RunAsExisting method on the resource builder. Consider the following example:

C#

The preceding code:

Creates a new builder instance.

General run mode API use cases

Use existing Azure resources

Configure existing Azure resources for run mode

var builder = DistributedApplication.CreateBuilder();

var existingServiceBusName = builder.AddParameter("existingServiceBusName");
var existingServiceBusResourceGroup =
builder.AddParameter("existingServiceBusResourceGroup");

var serviceBus = builder.AddAzureServiceBus("messaging")
 .RunAsExisting(existingServiceBusName,
existingServiceBusResourceGroup);

serviceBus.AddServiceBusQueue("queue");

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.existingazureresourceextensions.runasexisting
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.existingazureresourceextensions.publishasexisting
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.existingazureresourceextensions.asexisting#aspire-hosting-existingazureresourceextensions-asexisting-1(aspire-hosting-applicationmodel-iresourcebuilder((-0))-aspire-hosting-applicationmodel-iresourcebuilder((aspire-hosting-applicationmodel-parameterresource))-aspire-hosting-applicationmodel-iresourcebuilder((aspire-hosting-applicationmodel-parameterresource)))
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.existingazureresourceextensions.asexisting#aspire-hosting-existingazureresourceextensions-asexisting-1(aspire-hosting-applicationmodel-iresourcebuilder((-0))-aspire-hosting-applicationmodel-iresourcebuilder((aspire-hosting-applicationmodel-parameterresource))-aspire-hosting-applicationmodel-iresourcebuilder((aspire-hosting-applicationmodel-parameterresource)))
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.existingazureresourceextensions.isexisting#aspire-hosting-existingazureresourceextensions-isexisting(aspire-hosting-applicationmodel-iresource)
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.iresource
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.existingazureresourceextensions.runasexisting

Adds a parameter named existingServiceBusName to the builder.
Adds an Azure Service Bus resource named messaging to the builder.
Calls the RunAsExisting method on the serviceBus resource builder, passing the
existingServiceBusName parameter—alternatively, you can use the string parameter
overload.
Adds a queue named queue to the serviceBus resource.

By default, the Service Bus parameter reference is assumed to be in the same Azure resource
group. However, if it's in a different resource group, you can pass the resource group explicitly as
a parameter to correctly specify the appropriate resource grouping.

The PublishAsExisting method is used in "publish" mode when the intent is to declare and
reference an already-existing Azure resource during publish mode. This API facilitates the creation
of manifests and templates that include resource definitions that map to existing resources in
Bicep.

To mark an Azure resource as existing in for the "publish" mode, call the PublishAsExisting
method on the resource builder. Consider the following example:

C#

The preceding code:

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.existingazureresourceextensions.publishasexisting

JSON

For more information on the manifest file, see .NET Aspire manifest format for deployment tool
builders.

Additionally, the generated Bicep template includes the existingResourceName parameter, which
can be used to reference the existing Azure resource. Consider the following generated Bicep
template:

Bicep

"messaging": {
 "type": "azure.bicep.v0",
 "connectionString": "{messaging.outputs.serviceBusEndpoint}",
 "path": "messaging.module.bicep",
 "params": {
 "existingServiceBusName": "{existingServiceBusName.value}",
 "principalType": "",
 "principalId": ""
 }
},
"queue": {
 "type": "value.v0",
 "connectionString": "{messaging.outputs.serviceBusEndpoint}"
}

@description('The location for the resource(s) to be deployed.')
param location string = resourceGroup().location

param existingServiceBusName string

param principalType string

param principalId string

resource messaging 'Microsoft.ServiceBus/namespaces@2024-01-01' existing = {
 name: existingServiceBusName
}

resource messaging_AzureServiceBusDataOwner
'Microsoft.Authorization/roleAssignments@2022-04-01' = {
 name: guid(messaging.id, principalId,
subscriptionResourceId('Microsoft.Authorization/roleDefinitions',

For more information on the generated Bicep templates, see Infrastructure as code and consider
other publishing APIs.

The AsExisting<T>(IResourceBuilder<T>, IResourceBuilder<ParameterResource>,
IResourceBuilder<ParameterResource>) method is used when the distributed application is
running in "run" or "publish" mode. Because the AsExisting method operates in both scenarios, it
only supports a parameterized reference to the resource name or resource group name. This
approach helps prevent the use of the same resource in both testing and production
environments.

To mark an Azure resource as existing, call the AsExisting method on the resource builder.
Consider the following example:

C#

The preceding code:

Creates a new builder instance.
Adds a parameter named existingServiceBusName to the builder.
Adds an Azure Service Bus resource named messaging to the builder.

}

output serviceBusEndpoint string = messaging.properties.serviceBusEndpoint

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.existingazureresourceextensions.asexisting#aspire-hosting-existingazureresourceextensions-asexisting-1(aspire-hosting-applicationmodel-iresourcebuilder((-0))-aspire-hosting-applicationmodel-iresourcebuilder((aspire-hosting-applicationmodel-parameterresource))-aspire-hosting-applicationmodel-iresourcebuilder((aspire-hosting-applicationmodel-parameterresource)))
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.existingazureresourceextensions.asexisting#aspire-hosting-existingazureresourceextensions-asexisting-1(aspire-hosting-applicationmodel-iresourcebuilder((-0))-aspire-hosting-applicationmodel-iresourcebuilder((aspire-hosting-applicationmodel-parameterresource))-aspire-hosting-applicationmodel-iresourcebuilder((aspire-hosting-applicationmodel-parameterresource)))

Calls the AsExisting method on the serviceBus resource builder, passing the
existingServiceBusName parameter.
Adds a queue named queue to the serviceBus resource.

.NET Aspire provides the ability to connect to existing resources, including Azure resources.
Expressing connection strings is useful when you have existing Azure resources that you want to
use in your .NET Aspire app. The AddConnectionString API is used with the app host's execution
context to conditionally add a connection string to the app model.

Consider the following example, where in publish mode you add an Azure Storage resource while
in run mode you add a connection string to an existing Azure Storage:

C#

The preceding code:

Creates a new builder instance.
Adds an Azure Storage resource named storage in "publish" mode.
Adds a connection string to an existing Azure Storage named storage in "run" mode.
Adds a project named api to the builder.
The api project references the storage resource regardless of the mode.

The consuming API project uses the connection string information with no knowledge of how the
app host configured it. In "publish" mode, the code adds a new Azure Storage resource—which
would be reflected in the deployment manifest accordingly. When in "run" mode the connection

Add existing Azure resources with connection
strings

７ Note

Connection strings are used to represent a wide range of connection information, including
database connections, message brokers, endpoint URIs, and other services. In .NET Aspire
nomenclature, the term "connection string" is used to represent any kind of connection
information.

var builder = DistributedApplication.CreateBuilder(args);

var storage = builder.ExecutionContext.IsPublishMode
 ? builder.AddAzureStorage("storage")
 : builder.AddConnectionString("storage");

builder.AddProject<Projects.Api>("api")
 .WithReference(storage);

// After adding all resources, run the app...

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.parameterresourcebuilderextensions.addconnectionstring

string corresponds to a configuration value visible to the app host. It's assumed that all role
assignments for the target resource are configured. This means, you'd likely configure an
environment variable or a user secret to store the connection string. The configuration is resolved
from the ConnectionStrings__storage (or ConnectionStrings:storage) configuration key. These
configuration values can be viewed when the app runs. For more information, see Resource
details.

Unlike existing resources modeled with the first-class AsExisting API, existing resource modeled as
connection strings can't be enhanced with additional role assignments or infrastructure
customizations.

.NET Aspire allows you to publish primitive resources as Azure Container Apps, a serverless
platform that reduces infrastructure management. Supported resource types include:

ContainerResource: Represents a specified container.
ExecutableResource: Represents a specified executable process.
ProjectResource: Represents a specified .NET project.

To publish these resources, use the following APIs:

AzureContainerAppContainerExtensions.PublishAsAzureContainerApp<T>
(IResourceBuilder<T>, Action<AzureResourceInfrastructure,ContainerApp>)
AzureContainerAppExecutableExtensions.PublishAsAzureContainerApp<T>
(IResourceBuilder<T>, Action<AzureResourceInfrastructure,ContainerApp>)
AzureContainerAppProjectExtensions.PublishAsAzureContainerApp<T>
(IResourceBuilder<T>, Action<AzureResourceInfrastructure,ContainerApp>)

These APIs configure the resource to be published as an Azure Container App and implicitly call
AddAzureContainerAppsInfrastructure(IDistributedApplicationBuilder) to add the necessary
infrastructure and Bicep files to your app host. As an example, consider the following code:

C#

Publish as Azure Container App

var builder = DistributedApplication.CreateBuilder();

var env = builder.AddParameter("env");

var api = builder.AddProject<Projects.AspireApi>("api")
 .PublishAsAzureContainerApp<Projects.AspireApi>((infra, app) =>
 {
 app.Template.Containers[0].Value!.Env.Add(new
ContainerAppEnvironmentVariable
 {
 Name = "Hello",
 Value = env.AsProvisioningParameter(infra)
 });
 });

https://learn.microsoft.com/en-us/azure/container-apps/overview
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.containerresource
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.executableresource
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.projectresource
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azurecontainerappcontainerextensions.publishasazurecontainerapp#aspire-hosting-azurecontainerappcontainerextensions-publishasazurecontainerapp-1(aspire-hosting-applicationmodel-iresourcebuilder((-0))-system-action((aspire-hosting-azure-azureresourceinfrastructure-azure-provisioning-appcontainers-containerapp)))
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azurecontainerappcontainerextensions.publishasazurecontainerapp#aspire-hosting-azurecontainerappcontainerextensions-publishasazurecontainerapp-1(aspire-hosting-applicationmodel-iresourcebuilder((-0))-system-action((aspire-hosting-azure-azureresourceinfrastructure-azure-provisioning-appcontainers-containerapp)))
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azurecontainerappexecutableextensions.publishasazurecontainerapp#aspire-hosting-azurecontainerappexecutableextensions-publishasazurecontainerapp-1(aspire-hosting-applicationmodel-iresourcebuilder((-0))-system-action((aspire-hosting-azure-azureresourceinfrastructure-azure-provisioning-appcontainers-containerapp)))
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azurecontainerappexecutableextensions.publishasazurecontainerapp#aspire-hosting-azurecontainerappexecutableextensions-publishasazurecontainerapp-1(aspire-hosting-applicationmodel-iresourcebuilder((-0))-system-action((aspire-hosting-azure-azureresourceinfrastructure-azure-provisioning-appcontainers-containerapp)))
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azurecontainerappprojectextensions.publishasazurecontainerapp#aspire-hosting-azurecontainerappprojectextensions-publishasazurecontainerapp-1(aspire-hosting-applicationmodel-iresourcebuilder((-0))-system-action((aspire-hosting-azure-azureresourceinfrastructure-azure-provisioning-appcontainers-containerapp)))
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azurecontainerappprojectextensions.publishasazurecontainerapp#aspire-hosting-azurecontainerappprojectextensions-publishasazurecontainerapp-1(aspire-hosting-applicationmodel-iresourcebuilder((-0))-system-action((aspire-hosting-azure-azureresourceinfrastructure-azure-provisioning-appcontainers-containerapp)))
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azurecontainerappextensions.addazurecontainerappsinfrastructure#aspire-hosting-azurecontainerappextensions-addazurecontainerappsinfrastructure(aspire-hosting-idistributedapplicationbuilder)

The preceding code:

Creates a new builder instance.
Adds a parameter named env to the builder.
Adds a project named api to the builder.
Calls the PublishAsAzureContainerApp method on the api resource builder, passing a lambda
expression that configures the Azure Container App infrastructure—where infra is the
AzureResourceInfrastructure and app is the ContainerApp.

Adds an environment variable named Hello to the container app, using the env
parameter.
The AsProvisioningParameter method is used to treat env as either a new
ProvisioningParameter in infrastructure, or reuses an existing bicep parameter if one with
the same name already exists.

For more information, see ContainerApp and AsProvisioningParameter.

The Azure SDK for .NET provides the 📦 Azure.Provisioning NuGet package and a suite of
service-specific Azure provisioning packages . These Azure provisioning libraries make it easy to
declaratively specify Azure infrastructure natively in .NET. Their APIs enable you to write object-
oriented infrastructure in C#, resulting in Bicep. Bicep is a domain-specific language (DSL) for
deploying Azure resources declaratively.

While it's possible to provision Azure resources manually, .NET Aspire simplifies the process by
providing a set of APIs to express Azure resources. These APIs are available as extension methods
in .NET Aspire Azure hosting libraries, extending the IDistributedApplicationBuilder interface.
When you add Azure resources to your app host, they add the appropriate provisioning
functionality implicitly. In other words, you don't need to call any provisioning APIs directly.

Since .NET Aspire models Azure resources within Azure hosting integrations, the Azure SDK is
used to provision these resources. Bicep files are generated that define the Azure resources you
need. The generated Bicep files are output alongside the manifest file when you publish your app.

There are several ways to influence the generated Bicep files:

Azure.Provisioning customization:
Configure infrastructure: Customize Azure resource infrastructure.
Add Azure infrastructure: Manually add Azure infrastructure to your app host.

Use custom Bicep templates:
Reference Bicep files: Add a reference to a Bicep file on disk.

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azure.azureresourceinfrastructure
https://learn.microsoft.com/en-us/dotnet/api/azure.provisioning.appcontainers.containerapp
https://learn.microsoft.com/en-us/dotnet/api/azure.provisioning.provisioningparameter
https://learn.microsoft.com/en-us/dotnet/api/azure.provisioning.appcontainers.containerapp
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azureprovisioningresourceextensions.asprovisioningparameter
https://www.nuget.org/packages/Azure.Provisioning
https://www.nuget.org/packages/Azure.Provisioning
https://www.nuget.org/packages?q=owner%3A+azure-sdk+description%3A+declarative+resource+provisioning&sortby=relevance
https://www.nuget.org/packages?q=owner%3A+azure-sdk+description%3A+declarative+resource+provisioning&sortby=relevance
https://learn.microsoft.com/en-us/azure/azure-resource-manager/bicep/overview
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.idistributedapplicationbuilder

To avoid conflating terms and to help disambiguate "provisioning," it's important to understand
the distinction between local provisioning and Azure provisioning:

Local provisioning:

By default, when you call any of the Azure hosting integration APIs to add Azure resources,
the AddAzureProvisioning(IDistributedApplicationBuilder) API is called implicitly. This API
registers services in the dependency injection (DI) container that are used to provision Azure
resources when the app host starts. This concept is known as local provisioning. For more
information, see Local Azure provisioning.

Azure.Provisioning :

Azure.Provisioning refers to the NuGet package, and is a set of libraries that lets you use C#
to generate Bicep. The Azure hosting integrations in .NET Aspire use these libraries under the
covers to generate Bicep files that define the Azure resources you need. For more
information, see Azure.Provisioning customization.

All .NET Aspire Azure hosting integrations expose various Azure resources, and they're all
subclasses of the AzureProvisioningResource type—which itself inherits the AzureBicepResource.
This enables extensions that are generically type-constrained to this type, allowing for a fluent API
to customize the infrastructure to your liking. While .NET Aspire provides defaults, you're free to
influence the generated Bicep using these APIs.

Regardless of the Azure resource you're working with, to configure its underlying infrastructure,
you chain a call to the ConfigureInfrastructure extension method. This method allows you to
customize the infrastructure of the Azure resource by passing a configure delegate of type
Action<AzureResourceInfrastructure> . The AzureResourceInfrastructure type is a subclass of the
Azure.Provisioning.Infrastructure. This type exposes a massive API surface area for configuring the
underlying infrastructure of the Azure resource.

Consider the following example:

C#

Azure.Provisioning customization

Configure infrastructure

var sku = builder.AddParameter("storage-sku");

var storage = builder.AddAzureStorage("storage")
 .ConfigureInfrastructure(infra =>
 {
 var resources = infra.GetProvisionableResources();

 var storageAccount = resources.OfType<StorageAccount>().Single();

 storageAccount.Sku = new StorageSku

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azureprovisionerextensions.addazureprovisioning#aspire-hosting-azureprovisionerextensions-addazureprovisioning(aspire-hosting-idistributedapplicationbuilder)
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azure.azureprovisioningresource
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azure.azurebicepresource
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azureprovisioningresourceextensions.configureinfrastructure
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azure.azureresourceinfrastructure
https://learn.microsoft.com/en-us/dotnet/api/azure.provisioning.infrastructure

The preceding code:

Adds a parameter named storage-sku .
Adds Azure Storage with the AddAzureStorage API named storage .
Chains a call to ConfigureInfrastructure to customize the Azure Storage infrastructure:

Gets the provisionable resources.
Filters to a single StorageAccount.
Assigns the storage-sku parameter to the StorageAccount.Sku property:

A new instance of the StorageSku has its Name property assigned from the result of the
AsProvisioningParameter API.

This exemplifies flowing an external parameter into the Azure Storage infrastructure, resulting in
the generated Bicep file reflecting the desired configuration.

Not all Azure services are exposed as .NET Aspire integrations. While they might be at a later time,
you can still provision services that are available in Azure.Provisioning.* libraries. Imagine a
scenario where you have worker service that's responsible for managing an Azure Container
Registry. Now imagine that an app host project takes a dependency on the 📦
Azure.Provisioning.ContainerRegistry NuGet package.

You can use the AddAzureInfrastructure API to add the Azure Container Registry infrastructure to
your app host:

C#

 {
 Name = sku.AsProvisioningParameter(infra)
 };
 });

Add Azure infrastructure

var acr = builder.AddAzureInfrastructure("acr", infra =>
{
 var registry = new ContainerRegistryService("acr")
 {
 Sku = new()
 {
 Name = ContainerRegistrySkuName.Standard
 },
 };
 infra.Add(registry);

 var output = new ProvisioningOutput("registryName", typeof(string))
 {
 Value = registry.Name
 };
 infra.Add(output);
});

builder.AddProject<Projects.WorkerService>("worker")

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azurestorageextensions.addazurestorage
https://learn.microsoft.com/en-us/dotnet/api/azure.provisioning.storage.storageaccount
https://learn.microsoft.com/en-us/dotnet/api/azure.provisioning.storage.storageaccount.sku#azure-provisioning-storage-storageaccount-sku
https://learn.microsoft.com/en-us/dotnet/api/azure.provisioning.storage.storagesku
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azureprovisioningresourceextensions.asprovisioningparameter
https://www.nuget.org/packages/Azure.Provisioning.ContainerRegistry
https://www.nuget.org/packages/Azure.Provisioning.ContainerRegistry
https://www.nuget.org/packages/Azure.Provisioning.ContainerRegistry

The preceding code:

Calls AddAzureInfrastructure with a name of acr .
Provides a configureInfrastructure delegate to customize the Azure Container Registry
infrastructure:

Instantiates a ContainerRegistryService with the name acr and a standard SKU.
Adds the Azure Container Registry service to the infra variable.
Instantiates a ProvisioningOutput with the name registryName , a type of string , and a
value that corresponds to the name of the Azure Container Registry.
Adds the output to the infra variable.

Adds a project named worker to the builder.
Chains a call to WithEnvironment to set the ACR_REGISTRY_NAME environment variable in the
project to the value of the registryName output.

The functionality demonstrates how to add Azure infrastructure to your app host project, even if
the Azure service isn't directly exposed as a .NET Aspire integration. It further shows how to flow
the output of the Azure Container Registry into the environment of a dependent project.

Consider the resulting Bicep file:

Bicep

The Bicep file reflects the desired configuration of the Azure Container Registry, as defined by the
AddAzureInfrastructure API.

When you're targeting Azure as your desired cloud provider, you can use Bicep to define your
infrastructure as code. It aims to drastically simplify the authoring experience with a cleaner syntax
and better support for modularity and code reuse.

 .WithEnvironment(
 "ACR_REGISTRY_NAME",
 new BicepOutputReference("registryName", acr.Resource));

@description('The location for the resource(s) to be deployed.')
param location string = resourceGroup().location

resource acr 'Microsoft.ContainerRegistry/registries@2023-07-01' = {
 name: take('acr${uniqueString(resourceGroup().id)}', 50)
 location: location
 sku: {
 name: 'Standard'
 }
}

output registryName string = acr.name

Use custom Bicep templates

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azureprovisioningresourceextensions.addazureinfrastructure
https://learn.microsoft.com/en-us/dotnet/api/azure.provisioning.containerregistry.containerregistryservice
https://learn.microsoft.com/en-us/dotnet/api/azure.provisioning.provisioningoutput
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.resourcebuilderextensions.withenvironment

While .NET Aspire provides a set of prebuilt Bicep templates, there might be times when you
either want to customize the templates or create your own. This section explains the concepts and
corresponding APIs that you can use to customize the Bicep templates.

As part of the Azure deployment story for .NET Aspire, the Azure Developer CLI (azd) provides an
understanding of your .NET Aspire project and the ability to deploy it to Azure. The azd CLI uses
the Bicep templates to deploy the application to Azure.

When you want to reference Bicep files, it's possible that you're not using any of the Azure hosting
integrations. In this case, you can still reference Bicep files by installing the Aspire.Hosting.Azure
package. This package provides the necessary APIs to reference Bicep files and customize the
Azure resources.

To use any of this functionality, the 📦 Aspire.Hosting.Azure NuGet package must be installed:

.NET CLI

For more information, see dotnet add package or Manage package dependencies in .NET
applications.

All the examples in this section assume that you're using the Aspire.Hosting.Azure namespace.
Additionally, the examples assume you have an IDistributedApplicationBuilder instance:

C#

） Important

This section isn't intended to teach you Bicep, but rather to provide guidance on how to
create custom Bicep templates for use with .NET Aspire.

Install Aspire.Hosting.Azure package

 Tip

If you're using any of the Azure hosting integrations, you don't need to install the
Aspire.Hosting.Azure package, as it's a transitive dependency.

.NET CLI

dotnet add package Aspire.Hosting.Azure

What to expect from the examples

https://www.nuget.org/packages/Aspire.Hosting.Azure
https://www.nuget.org/packages/Aspire.Hosting.Azure
https://learn.microsoft.com/en-us/dotnet/core/tools/dotnet-add-package
https://learn.microsoft.com/en-us/dotnet/core/tools/dependencies
https://learn.microsoft.com/en-us/dotnet/core/tools/dependencies
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azure
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.idistributedapplicationbuilder

By default, when you call any of the Bicep-related APIs, a call is also made to
AddAzureProvisioning that adds support for generating Azure resources dynamically during
application startup. For more information, see Local provisioning and Azure.Provisioning.

Imagine that you have a Bicep template in a file named storage.bicep that provisions an Azure
Storage Account:

Bicep

To add a reference to the Bicep file on disk, call the AddBicepTemplate method. Consider the
following example:

C#

The preceding code adds a reference to a Bicep file located at ../infra/storage.bicep . The file
paths should be relative to the app host project. This reference results in an AzureBicepResource
being added to the application's resources collection with the "storage" name, and the API
returns an IResourceBuilder<AzureBicepResource> instance that can be used to further customize
the resource.

using Aspire.Hosting.Azure;

var builder = DistributedApplication.CreateBuilder(args);

// Examples go here...

builder.Build().Run();

Reference Bicep files

param location string = resourceGroup().location
param storageAccountName string = 'toylaunch${uniqueString(resourceGroup().id)}'

resource storageAccount 'Microsoft.Storage/storageAccounts@2021-06-01' = {
 name: storageAccountName
 location: location
 sku: {
 name: 'Standard_LRS'
 }
 kind: 'StorageV2'
 properties: {
 accessTier: 'Hot'
 }
}

builder.AddBicepTemplate(
 name: "storage",
 bicepFile: "../infra/storage.bicep");

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azureprovisionerextensions.addazureprovisioning
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azurebicepresourceextensions.addbiceptemplate
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azure.azurebicepresource

While having a Bicep file on disk is the most common scenario, you can also add Bicep templates
inline. Inline templates can be useful when you want to define a template in code or when you
want to generate the template dynamically. To add an inline Bicep template, call the
AddBicepTemplateString method with the Bicep template as a string . Consider the following
example:

C#

In this example, the Bicep template is defined as an inline string and added to the application's
resources collection with the name "ai" . This example provisions an Azure AI resource.

Bicep supports accepting parameters, which can be used to customize the behavior of the
template. To pass parameters to a Bicep template from .NET Aspire, chain calls to the
WithParameter method as shown in the following example:

C#

Reference Bicep inline

builder.AddBicepTemplateString(
 name: "ai",
 bicepContent: """
 @description('That name is the name of our application.')
 param cognitiveServiceName string =
'CognitiveService-${uniqueString(resourceGroup().id)}'

 @description('Location for all resources.')
 param location string = resourceGroup().location

 @allowed([
 'S0'
])
 param sku string = 'S0'

 resource cognitiveService 'Microsoft.CognitiveServices/accounts@2021-10-01' =
{
 name: cognitiveServiceName
 location: location
 sku: {
 name: sku
 }
 kind: 'CognitiveServices'
 properties: {
 apiProperties: {
 statisticsEnabled: false
 }
 }
 }
 """
);

Pass parameters to Bicep templates

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azurebicepresourceextensions.addbiceptemplatestring
https://learn.microsoft.com/en-us/azure/azure-resource-manager/bicep/parameters
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azurebicepresourceextensions.withparameter

The preceding code:

Adds a parameter named "region" to the builder instance.
Adds a reference to a Bicep file located at ../infra/storage.bicep .
Passes the "region" parameter to the Bicep template, which is resolved using the standard
parameter resolution.
Passes the "storageName" parameter to the Bicep template with a hardcoded value.
Passes the "tags" parameter to the Bicep template with an array of strings.

For more information, see External parameters.

.NET Aspire provides a set of well-known parameters that can be passed to Bicep templates. These
parameters are used to provide information about the application and the environment to the
Bicep templates. The following well-known parameters are available:

Field Description Value

AzureBicepResource.KnownParameters.KeyVaultName The name of the
key vault resource
used to store
secret outputs.

"keyVaultName"

AzureBicepResource.KnownParameters.Location The location of
the resource. This
is required for all
resources.

"location"

AzureBicepResource.KnownParameters.LogAnalyticsWorkspaceId The resource ID
of the log
analytics
workspace.

"logAnalyticsWorkspaceId"

AzureBicepResource.KnownParameters.PrincipalId The principal ID
of the current
user or managed
identity.

"principalId"

AzureBicepResource.KnownParameters.PrincipalName The principal
name of the

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azure.azurebicepresource.knownparameters.keyvaultname#aspire-hosting-azure-azurebicepresource-knownparameters-keyvaultname
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azure.azurebicepresource.knownparameters.location#aspire-hosting-azure-azurebicepresource-knownparameters-location
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azure.azurebicepresource.knownparameters.loganalyticsworkspaceid#aspire-hosting-azure-azurebicepresource-knownparameters-loganalyticsworkspaceid
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azure.azurebicepresource.knownparameters.principalid#aspire-hosting-azure-azurebicepresource-knownparameters-principalid
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azure.azurebicepresource.knownparameters.principalname#aspire-hosting-azure-azurebicepresource-knownparameters-principalname

Field Description Value
current user or
managed identity.

AzureBicepResource.KnownParameters.PrincipalType The principal type
of the current
user or managed
identity. Either
User or
ServicePrincipal .

"principalType"

To use a well-known parameter, pass the parameter name to the WithParameter method, such as
WithParameter(AzureBicepResource.KnownParameters.KeyVaultName) . You don't pass values for well-
known parameters, as .NET Aspire resolves them on your behalf.

Consider an example where you want to set up an Azure Event Grid webhook. You might define
the Bicep template as follows:

Bicep

param topicName string
param webHookEndpoint string
param principalId string
param principalType string
param location string = resourceGroup().location

// The topic name must be unique because it's represented by a DNS entry.
// must be between 3-50 characters and contain only values a-z, A-Z, 0-9, and "-".

resource topic 'Microsoft.EventGrid/topics@2023-12-15-preview' = {
 name: toLower(take('${topicName}${uniqueString(resourceGroup().id)}', 50))
 location: location

 resource eventSubscription 'eventSubscriptions' = {
 name: 'customSub'
 properties: {
 destination: {
 endpointType: 'WebHook'
 properties: {
 endpointUrl: webHookEndpoint
 }
 }
 }
 }
}

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azure.azurebicepresource.knownparameters.principaltype#aspire-hosting-azure-azurebicepresource-knownparameters-principaltype
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azurebicepresourceextensions.withparameter

This Bicep template defines several parameters, including the topicName , webHookEndpoint ,
principalId , principalType , and the optional location . To pass these parameters to the Bicep
template, you can use the following code snippet:

C#

The webHookApi project is added as a reference to the builder .
The topicName parameter is passed a hardcoded name value.
The webHookEndpoint parameter is passed as an expression that resolves to the URL from the
api project references' "https" endpoint with the /hook route.
The principalId and principalType parameters are passed as well-known parameters.

The well-known parameters are convention-based and shouldn't be accompanied with a
corresponding value when passed using the WithParameter API. Well-known parameters simplify
some common functionality, such as role assignments, when added to the Bicep templates, as
shown in the preceding example. Role assignments are required for the Event Grid webhook to
send events to the specified endpoint. For more information, see Event Grid Data Sender role
assignment.

In addition to passing parameters to Bicep templates, you can also get outputs from the Bicep
templates. Consider the following Bicep template, as it defines an output named endpoint :

resource EventGridRoleAssignment 'Microsoft.Authorization/roleAssignments@2022-04-01'
= {
 name: guid(topic.id, principalId,
subscriptionResourceId('Microsoft.Authorization/roleDefinitions', 'd5a91429-5739-
47e2-a06b-3470a27159e7'))
 scope: topic
 properties: {
 principalId: principalId
 principalType: principalType
 roleDefinitionId:
subscriptionResourceId('Microsoft.Authorization/roleDefinitions', 'd5a91429-5739-
47e2-a06b-3470a27159e7')
 }
}

output endpoint string = topic.properties.endpoint

var webHookApi = builder.AddProject<Projects.WebHook_Api>("webhook-api");

var webHookEndpointExpression = ReferenceExpression.Create(
 $"{webHookApi.GetEndpoint("https")}/hook");

builder.AddBicepTemplate("event-grid-webhook", "../infra/event-grid-webhook.bicep")
 .WithParameter("topicName", "events")
 .WithParameter(AzureBicepResource.KnownParameters.PrincipalId)
 .WithParameter(AzureBicepResource.KnownParameters.PrincipalType)
 .WithParameter("webHookEndpoint", () => webHookEndpointExpression);

Get outputs from Bicep references

https://learn.microsoft.com/en-us/azure/role-based-access-control/built-in-roles/integration#eventgrid-data-sender
https://learn.microsoft.com/en-us/azure/role-based-access-control/built-in-roles/integration#eventgrid-data-sender

Bicep

The Bicep defines an output named endpoint . To get the output from the Bicep template, call the
GetOutput method on an IResourceBuilder<AzureBicepResource> instance as demonstrated in
following C# code snippet:

C#

In this example, the output from the Bicep template is retrieved and stored in an endpoint
variable. Typically, you would pass this output as an environment variable to another resource that
relies on it. For instance, if you had an ASP.NET Core Minimal API project that depended on this
endpoint, you could pass the output as an environment variable to the project using the following
code snippet:

C#

param storageName string
param location string = resourceGroup().location

resource myStorageAccount 'Microsoft.Storage/storageAccounts@2019-06-01' = {
 name: storageName
 location: location
 kind: 'StorageV2'
 sku:{
 name:'Standard_LRS'
 tier: 'Standard'
 }
 properties: {
 accessTier: 'Hot'
 }
}

output endpoint string = myStorageAccount.properties.primaryEndpoints.blob

var storage = builder.AddBicepTemplate(
 name: "storage",
 bicepFile: "../infra/storage.bicep"
);

var endpoint = storage.GetOutput("endpoint");

var storage = builder.AddBicepTemplate(
 name: "storage",
 bicepFile: "../infra/storage.bicep"
);

var endpoint = storage.GetOutput("endpoint");

var apiService = builder.AddProject<Projects.AspireSample_ApiService>(
 name: "apiservice"
)
 .WithEnvironment("STORAGE_ENDPOINT", endpoint);

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azurebicepresourceextensions.getoutput

For more information, see Bicep outputs.

It's important to avoid outputs for secrets when working with Bicep. If an output is considered a
secret, meaning it shouldn't be exposed in logs or other places, you can treat it as such. This can
be achieved by storing the secret in Azure Key Vault and referencing it in the Bicep template. .NET
Aspire's Azure integration provides a pattern for securely storing outputs from the Bicep template
by allows resources to use the keyVaultName parameter to store secrets in Azure Key Vault.

Consider the following Bicep template as an example the helps to demonstrate this concept of
securing secret outputs:

Bicep

Get secret outputs from Bicep references

param databaseAccountName string
param keyVaultName string

param databases array = []

@description('Tags that will be applied to all resources')
param tags object = {}

param location string = resourceGroup().location

var resourceToken = uniqueString(resourceGroup().id)

resource cosmosDb 'Microsoft.DocumentDB/databaseAccounts@2023-04-15' = {
 name: replace('${databaseAccountName}-${resourceToken}', '-', '')
 location: location
 kind: 'GlobalDocumentDB'
 tags: tags
 properties: {
 consistencyPolicy: { defaultConsistencyLevel: 'Session' }
 locations: [
 {
 locationName: location
 failoverPriority: 0
 }
]
 databaseAccountOfferType: 'Standard'
 }

 resource db 'sqlDatabases@2023-04-15' = [for name in databases: {
 name: '${name}'
 location: location
 tags: tags
 properties: {
 resource: {
 id: '${name}'
 }
 }
 }]
}

var primaryMasterKey = cosmosDb.listKeys(cosmosDb.apiVersion).primaryMasterKey

https://learn.microsoft.com/en-us/azure/azure-resource-manager/bicep/outputs
https://learn.microsoft.com/en-us/azure/azure-resource-manager/bicep/scenarios-secrets#avoid-outputs-for-secrets

The preceding Bicep template expects a keyVaultName parameter, among several other
parameters. It then defines an Azure Cosmos DB resource and stashes a secret into Azure Key
Vault, named connectionString which represents the fully qualified connection string to the
Cosmos DB instance. To access this secret connection string value, you can use the following code
snippet:

C#

In the preceding code snippet, the cosmos Bicep template is added as a reference to the builder .
The connectionString secret output is retrieved from the Bicep template and stored in a variable.
The secret output is then passed as an environment variable (ConnectionStrings__cosmos) to the
api project. This environment variable is used to connect to the Cosmos DB instance.

When this resource is deployed, the underlying deployment mechanism will automatically
Reference secrets from Azure Key Vault. To guarantee secret isolation, .NET Aspire creates a Key
Vault per source.

resource vault 'Microsoft.KeyVault/vaults@2023-07-01' existing = {
 name: keyVaultName

 resource secret 'secrets@2023-07-01' = {
 name: 'connectionString'
 properties: {
 value:
'AccountEndpoint=${cosmosDb.properties.documentEndpoint};AccountKey=${primaryMasterKe
y}'
 }
 }
}

var cosmos = builder.AddBicepTemplate("cosmos", "../infra/cosmosdb.bicep")
 .WithParameter("databaseAccountName", "fallout-db")
 .WithParameter(AzureBicepResource.KnownParameters.KeyVaultName)
 .WithParameter("databases", ["vault-33", "vault-111"]);

var connectionString =
 cosmos.GetSecretOutput("connectionString");

builder.AddProject<Projects.WebHook_Api>("api")
 .WithEnvironment(
 "ConnectionStrings__cosmos",
 connectionString);

７ Note

In local provisioning mode, the secret is extracted from Key Vault and set it in an environment
variable. For more information, see Local Azure provisioning.

https://learn.microsoft.com/en-us/azure/container-apps/manage-secrets?tabs=azure-portal#reference-secret-from-key-vault

When you publish your app, the Azure provisioning generated Bicep is used by the Azure
Developer CLI to create the Azure resources in your Azure subscription. .NET Aspire outputs a
publishing manifest, that's also a vital part of the publishing process. The Azure Developer CLI is a
command-line tool that provides a set of commands to manage Azure resources.

For more information on publishing and deployment, see Deploy a .NET Aspire project to Azure
Container Apps using the Azure Developer CLI (in-depth guide).

Publishing

Local Azure provisioning
Article • 12/16/2024

.NET Aspire simplifies local cloud-native app development with its compelling app host
model. This model allows you to run your app locally with the same configuration and
services as in Azure. In this article you learn how to provision Azure resources from your
local development environment through the .NET Aspire app host.

This article assumes that you have an Azure account and subscription. If you don't have
an Azure account, you can create a free one at Azure Free Account . For provisioning
functionality to work correctly, you'll need to be authenticated with Azure. Ensure that
you have the Azure Developer CLI installed. Additionally, you'll need to provide some
configuration values so that the provisioning logic can create resources on your behalf.

The app host provides a set of APIs to express Azure resources. These APIs are available
as extension methods in .NET Aspire Azure hosting libraries, extending the
IDistributedApplicationBuilder interface. When you add Azure resources to your app
host, they'll add the appropriate provisioning functionality implicitly. In other words, you
don't need to call any provisioning APIs directly.

When the app host starts, the following provisioning logic is executed:

1. The Azure configuration section is validated.
2. When invalid the dashboard and app host output provides hints as to what's

missing. For more information, see Missing configuration value hints.
3. When valid Azure resources are conditionally provisioned:

a. If an Azure deployment for a given resource doesn't exist, it's created and
configured as a deployment.

７ Note

To be clear, resources are provisioned in Azure, but the provisioning process is
initiated from your local development environment. To optimize your local
development experience, consider using emulator or containers when available. For
more information, see Typical developer experience.

Requirements

App host provisioning APIs

https://azure.microsoft.com/free/
https://azure.microsoft.com/free/
https://learn.microsoft.com/en-us/cli/azure/install-azure-cli
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.idistributedapplicationbuilder

b. The configuration of said deployment is stamped with a checksum as a means
to support only provisioning resources as necessary.

The app host automatically manages provisioning of Azure resources. The first time the
app host runs, it provisions the resources specified in the app host. Subsequent runs
don't provision the resources again unless the app host configuration changes.

If you've already provisioned Azure resources outside of the app host and want to use
them, you can provide the connection string with the AddConnectionString API as
shown in the following Azure Key Vault example:

C#

The preceding code snippet shows how to add an Azure Key Vault to the app host. The
AddAzureKeyVault API is used to add the Azure Key Vault to the app host. The
AddConnectionString API is used to provide the connection string to the app host.

Alternatively, for some Azure resources, you can opt-in to running them as an emulator
with the RunAsEmulator API. This API is available for Azure Cosmos DB and Azure
Storage integrations. For example, to run Azure Cosmos DB as an emulator, you can use
the following code snippet:

C#

The RunAsEmulator API configures an Azure Cosmos DB resource to be emulated using
the Azure Cosmos DB emulator with the NoSQL API.

Use existing Azure resources

// Service registration
var secrets = builder.ExecutionContext.IsPublishMode
 ? builder.AddAzureKeyVault("secrets")
 : builder.AddConnectionString("secrets");

// Service consumption
builder.AddProject<Projects.ExampleProject>()
 .WithReference(secrets)

var cosmos = builder.AddAzureCosmosDB("cosmos")
 .RunAsEmulator();

.NET Aspire Azure hosting integrations

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.parameterresourcebuilderextensions.addconnectionstring
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azurekeyvaultresourceextensions.addazurekeyvault
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azurecosmosextensions.runasemulator

If you're using Azure resources in your app host, you're using one or more of the .NET
Aspire Azure hosting integrations. These hosting libraries provide extension methods to
the IDistributedApplicationBuilder interface to add Azure resources to your app host.

When utilizing Azure resources in your local development environment, you need to
provide the necessary configuration values. Configuration values are specified under the
Azure section:

SubscriptionId : The Azure subscription ID.
AllowResourceGroupCreation : A boolean value that indicates whether to create a
new resource group.
ResourceGroup : The name of the resource group to use.
Location : The Azure region to use.

Consider the following example appsettings.json configuration:

JSON

After you've configured the necessary values, you can start provisioning Azure resources
in your local development environment.

The .NET Aspire app host uses a credential store for Azure resource authentication and
authorization. Depending on your subscription, the correct credential store may be
needed for multi-tenant provisioning scenarios.

Configuration

{
 "Azure": {
 "SubscriptionId": "<Your subscription id>",
 "AllowResourceGroupCreation": true,
 "ResourceGroup": "<Valid resource group name>",
 "Location": "<Valid Azure location>"
 }
}

） Important

It's recommended to store these values as app secrets. For more information, see
Manage app secrets.

Azure provisioning credential store

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.idistributedapplicationbuilder
https://learn.microsoft.com/en-us/aspnet/core/security/app-secrets

With the 📦 Aspire.Hosting.Azure NuGet package installed, and if your app host
depends on Azure resources, the default Azure credential store relies on the
DefaultAzureCredential. To change this behavior, you can set the credential store value
in the appsettings.json file, as shown in the following example:

JSON

As with all configuration-based settings, you can configure these with alternative
providers, such as user secrets or environment variables. The Azure:CredentialSource
value can be set to one of the following values:

AzureCli : Delegates to the AzureCliCredential.
AzurePowerShell : Delegates to the AzurePowerShellCredential.
VisualStudio : Delegates to the VisualStudioCredential.
VisualStudioCode : Delegates to the VisualStudioCodeCredential.
AzureDeveloperCli : Delegates to the AzureDeveloperCliCredential.
InteractiveBrowser : Delegates to the InteractiveBrowserCredential.

In Visual Studio, you can use Connected Services to configure the default Azure
provisioning settings. Select the app host project, right-click on the Connected Services
node, and select Azure Resource Provisioning Settings:

This will open a dialog where you can configure the Azure provisioning settings, as
shown in the following screenshot:

{
 "Azure": {
 "CredentialSource": "AzureCli"
 }
}

 Tip

For more information about the Azure SDK authentication and authorization, see
Credential chains in the Azure Identity library for .NET.

Tooling support



https://nuget.org/packages/Aspire.Hosting.Azure
https://nuget.org/packages/Aspire.Hosting.Azure
https://learn.microsoft.com/en-us/dotnet/api/azure.identity.defaultazurecredential
https://learn.microsoft.com/en-us/dotnet/core/extensions/configuration
https://learn.microsoft.com/en-us/aspnet/core/security/app-secrets
https://learn.microsoft.com/en-us/dotnet/core/extensions/configuration-providers#environment-variable-configuration-provider
https://learn.microsoft.com/en-us/dotnet/api/azure.identity.azureclicredential
https://learn.microsoft.com/en-us/dotnet/api/azure.identity.azurepowershellcredential
https://learn.microsoft.com/en-us/dotnet/api/azure.identity.visualstudiocredential
https://learn.microsoft.com/en-us/dotnet/api/azure.identity.visualstudiocodecredential
https://learn.microsoft.com/en-us/dotnet/api/azure.identity.azuredeveloperclicredential
https://learn.microsoft.com/en-us/dotnet/api/azure.identity.interactivebrowsercredential
https://learn.microsoft.com/en-us/dotnet/azure/sdk/authentication/credential-chains?tabs=dac#defaultazurecredential-overview
https://learn.microsoft.com/en-us/dotnet/aspire/docs/azure/media/azure-resource-provisioning-settings.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/azure/media/azure-resource-provisioning-settings.png#lightbox

When the Azure configuration section is missing, has missing values, or is invalid, the
.NET Aspire dashboard provides useful hints. For example, consider an app host that's
missing the SubscriptionId configuration value that's attempting to use an Azure Key
Vault resource. The Resources page indicates the State as Missing subscription
configuration:

Additionally, the Console logs display this information as well, consider the following
screenshot:



Missing configuration value hints



https://learn.microsoft.com/en-us/dotnet/aspire/docs/azure/media/azure-provisioning-settings-dialog.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/azure/media/azure-provisioning-settings-dialog.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/azure/media/console-logs-kv-missing-subscription.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/azure/media/console-logs-kv-missing-subscription.png#lightbox

After provisioning Azure resources in this way, you must manually clean up the
resources in the Azure portal as .NET Aspire doesn't provide a built-in mechanism to
delete Azure resources. The easiest way to achieve this is by deleting the configured
resource group. This can be done in the Azure portal or by using the Azure CLI:

Azure CLI

Replace <ResourceGroupName> with the name of the resource group you want to delete.
For more information, see az group delete.

Known limitations

az group delete --name <ResourceGroupName>

https://learn.microsoft.com/en-us/azure/azure-resource-manager/management/delete-resource-group?tabs=azure-portal#delete-resource-group
https://learn.microsoft.com/en-us/cli/azure/group#az-group-delete

.NET Aspire Azure AI Search integration
Article • 03/10/2025

Includes: Hosting integration and Client integration

The .NET Aspire Azure AI Search Documents integration enables you to connect to
Azure AI Search (formerly Azure Cognitive Search) services from your .NET applications.
Azure AI Search is an enterprise-ready information retrieval system for your
heterogeneous content that you ingest into a search index, and surface to users through
queries and apps. It comes with a comprehensive set of advanced search technologies,
built for high-performance applications at any scale.

The .NET Aspire Azure AI Search hosting integration models the Azure AI Search
resource as the AzureSearchResource type. To access this type and APIs for expressing
them within your app host project, install the 📦 Aspire.Hosting.Azure.Search NuGet
package:

.NET CLI

For more information, see dotnet add package or Manage package dependencies in
.NET applications.

To add an AzureSearchResource to your app host project, call the AddAzureSearch
method providing a name:

C#

Hosting integration

.NET CLI

dotnet add package Aspire.Hosting.Azure.Search

Add an Azure AI Search resource

var builder = DistributedApplication.CreateBuilder(args);

var search = builder.AddAzureSearch("search");

builder.AddProject<Projects.ExampleProject>()
 .WithReference(search);

https://learn.microsoft.com/en-us/azure/search/search-what-is-azure-search
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azure.azuresearchresource
https://www.nuget.org/packages/Aspire.Hosting.Azure.Search
https://www.nuget.org/packages/Aspire.Hosting.Azure.Search
https://learn.microsoft.com/en-us/dotnet/core/tools/dotnet-add-package
https://learn.microsoft.com/en-us/dotnet/core/tools/dependencies
https://learn.microsoft.com/en-us/dotnet/core/tools/dependencies
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azure.azuresearchresource
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azuresearchextensions.addazuresearch

The preceding code adds an Azure AI Search resource named search to the app host
project. The WithReference method passes the connection information to the
ExampleProject project.

If you're new to Bicep, it's a domain-specific language for defining Azure resources. With
.NET Aspire, you don't need to write Bicep by hand; instead, the provisioning APIs
generate Bicep for you. When you publish your app, the generated Bicep is output
alongside the manifest file. When you add an Azure AI Search resource, Bicep is
generated to provision the search service with appropriate defaults.

Bicep

// After adding all resources, run the app...

） Important

When you call AddAzureSearch, it implicitly calls
AddAzureProvisioning(IDistributedApplicationBuilder)—which adds support for
generating Azure resources dynamically during app startup. The app must
configure the appropriate subscription and location. For more information, see
Local provisioning: Configuration

Generated provisioning Bicep

@description('The location for the resource(s) to be deployed.')
param location string = resourceGroup().location

param principalType string

param principalId string

resource search 'Microsoft.Search/searchServices@2023-11-01' = {
 name: take('search-${uniqueString(resourceGroup().id)}', 60)
 location: location
 properties: {
 hostingMode: 'default'
 disableLocalAuth: true
 partitionCount: 1
 replicaCount: 1
 }
 sku: {
 name: 'basic'
 }
 tags: {
 'aspire-resource-name': 'search'

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.resourcebuilderextensions.withreference
https://learn.microsoft.com/en-us/azure/azure-resource-manager/bicep/overview
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azuresearchextensions.addazuresearch
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azureprovisionerextensions.addazureprovisioning#aspire-hosting-azureprovisionerextensions-addazureprovisioning(aspire-hosting-idistributedapplicationbuilder)

The preceding Bicep is a module that provisions an Azure AI Search service resource
with the following defaults:

location : The location parameter of the resource group, defaults to
resourceGroup().location .
principalType : The principal type parameter of the Azure AI Search resource.
principalId : The principal ID parameter of the Azure AI Search resource.
search : The resource representing the Azure AI Search service.

properties : The properties of the Azure AI Search service:
hostingMode : Is set to default .
disableLocalAuth : Is set to true .
partitionCount : Is set to 1 .
replicaCount : Is set to 1 .

 }
}

resource search_SearchIndexDataContributor
'Microsoft.Authorization/roleAssignments@2022-04-01' = {
 name: guid(search.id, principalId,
subscriptionResourceId('Microsoft.Authorization/roleDefinitions', '8ebe5a00-
799e-43f5-93ac-243d3dce84a7'))
 properties: {
 principalId: principalId
 roleDefinitionId:
subscriptionResourceId('Microsoft.Authorization/roleDefinitions', '8ebe5a00-
799e-43f5-93ac-243d3dce84a7')
 principalType: principalType
 }
 scope: search
}

resource search_SearchServiceContributor
'Microsoft.Authorization/roleAssignments@2022-04-01' = {
 name: guid(search.id, principalId,
subscriptionResourceId('Microsoft.Authorization/roleDefinitions', '7ca78c08-
252a-4471-8644-bb5ff32d4ba0'))
 properties: {
 principalId: principalId
 roleDefinitionId:
subscriptionResourceId('Microsoft.Authorization/roleDefinitions', '7ca78c08-
252a-4471-8644-bb5ff32d4ba0')
 principalType: principalType
 }
 scope: search
}

output connectionString string =
'Endpoint=https://${search.name}.search.windows.net'

sku : Defaults to basic .
search_SearchIndexDataContributor : The role assignment for the Azure AI Search
index data contributor role. For more information, see Search Index Data
Contributor.
search_SearchServiceContributor : The role assignment for the Azure AI Search
service contributor role. For more information, see Search Service Contributor.
connectionString : The connection string for the Azure AI Search service, which is
used to connect to the service. The connection string is generated using the
Endpoint property of the Azure AI Search service.

The generated Bicep is a starting point and is influenced by changes to the provisioning
infrastructure in C#. Customizations to the Bicep file directly will be overwritten, so make
changes through the C# provisioning APIs to ensure they are reflected in the generated
files.

All .NET Aspire Azure resources are subclasses of the AzureProvisioningResource type.
This type enables the customization of the generated Bicep by providing a fluent API to
configure the Azure resources—using the ConfigureInfrastructure<T>
(IResourceBuilder<T>, Action<AzureResourceInfrastructure>) API. For example, you can
configure the search service partitions, replicas, and more:

C#

The preceding code:

Chains a call to the ConfigureInfrastructure API:
The infra parameter is an instance of the AzureResourceInfrastructure type.
The provisionable resources are retrieved by calling the
GetProvisionableResources() method.

Customize provisioning infrastructure

builder.AddAzureSearch("search")
 .ConfigureInfrastructure(infra =>
 {
 var searchService = infra.GetProvisionableResources()
 .OfType<SearchService>()
 .Single();

 searchService.PartitionCount = 6;
 searchService.ReplicaCount = 3;
 searchService.SearchSkuName = SearchServiceSkuName.Standard3;
 searchService.Tags.Add("ExampleKey", "Example value");
 });

https://learn.microsoft.com/en-us/azure/role-based-access-control/built-in-roles/ai-machine-learning#search-index-data-contributor
https://learn.microsoft.com/en-us/azure/role-based-access-control/built-in-roles/ai-machine-learning#search-index-data-contributor
https://learn.microsoft.com/en-us/azure/role-based-access-control/built-in-roles/ai-machine-learning#search-service-contributor
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azure.azureprovisioningresource
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azureprovisioningresourceextensions.configureinfrastructure#aspire-hosting-azureprovisioningresourceextensions-configureinfrastructure-1(aspire-hosting-applicationmodel-iresourcebuilder((-0))-system-action((aspire-hosting-azure-azureresourceinfrastructure)))
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azureprovisioningresourceextensions.configureinfrastructure#aspire-hosting-azureprovisioningresourceextensions-configureinfrastructure-1(aspire-hosting-applicationmodel-iresourcebuilder((-0))-system-action((aspire-hosting-azure-azureresourceinfrastructure)))
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azureprovisioningresourceextensions.configureinfrastructure
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azure.azureresourceinfrastructure
https://learn.microsoft.com/en-us/dotnet/api/azure.provisioning.infrastructure.getprovisionableresources#azure-provisioning-infrastructure-getprovisionableresources

The single SearchService resource is retrieved.
The SearchService.PartitionCount is set to 6 .
The SearchService.ReplicaCount is set to 3 .
The SearchService.SearchSkuName is set to
SearchServiceSkuName.Standard3.
A tag is added to the Cognitive Services resource with a key of ExampleKey
and a value of Example value .

There are many more configuration options available to customize the Azure AI Search
resource. For more information, see Azure.Provisioning customization.

You might have an existing Azure AI Search service that you want to connect to. You can
chain a call to annotate that your AzureSearchResource is an existing resource:

C#

For more information on treating Azure AI Search resources as existing resources, see
Use existing Azure resources.

Alternatively, instead of representing an Azure AI Search resource, you can add a
connection string to the app host. Which is a weakly-typed approach that's based solely
on a string value. To add a connection to an existing Azure AI Search service, call the
AddConnectionString method:

C#

Connect to an existing Azure AI Search service

var builder = DistributedApplication.CreateBuilder(args);

var existingSearchName = builder.AddParameter("existingSearchName");
var existingSearchResourceGroup =
builder.AddParameter("existingSearchResourceGroup");

var search = builder.AddAzureSearch("search")
 .AsExisting(existingSearchName,
existingSearchResourceGroup);

builder.AddProject<Projects.ExampleProject>()
 .WithReference(search);

// After adding all resources, run the app...

var builder = DistributedApplication.CreateBuilder(args);

var search = builder.ExecutionContext.IsPublishMode

https://learn.microsoft.com/en-us/dotnet/api/azure.provisioning.search.searchservice
https://learn.microsoft.com/en-us/dotnet/api/azure.provisioning.search.searchservice.partitioncount#azure-provisioning-search-searchservice-partitioncount
https://learn.microsoft.com/en-us/dotnet/api/azure.provisioning.search.searchservice.replicacount#azure-provisioning-search-searchservice-replicacount
https://learn.microsoft.com/en-us/dotnet/api/azure.provisioning.search.searchservice.searchskuname#azure-provisioning-search-searchservice-searchskuname
https://learn.microsoft.com/en-us/dotnet/api/azure.provisioning.search.searchserviceskuname#azure-provisioning-search-searchserviceskuname-standard3
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azure.azuresearchresource
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.parameterresourcebuilderextensions.addconnectionstring

The connection string is configured in the app host's configuration, typically under User
Secrets, under the ConnectionStrings section:

JSON

For more information, see Add existing Azure resources with connection strings.

The Azure AI Search hosting integration doesn't currently implement any health checks.
This limitation is subject to change in future releases. As always, feel free to open an
issue if you have any suggestions or feedback.

To get started with the .NET Aspire Azure AI Search Documents client integration, install
the 📦 Aspire.Azure.Search.Documents NuGet package in the client-consuming
project, that is, the project for the application that uses the Azure AI Search Documents
client.

 ? builder.AddAzureSearch("search")
 : builder.AddConnectionString("search");

builder.AddProject<Projects.ExampleProject>()
 .WithReference(search);

// After adding all resources, run the app...

７ Note

Connection strings are used to represent a wide range of connection information,
including database connections, message brokers, endpoint URIs, and other
services. In .NET Aspire nomenclature, the term "connection string" is used to
represent any kind of connection information.

{
 "ConnectionStrings": {
 "search": "https://{account_name}.search.azure.com/"
 }
}

Hosting integration health checks

Client integration

.NET CLI

https://github.com/dotnet/aspire/issues
https://github.com/dotnet/aspire/issues
https://github.com/dotnet/aspire/issues
https://www.nuget.org/packages/Aspire.Azure.Search.Documents
https://www.nuget.org/packages/Aspire.Azure.Search.Documents

.NET CLI

In the Program.cs file of your client-consuming project, call the AddAzureSearchClient
extension method on any IHostApplicationBuilder to register a SearchIndexClient for use
via the dependency injection container. The method takes a connection name
parameter.

C#

After adding the SearchIndexClient , you can retrieve the client instance using
dependency injection. For example, to retrieve the client instance from an example
service:

C#

You can also retrieve a SearchClient which can be used for querying, by calling the
GetSearchClient(String) method:

C#

dotnet add package Aspire.Azure.Search.Documents

Add an Azure AI Search index client

builder.AddAzureSearchClient(connectionName: "search");

 Tip

The connectionName parameter must match the name used when adding the Azure
AI Search resource in the app host project. For more information, see Add an Azure
AI Search resource.

public class ExampleService(SearchIndexClient indexClient)
{
 // Use indexClient
}

public class ExampleService(SearchIndexClient indexClient)
{
 public async Task<long> GetDocumentCountAsync(
 string indexName,

https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.aspireazuresearchextensions.addazuresearchclient
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.ihostapplicationbuilder
https://learn.microsoft.com/en-us/dotnet/api/microsoft.azure.search.searchindexclient
https://learn.microsoft.com/en-us/dotnet/api/azure.search.documents.indexes.searchindexclient.getsearchclient#azure-search-documents-indexes-searchindexclient-getsearchclient(system-string)

For more information, see:

Azure AI Search client library for .NET samples using the SearchIndexClient.
Dependency injection in .NET for details on dependency injection.

There might be situations where you want to register multiple SearchIndexClient
instances with different connection names. To register keyed Azure AI Search clients, call
the AddKeyedAzureSearchClient method:

C#

Then you can retrieve the client instances using dependency injection. For example, to
retrieve the clients from a service:

C#

 CancellationToken cancellationToken)
 {
 var searchClient = indexClient.GetSearchClient(indexName);

 var documentCountResponse = await
searchClient.GetDocumentCountAsync(
 cancellationToken);

 return documentCountResponse.Value;
 }
}

Add keyed Azure AI Search index client

builder.AddKeyedAzureSearchClient(name: "images");
builder.AddKeyedAzureSearchClient(name: "documents");

） Important

When using keyed services, it's expected that your Azure AI Search resource
configured two named connections, one for the images and one for the documents .

public class ExampleService(
 [KeyedService("images")] SearchIndexClient imagesClient,
 [KeyedService("documents")] SearchIndexClient documentsClient)
{
 // Use clients...
}

https://learn.microsoft.com/en-us/azure/search/samples-dotnet
https://learn.microsoft.com/en-us/azure/search/samples-dotnet
https://learn.microsoft.com/en-us/dotnet/core/extensions/dependency-injection
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.aspireazuresearchextensions.addkeyedazuresearchclient

For more information, see Keyed services in .NET.

The .NET Aspire Azure AI Search Documents library provides multiple options to
configure the Azure AI Search connection based on the requirements and conventions
of your project. Either an Endpoint or a ConnectionString is required to be supplied.

A connection can be constructed from the Keys and Endpoint tab with the format
Endpoint={endpoint};Key={key}; . You can provide the name of the connection string
when calling builder.AddAzureSearchClient() :

C#

The connection string is retrieved from the ConnectionStrings configuration section.
Two connection formats are supported:

The recommended approach is to use an Endpoint , which works with the
AzureSearchSettings.Credential property to establish a connection. If no credential is
configured, the DefaultAzureCredential is used.

JSON

Alternatively, a connection string with key can be used, however; it's not the
recommended approach:

JSON

Configuration

Use a connection string

builder.AddAzureSearchClient("searchConnectionName");

Account endpoint

{
 "ConnectionStrings": {
 "search": "https://{search_service}.search.windows.net/"
 }
}

Connection string

https://learn.microsoft.com/en-us/dotnet/core/extensions/dependency-injection#keyed-services
https://learn.microsoft.com/en-us/dotnet/api/azure.identity.defaultazurecredential

The .NET Aspire Azure AI Search library supports Microsoft.Extensions.Configuration. It
loads the AzureSearchSettings and SearchClientOptions from configuration by using
the Aspire:Azure:Search:Documents key. Example appsettings.json that configures some
of the options:

JSON

For the complete Azure AI Search Documents client integration JSON schema, see
Aspire.Azure.Search.Documents/ConfigurationSchema.json .

You can also pass the Action<AzureSearchSettings> configureSettings delegate to set
up some or all the options inline, for example to disable tracing from code:

C#

You can also set up the SearchClientOptions using the optional
Action<IAzureClientBuilder<SearchIndexClient, SearchClientOptions>>

{
 "ConnectionStrings": {
 "search": "Endpoint=https://{search_service}.search.windows.net/;Key=
{account_key};"
 }
}

Use configuration providers

{
 "Aspire": {
 "Azure": {
 "Search": {
 "Documents": {
 "DisableTracing": false
 }
 }
 }
 }
}

Use inline delegates

builder.AddAzureSearchClient(
 "searchConnectionName",
 static settings => settings.DisableTracing = true);

https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration
https://github.com/dotnet/aspire/blob/v9.1.0/src/Components/Aspire.Azure.Search.Documents/ConfigurationSchema.json
https://github.com/dotnet/aspire/blob/v9.1.0/src/Components/Aspire.Azure.Search.Documents/ConfigurationSchema.json
https://learn.microsoft.com/en-us/dotnet/api/azure.search.documents.searchclientoptions

configureClientBuilder parameter of the AddAzureSearchClient method. For example,
to set the client ID for this client:

C#

By default, .NET Aspire client integrations have health checks enabled for all services.
Similarly, many .NET Aspire hosting integrations also enable health check endpoints. For
more information, see:

.NET app health checks in C#
Health checks in ASP.NET Core

https://learn.microsoft.com/en-us/dotnet/core/diagnostics/diagnostic-health-checks
https://learn.microsoft.com/en-us/aspnet/core/host-and-deploy/health-checks
https://learn.microsoft.com/en-us/dotnet/api/azure.search.documents.indexes.searchindexclient.getservicestatisticsasync

The .NET Aspire Azure AI Search Documents integration emits tracing activities using
OpenTelemetry when interacting with the search service.

Azure AI Search
.NET Aspire integrations overview
.NET Aspire Azure integrations overview
.NET Aspire GitHub repo

Tracing

See also

https://azure.microsoft.com/products/ai-services/ai-search
https://azure.microsoft.com/products/ai-services/ai-search
https://github.com/dotnet/aspire
https://github.com/dotnet/aspire

.NET Aspire Azure Cache for Redis®
integration
Article • 02/11/2025

Includes: Hosting integration and Client integration

Azure Cache for Redis provides an in-memory data store based on the Redis software.
Redis improves the performance and scalability of an application that uses backend data
stores heavily. It's able to process large volumes of application requests by keeping
frequently accessed data in the server memory, which can be written to and read from
quickly. Redis brings a critical low-latency and high-throughput data storage solution to
modern applications.

Azure Cache for Redis offers both the Redis open-source (OSS Redis) and a commercial
product from Redis Inc. (Redis Enterprise) as a managed service. It provides secure and
dedicated Redis server instances and full Redis API compatibility. Microsoft operates the
service, hosted on Azure, and usable by any application within or outside of Azure.

The .NET Aspire Azure Cache for Redis integration enables you to connect to existing
Azure Cache for Redis instances, or create new instances, or run as a container locally
from .NET with the docker.io/library/redis container image .

The .NET Aspire Azure Cache for Redis hosting integration models an Azure Redis
resource as the AzureRedisCacheResource type. To access this type and APIs for
expressing them as resources in your app host project, add the 📦
Aspire.Hosting.Azure.Redis NuGet package:

.NET CLI

For more information, see dotnet add package or Manage package dependencies in
.NET applications.

*

Hosting integration

.NET CLI

dotnet add package Aspire.Hosting.Azure.Redis

Add Azure Cache for Redis resource

https://learn.microsoft.com/en-us/azure/azure-cache-for-redis/cache-overview
https://redis.io/
https://redis.io/
https://hub.docker.com/_/redis/
https://hub.docker.com/_/redis/
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azure.azurerediscacheresource
https://www.nuget.org/packages/Aspire.Hosting.Azure.Redis
https://www.nuget.org/packages/Aspire.Hosting.Azure.Redis
https://www.nuget.org/packages/Aspire.Hosting.Azure.Redis
https://learn.microsoft.com/en-us/dotnet/core/tools/dotnet-add-package
https://learn.microsoft.com/en-us/dotnet/core/tools/dependencies
https://learn.microsoft.com/en-us/dotnet/core/tools/dependencies

In your app host project, call AddAzureRedis on the builder instance to add an Azure
Cache for Redis resource, as shown in the following example:

C#

The preceding call to AddAzureRedis configures the Redis server resource to be
deployed as an Azure Cache for Redis.

If you're new to Bicep, it's a domain-specific language for defining Azure resources. With
.NET Aspire, you don't need to write Bicep by-hand, instead the provisioning APIs
generate Bicep for you. When you publish your app, the generated Bicep is output
alongside the manifest file. When you add an Azure Cache for Redis resource, the
following Bicep is generated:

Bicep

var builder = DistributedApplication.CreateBuilder(args);

var cache = builder.AddAzureRedis("azcache");

builder.AddProject<Projects.ExampleProject>()
 .WithReference(cache);

// After adding all resources, run the app...

） Important

By default, AddAzureRedis configures Microsoft Entra ID authentication. This
requires changes to applications that need to connect to these resources, for
example, client integrations.

 Tip

When you call AddAzureRedis, it implicitly calls AddAzureProvisioning—which
adds support for generating Azure resources dynamically during app startup. The
app must configure the appropriate subscription and location. For more
information, see Local provisioning: Configuration.

Generated provisioning Bicep

@description('The location for the resource(s) to be deployed.')
param location string = resourceGroup().location

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azureredisextensions.addazureredis
https://learn.microsoft.com/en-us/azure/azure-cache-for-redis/cache-overview
https://learn.microsoft.com/en-us/azure/azure-resource-manager/bicep/overview
https://learn.microsoft.com/en-us/azure/azure-cache-for-redis/cache-azure-active-directory-for-authentication
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azureredisextensions.addazureredis
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azureprovisionerextensions.addazureprovisioning

The preceding Bicep is a module that provisions an Azure Cache for Redis with the
following defaults:

location : The location of the Azure Cache for Redis resource. The default is the
location of the resource group.
principalId : The principal ID of the Azure Cache for Redis resource.
principalName : The principal name of the Azure Cache for Redis resource.
sku : The SKU of the Azure Cache for Redis resource. The default is Basic with a
capacity of 1 .
enableNonSslPort : The non-SSL port of the Azure Cache for Redis resource. The
default is false .

param principalId string

param principalName string

resource redis 'Microsoft.Cache/redis@2024-03-01' = {
 name: take('redis-${uniqueString(resourceGroup().id)}', 63)
 location: location
 properties: {
 sku: {
 name: 'Basic'
 family: 'C'
 capacity: 1
 }
 enableNonSslPort: false
 disableAccessKeyAuthentication: true
 minimumTlsVersion: '1.2'
 redisConfiguration: {
 'aad-enabled': 'true'
 }
 }
 tags: {
 'aspire-resource-name': 'redis'
 }
}

resource redis_contributor
'Microsoft.Cache/redis/accessPolicyAssignments@2024-03-01' = {
 name: take('rediscontributor${uniqueString(resourceGroup().id)}', 24)
 properties: {
 accessPolicyName: 'Data Contributor'
 objectId: principalId
 objectIdAlias: principalName
 }
 parent: redis
}

output connectionString string = '${redis.properties.hostName},ssl=true'

disableAccessKeyAuthentication : The access key authentication of the Azure Cache
for Redis resource. The default is true .
minimumTlsVersion : The minimum TLS version of the Azure Cache for Redis
resource. The default is 1.2 .
redisConfiguration : The Redis configuration of the Azure Cache for Redis
resource. The default is aad-enabled set to true .
tags : The tags of the Azure Cache for Redis resource. The default is aspire-
resource-name set to the name of the Aspire resource, in this case redis .
redis_contributor : The contributor of the Azure Cache for Redis resource, with an
access policy name of Data Contributor .
connectionString : The connection string of the Azure Cache for Redis resource.

In addition to the Azure Cache for Redis, it also provisions an access policy assignment
to the application access to the cache. The generated Bicep is a starting point and is
influenced by changes to the provisioning infrastructure in C#. Customizations to the
Bicep file directly will be overwritten, so make changes through the C# provisioning APIs
to ensure they are reflected in the generated files.

All .NET Aspire Azure resources are subclasses of the AzureProvisioningResource type.
This type enables the customization of the generated Bicep by providing a fluent API to
configure the Azure resources—using the ConfigureInfrastructure<T>
(IResourceBuilder<T>, Action<AzureResourceInfrastructure>) API. For example, you can
configure the kind , consistencyPolicy , locations , and more. The following example
demonstrates how to customize the Azure Cache for Redis resource:

C#

Customize provisioning infrastructure

builder.AddAzureRedis("redis")
 .WithAccessKeyAuthentication()
 .ConfigureInfrastructure(infra =>
 {
 var redis = infra.GetProvisionableResources()
 .OfType<RedisResource>()
 .Single();

 redis.Sku = new()
 {
 Family = RedisSkuFamily.BasicOrStandard,
 Name = RedisSkuName.Standard,
 Capacity = 1,
 };

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azure.azureprovisioningresource
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azureprovisioningresourceextensions.configureinfrastructure#aspire-hosting-azureprovisioningresourceextensions-configureinfrastructure-1(aspire-hosting-applicationmodel-iresourcebuilder((-0))-system-action((aspire-hosting-azure-azureresourceinfrastructure)))
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azureprovisioningresourceextensions.configureinfrastructure#aspire-hosting-azureprovisioningresourceextensions-configureinfrastructure-1(aspire-hosting-applicationmodel-iresourcebuilder((-0))-system-action((aspire-hosting-azure-azureresourceinfrastructure)))

The preceding code:

Chains a call to the ConfigureInfrastructure API:
The infra parameter is an instance of the AzureResourceInfrastructure type.
The provisionable resources are retrieved by calling the
GetProvisionableResources() method.
The single RedisResource is retrieved.
The Sku is set with a family of BasicOrStandard , a name of Standard , and a
capacity of 1 .
A tag is added to the Redis resource with a key of ExampleKey and a value of
Example value .

There are many more configuration options available to customize the Azure Cache for
Redis resource. For more information, see Azure.Provisioning.Redis. For more
information, see Azure.Provisioning customization.

You might have an existing Azure Cache for Redis that you want to connect to. Instead
of representing a new Azure Cache for Redis resource, you can add a connection string
to the app host. To add a connection to an existing Azure Cache for Redis, call the
AddConnectionString method:

C#

 redis.Tags.Add("ExampleKey", "Example value");
 });

Connect to an existing Azure Cache for Redis

var builder = DistributedApplication.CreateBuilder(args);

var cache = builder.AddConnectionString("azure-redis");

builder.AddProject<Projects.WebApplication>("web")
 .WithReference(cache);

// After adding all resources, run the app...

７ Note

Connection strings are used to represent a wide range of connection information,
including database connections, message brokers, endpoint URIs, and other

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azureprovisioningresourceextensions.configureinfrastructure
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azure.azureresourceinfrastructure
https://learn.microsoft.com/en-us/dotnet/api/azure.provisioning.infrastructure.getprovisionableresources#azure-provisioning-infrastructure-getprovisionableresources
https://learn.microsoft.com/en-us/dotnet/api/azure.provisioning.redis.redisresource
https://learn.microsoft.com/en-us/dotnet/api/azure.provisioning.redis
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.parameterresourcebuilderextensions.addconnectionstring

The connection string is configured in the app host's configuration, typically under User
Secrets, under the ConnectionStrings section. The app host injects this connection
string as an environment variable into all dependent resources, for example:

JSON

The dependent resource can access the injected connection string by calling the
GetConnectionString method, and passing the connection name as the parameter, in
this case "azure-redis" . The GetConnectionString API is shorthand for
IConfiguration.GetSection("ConnectionStrings")[name] .

The Azure Cache for Redis hosting integration supports running the Redis server as a
local container. This is beneficial for situations where you want to run the Redis server
locally for development and testing purposes, avoiding the need to provision an Azure
resource or connect to an existing Azure Cache for Redis server.

To make use of the docker.io/library/redis container image, and run the Azure Cache
for Redis instance as a container locally, chain a call to RunAsContainer, as shown in the
following example:

C#

services. In .NET Aspire nomenclature, the term "connection string" is used to
represent any kind of connection information.

{
 "ConnectionStrings": {
 "azure-redis": "<your-redis-
name>.redis.cache.windows.net:6380,ssl=true,abortConnect=False"
 }
}

Run Azure Cache for Redis resource as a container

var builder = DistributedApplication.CreateBuilder(args);

var cache = builder.AddAzureRedis("azcache")
 .RunAsContainer();

builder.AddProject<Projects.ExampleProject>()
 .WithReference(cache);

// After adding all resources, run the app...

https://learn.microsoft.com/en-us/aspnet/core/security/app-secrets
https://learn.microsoft.com/en-us/aspnet/core/security/app-secrets
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.configurationextensions.getconnectionstring
https://hub.docker.com/_/redis/
https://hub.docker.com/_/redis/
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azureredisextensions.runascontainer

The preceding code configures the Redis resource to run locally in a container.

By default, the Azure Cache for Redis resource is configured to use Microsoft Entra ID
authentication. If you want to use password authentication (not recommended), you can
configure the server to use password authentication by calling the
WithAccessKeyAuthentication method:

C#

The preceding code configures the Azure Cache for Redis resource to use access key
authentication. This alters the generated Bicep to use access key authentication instead
of Microsoft Entra ID authentication. In other words, the connection string will contain a
password, and will be added to an Azure Key Vault secret.

To get started with the .NET Aspire Stack Exchange Redis client integration, install the
📦 Aspire.StackExchange.Redis NuGet package in the client-consuming project, that
is, the project for the application that uses the Redis client. The Redis client integration
registers an IConnectionMultiplexer instance that you can use to interact with Redis.

 Tip

The RunAsContainer method is useful for local development and testing. The API
exposes an optional delegate that enables you to customize the underlying
RedisResource configuration, such adding Redis Insights , Redis Commander ,
adding a data volume or data bind mount. For more information, see the .NET
Aspire Redis hosting integration.

Configure the Azure Cache for Redis resource to use
access key authentication

var builder = DistributedApplication.CreateBuilder(args);

var cache = builder.AddAzureRedis("azcache")
 .WithAccessKeyAuthentication();

builder.AddProject<Projects.ExampleProject>()
 .WithReference(cache);

// After adding all resources, run the app...

Client integration

https://learn.microsoft.com/en-us/azure/postgresql/flexible-server/concepts-azure-ad-authentication
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azureredisextensions.withaccesskeyauthentication
https://www.nuget.org/packages/Aspire.StackExchange.Redis
https://www.nuget.org/packages/Aspire.StackExchange.Redis
https://stackexchange.github.io/StackExchange.Redis/Basics
https://stackexchange.github.io/StackExchange.Redis/Basics
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.redisresource
https://redis.io/insight/
https://redis.io/insight/
https://joeferner.github.io/redis-commander/
https://joeferner.github.io/redis-commander/

.NET CLI

In the Program.cs file of your client-consuming project, call the AddRedisClient
extension method on any IHostApplicationBuilder to register an IConnectionMultiplexer
for use via the dependency injection container. The method takes a connection name
parameter.

C#

You can then retrieve the IConnectionMultiplexer instance using dependency injection.
For example, to retrieve the connection from an example service:

C#

For more information on dependency injection, see .NET dependency injection.

By default, when you call AddAzureRedis in your Redis hosting integration, it configures
Microsoft Entra ID. Install the 📦 Microsoft.Azure.StackExchangeRedis NuGet package
to enable authentication:

.NET CLI

dotnet add package Aspire.StackExchange.Redis

Add Redis client

builder.AddRedisClient(connectionName: "cache");

 Tip

The connectionName parameter must match the name used when adding the Azure
Cache for Redis resource in the app host project. For more information, see Add
Azure Cache for Redis resource.

public class ExampleService(IConnectionMultiplexer connectionMux)
{
 // Use connection multiplexer...
}

Add Azure Cache for Redis authenticated client

https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.aspireredisextensions.addredisclient
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.ihostapplicationbuilder
https://learn.microsoft.com/en-us/dotnet/core/extensions/dependency-injection
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azureredisextensions.addazureredis
https://www.nuget.org/packages/Microsoft.Azure.StackExchangeRedis
https://www.nuget.org/packages/Microsoft.Azure.StackExchangeRedis

.NET CLI

The Redis connection can be consumed using the client integration and
Microsoft.Azure.StackExchangeRedis . Consider the following configuration code:

C#

For more information, see the Microsoft.Azure.StackExchangeRedis repo.

There might be situations where you want to register multiple IConnectionMultiplexer
instances with different connection names. To register keyed Redis clients, call the
AddKeyedRedisClient method:

C#

Then you can retrieve the IConnectionMultiplexer instances using dependency
injection. For example, to retrieve the connection from an example service:

.NET CLI

dotnet add package Microsoft.Azure.StackExchangeRedis

var azureOptionsProvider = new AzureOptionsProvider();

var configurationOptions = ConfigurationOptions.Parse(
 builder.Configuration.GetConnectionString("cache") ??
 throw new InvalidOperationException("Could not find a 'cache' connection
string."));

if (configurationOptions.EndPoints.Any(azureOptionsProvider.IsMatch))
{
 await configurationOptions.ConfigureForAzureWithTokenCredentialAsync(
 new DefaultAzureCredential());
}

builder.AddRedisClient("cache", configureOptions: options =>
{
 options.Defaults = configurationOptions.Defaults;
});

Add keyed Redis client

builder.AddKeyedRedisClient(name: "chat");
builder.AddKeyedRedisClient(name: "queue");

https://github.com/Azure/Microsoft.Azure.StackExchangeRedis
https://github.com/Azure/Microsoft.Azure.StackExchangeRedis
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.aspireredisextensions.addkeyedredisclient

C#

For more information on keyed services, see .NET dependency injection: Keyed services.

The .NET Aspire Stack Exchange Redis client integration provides multiple options to
configure the Redis connection based on the requirements and conventions of your
project.

When using a connection string from the ConnectionStrings configuration section, you
can provide the name of the connection string when calling AddRedis:

C#

Then the connection string will be retrieved from the ConnectionStrings configuration
section:

JSON

For more information on how to format this connection string, see the Stack Exchange
Redis configuration docs .

public class ExampleService(
 [FromKeyedServices("chat")] IConnectionMultiplexer chatConnectionMux,
 [FromKeyedServices("queue")] IConnectionMultiplexer queueConnectionMux)
{
 // Use connections...
}

Configuration

Use a connection string

builder.AddRedis("cache");

{
 "ConnectionStrings": {
 "cache": "localhost:6379"
 }
}

Use configuration providers

https://learn.microsoft.com/en-us/dotnet/core/extensions/dependency-injection#keyed-services
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.redisbuilderextensions.addredis
https://stackexchange.github.io/StackExchange.Redis/Configuration.html#basic-configuration-strings
https://stackexchange.github.io/StackExchange.Redis/Configuration.html#basic-configuration-strings
https://stackexchange.github.io/StackExchange.Redis/Configuration.html#basic-configuration-strings

The .NET Aspire Stack Exchange Redis integration supports
Microsoft.Extensions.Configuration. It loads the StackExchangeRedisSettings from
configuration by using the Aspire:StackExchange:Redis key. Example appsettings.json
that configures some of the options:

JSON

For the complete Redis client integration JSON schema, see
Aspire.StackExchange.Redis/ConfigurationSchema.json .

You can also pass the Action<StackExchangeRedisSettings> delegate to set up some or
all the options inline, for example to configure DisableTracing :

C#

By default, .NET Aspire client integrations have health checks enabled for all services.
Similarly, many .NET Aspire hosting integrations also enable health check endpoints. For
more information, see:

.NET app health checks in C#
Health checks in ASP.NET Core

{
 "Aspire": {
 "StackExchange": {
 "Redis": {
 "ConfigurationOptions": {
 "ConnectTimeout": 3000,
 "ConnectRetry": 2
 },
 "DisableHealthChecks": true,
 "DisableTracing": false
 }
 }
 }
}

Use inline delegates

builder.AddRedisClient(
 "cache",
 static settings => settings.DisableTracing = true);

Client integration health checks

https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration
https://learn.microsoft.com/en-us/dotnet/api/aspire.stackexchange.redis.stackexchangeredissettings
https://github.com/dotnet/aspire/blob/v9.1.0/src/Components/Aspire.StackExchange.Redis/ConfigurationSchema.json
https://github.com/dotnet/aspire/blob/v9.1.0/src/Components/Aspire.StackExchange.Redis/ConfigurationSchema.json
https://learn.microsoft.com/en-us/dotnet/core/diagnostics/diagnostic-health-checks
https://learn.microsoft.com/en-us/aspnet/core/host-and-deploy/health-checks

The .NET Aspire Stack Exchange Redis integration handles the following:

Adds the health check when StackExchangeRedisSettings.DisableHealthChecks is
false , which attempts to connect to the container instance.
Integrates with the /health HTTP endpoint, which specifies all registered health
checks must pass for app to be considered ready to accept traffic.

.NET Aspire integrations automatically set up Logging, Tracing, and Metrics
configurations, which are sometimes known as the pillars of observability. For more
information about integration observability and telemetry, see .NET Aspire integrations
overview. Depending on the backing service, some integrations may only support some
of these features. For example, some integrations support logging and tracing, but not
metrics. Telemetry features can also be disabled using the techniques presented in the
Configuration section.

The .NET Aspire Stack Exchange Redis integration uses the following log categories:

Aspire.StackExchange.Redis

The .NET Aspire Stack Exchange Redis integration will emit the following tracing
activities using OpenTelemetry:

OpenTelemetry.Instrumentation.StackExchangeRedis

The .NET Aspire Stack Exchange Redis integration currently doesn't support metrics by
default due to limitations with the StackExchange.Redis library.

Azure Cache for Redis docs
Stack Exchange Redis docs
.NET Aspire integrations
.NET Aspire GitHub repo

Observability and telemetry

Logging

Tracing

Metrics

See also

https://learn.microsoft.com/en-us/dotnet/api/aspire.stackexchange.redis.stackexchangeredissettings.disablehealthchecks#aspire-stackexchange-redis-stackexchangeredissettings-disablehealthchecks
https://learn.microsoft.com/en-us/azure/azure-cache-for-redis/
https://stackexchange.github.io/StackExchange.Redis/
https://stackexchange.github.io/StackExchange.Redis/
https://github.com/dotnet/aspire
https://github.com/dotnet/aspire

*: Redis is a registered trademark of Redis Ltd. Any rights therein are reserved to Redis
Ltd. Any use by Microsoft is for referential purposes only and does not indicate any
sponsorship, endorsement or affiliation between Redis and Microsoft. Return to top?

.NET Aspire Azure Cache for Redis®
distributed caching integration
Article • 02/11/2025

Includes:

https://learn.microsoft.com/en-us/azure/azure-cache-for-redis/cache-overview
https://redis.io/
https://redis.io/
https://hub.docker.com/_/redis/
https://hub.docker.com/_/redis/
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azure.azurerediscacheresource
https://www.nuget.org/packages/Aspire.Hosting.Azure.Redis
https://www.nuget.org/packages/Aspire.Hosting.Azure.Redis
https://www.nuget.org/packages/Aspire.Hosting.Azure.Redis
https://learn.microsoft.com/en-us/dotnet/core/tools/dotnet-add-package
https://learn.microsoft.com/en-us/dotnet/core/tools/dependencies
https://learn.microsoft.com/en-us/dotnet/core/tools/dependencies

In your app host project, call AddAzureRedis on the builder instance to add an Azure
Cache for Redis resource, as shown in the following example:

C#

The preceding call to AddAzureRedis configures the Redis server resource to be
deployed as an Azure Cache for Redis.

If you're new to Bicep, it's a domain-specific language for defining Azure resources. With
.NET Aspire, you don't need to write Bicep by-hand, instead the provisioning APIs
generate Bicep for you. When you publish your app, the generated Bicep is output
alongside the manifest file. When you add an Azure Cache for Redis resource, the
following Bicep is generated:

Bicep

var builder = DistributedApplication.CreateBuilder(args);

var cache = builder.AddAzureRedis("azcache");

builder.AddProject<Projects.ExampleProject>()
 .WithReference(cache);

// After adding all resources, run the app...

） Important

By default, AddAzureRedis configures Microsoft Entra ID authentication. This
requires changes to applications that need to connect to these resources, for
example, client integrations.

 Tip

When you call AddAzureRedis, it implicitly calls AddAzureProvisioning—which
adds support for generating Azure resources dynamically during app startup. The
app must configure the appropriate subscription and location. For more
information, see Local provisioning: Configuration.

Generated provisioning Bicep

@description('The location for the resource(s) to be deployed.')
param location string = resourceGroup().location

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azureredisextensions.addazureredis
https://learn.microsoft.com/en-us/azure/azure-cache-for-redis/cache-overview
https://learn.microsoft.com/en-us/azure/azure-resource-manager/bicep/overview
https://learn.microsoft.com/en-us/azure/azure-cache-for-redis/cache-azure-active-directory-for-authentication
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azureredisextensions.addazureredis
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azureprovisionerextensions.addazureprovisioning

The preceding Bicep is a module that provisions an Azure Cache for Redis with the
following defaults:

location : The location of the Azure Cache for Redis resource. The default is the
location of the resource group.
principalId : The principal ID of the Azure Cache for Redis resource.
principalName : The principal name of the Azure Cache for Redis resource.
sku : The SKU of the Azure Cache for Redis resource. The default is Basic with a
capacity of 1 .
enableNonSslPort : The non-SSL port of the Azure Cache for Redis resource. The
default is false .

param principalId string

param principalName string

resource redis 'Microsoft.Cache/redis@2024-03-01' = {
 name: take('redis-${uniqueString(resourceGroup().id)}', 63)
 location: location
 properties: {
 sku: {
 name: 'Basic'
 family: 'C'
 capacity: 1
 }
 enableNonSslPort: false
 disableAccessKeyAuthentication: true
 minimumTlsVersion: '1.2'
 redisConfiguration: {
 'aad-enabled': 'true'
 }
 }
 tags: {
 'aspire-resource-name': 'redis'
 }
}

resource redis_contributor
'Microsoft.Cache/redis/accessPolicyAssignments@2024-03-01' = {
 name: take('rediscontributor${uniqueString(resourceGroup().id)}', 24)
 properties: {
 accessPolicyName: 'Data Contributor'
 objectId: principalId
 objectIdAlias: principalName
 }
 parent: redis
}

output connectionString string = '${redis.properties.hostName},ssl=true'

disableAccessKeyAuthentication : The access key authentication of the Azure Cache
for Redis resource. The default is true .
minimumTlsVersion : The minimum TLS version of the Azure Cache for Redis
resource. The default is 1.2 .
redisConfiguration : The Redis configuration of the Azure Cache for Redis
resource. The default is aad-enabled set to true .
tags : The tags of the Azure Cache for Redis resource. The default is aspire-
resource-name set to the name of the Aspire resource, in this case redis .
redis_contributor : The contributor of the Azure Cache for Redis resource, with an
access policy name of Data Contributor .
connectionString : The connection string of the Azure Cache for Redis resource.

In addition to the Azure Cache for Redis, it also provisions an access policy assignment
to the application access to the cache. The generated Bicep is a starting point and is
influenced by changes to the provisioning infrastructure in C#. Customizations to the
Bicep file directly will be overwritten, so make changes through the C# provisioning APIs
to ensure they are reflected in the generated files.

All .NET Aspire Azure resources are subclasses of the AzureProvisioningResource type.
This type enables the customization of the generated Bicep by providing a fluent API to
configure the Azure resources—using the ConfigureInfrastructure<T>
(IResourceBuilder<T>, Action<AzureResourceInfrastructure>) API. For example, you can
configure the kind , consistencyPolicy , locations , and more. The following example
demonstrates how to customize the Azure Cache for Redis resource:

C#

Customize provisioning infrastructure

builder.AddAzureRedis("redis")
 .WithAccessKeyAuthentication()
 .ConfigureInfrastructure(infra =>
 {
 var redis = infra.GetProvisionableResources()
 .OfType<RedisResource>()
 .Single();

 redis.Sku = new()
 {
 Family = RedisSkuFamily.BasicOrStandard,
 Name = RedisSkuName.Standard,
 Capacity = 1,
 };

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azure.azureprovisioningresource
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azureprovisioningresourceextensions.configureinfrastructure#aspire-hosting-azureprovisioningresourceextensions-configureinfrastructure-1(aspire-hosting-applicationmodel-iresourcebuilder((-0))-system-action((aspire-hosting-azure-azureresourceinfrastructure)))
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azureprovisioningresourceextensions.configureinfrastructure#aspire-hosting-azureprovisioningresourceextensions-configureinfrastructure-1(aspire-hosting-applicationmodel-iresourcebuilder((-0))-system-action((aspire-hosting-azure-azureresourceinfrastructure)))

The preceding code:

Chains a call to the ConfigureInfrastructure API:
The infra parameter is an instance of the AzureResourceInfrastructure type.
The provisionable resources are retrieved by calling the
GetProvisionableResources() method.
The single RedisResource is retrieved.
The Sku is set with a family of BasicOrStandard , a name of Standard , and a
capacity of 1 .
A tag is added to the Redis resource with a key of ExampleKey and a value of
Example value .

There are many more configuration options available to customize the Azure Cache for
Redis resource. For more information, see Azure.Provisioning.Redis. For more
information, see Azure.Provisioning customization.

You might have an existing Azure Cache for Redis that you want to connect to. Instead
of representing a new Azure Cache for Redis resource, you can add a connection string
to the app host. To add a connection to an existing Azure Cache for Redis, call the
AddConnectionString method:

C#

 redis.Tags.Add("ExampleKey", "Example value");
 });

Connect to an existing Azure Cache for Redis

var builder = DistributedApplication.CreateBuilder(args);

var cache = builder.AddConnectionString("azure-redis");

builder.AddProject<Projects.WebApplication>("web")
 .WithReference(cache);

// After adding all resources, run the app...

７ Note

Connection strings are used to represent a wide range of connection information,
including database connections, message brokers, endpoint URIs, and other

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azureprovisioningresourceextensions.configureinfrastructure
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azure.azureresourceinfrastructure
https://learn.microsoft.com/en-us/dotnet/api/azure.provisioning.infrastructure.getprovisionableresources#azure-provisioning-infrastructure-getprovisionableresources
https://learn.microsoft.com/en-us/dotnet/api/azure.provisioning.redis.redisresource
https://learn.microsoft.com/en-us/dotnet/api/azure.provisioning.redis
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.parameterresourcebuilderextensions.addconnectionstring

The connection string is configured in the app host's configuration, typically under User
Secrets, under the ConnectionStrings section. The app host injects this connection
string as an environment variable into all dependent resources, for example:

JSON

The dependent resource can access the injected connection string by calling the
GetConnectionString method, and passing the connection name as the parameter, in
this case "azure-redis" . The GetConnectionString API is shorthand for
IConfiguration.GetSection("ConnectionStrings")[name] .

The Azure Cache for Redis hosting integration supports running the Redis server as a
local container. This is beneficial for situations where you want to run the Redis server
locally for development and testing purposes, avoiding the need to provision an Azure
resource or connect to an existing Azure Cache for Redis server.

To make use of the docker.io/library/redis container image, and run the Azure Cache
for Redis instance as a container locally, chain a call to RunAsContainer, as shown in the
following example:

C#

services. In .NET Aspire nomenclature, the term "connection string" is used to
represent any kind of connection information.

{
 "ConnectionStrings": {
 "azure-redis": "<your-redis-
name>.redis.cache.windows.net:6380,ssl=true,abortConnect=False"
 }
}

Run Azure Cache for Redis resource as a container

var builder = DistributedApplication.CreateBuilder(args);

var cache = builder.AddAzureRedis("azcache")
 .RunAsContainer();

builder.AddProject<Projects.ExampleProject>()
 .WithReference(cache);

// After adding all resources, run the app...

https://learn.microsoft.com/en-us/aspnet/core/security/app-secrets
https://learn.microsoft.com/en-us/aspnet/core/security/app-secrets
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.configurationextensions.getconnectionstring
https://hub.docker.com/_/redis/
https://hub.docker.com/_/redis/
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azureredisextensions.runascontainer

The preceding code configures the Redis resource to run locally in a container.

By default, the Azure Cache for Redis resource is configured to use Microsoft Entra ID
authentication. If you want to use password authentication (not recommended), you can
configure the server to use password authentication by calling the
WithAccessKeyAuthentication method:

C#

The preceding code configures the Azure Cache for Redis resource to use access key
authentication. This alters the generated Bicep to use access key authentication instead
of Microsoft Entra ID authentication. In other words, the connection string will contain a
password, and will be added to an Azure Key Vault secret.

To get started with the .NET Aspire Redis distributed caching integration, install the 📦
Aspire.StackExchange.Redis.DistributedCaching NuGet package in the client-
consuming project, i.e., the project for the application that uses the Redis distributed
caching client. The Redis client integration registers an IDistributedCache instance that
you can use to interact with Redis.

 Tip

The RunAsContainer method is useful for local development and testing. The API
exposes an optional delegate that enables you to customize the underlying
RedisResource configuration, such adding Redis Insights , Redis Commander ,
adding a data volume or data bind mount. For more information, see the .NET
Aspire Redis hosting integration.

Configure the Azure Cache for Redis resource to use
access key authentication

var builder = DistributedApplication.CreateBuilder(args);

var cache = builder.AddAzureRedis("azcache")
 .WithAccessKeyAuthentication();

builder.AddProject<Projects.ExampleProject>()
 .WithReference(cache);

// After adding all resources, run the app...

Client integration

https://learn.microsoft.com/en-us/azure/postgresql/flexible-server/concepts-azure-ad-authentication
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azureredisextensions.withaccesskeyauthentication
https://www.nuget.org/packages/Aspire.StackExchange.Redis.DistributedCaching
https://www.nuget.org/packages/Aspire.StackExchange.Redis.DistributedCaching
https://www.nuget.org/packages/Aspire.StackExchange.Redis.DistributedCaching
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.caching.distributed.idistributedcache
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.redisresource
https://redis.io/insight/
https://redis.io/insight/
https://joeferner.github.io/redis-commander/
https://joeferner.github.io/redis-commander/

.NET CLI

In the Program.cs file of your client-consuming project, call the
AddRedisDistributedCache extension to register the required services for distributed
caching and add a IDistributedCache for use via the dependency injection container.

C#

You can then retrieve the IDistributedCache instance using dependency injection. For
example, to retrieve the cache from a service:

C#

For more information on dependency injection, see .NET dependency injection.

By default, when you call AddAzureRedis in your app host project, the Redis hosting
integration configures 📦 Microsoft.Azure.StackExchangeRedis NuGet package to
enable authentication:

.NET CLI

dotnet add package Aspire.StackExchange.Redis.DistributedCaching

Add Redis distributed cache client

builder.AddRedisDistributedCache(connectionName: "cache");

 Tip

The connectionName parameter must match the name used when adding the Azure
Cache for Redis resource in the app host project. For more information, see Add
Azure Cache for Redis resource.

public class ExampleService(IDistributedCache cache)
{
 // Use cache...
}

Add Azure Cache for Redis authenticated distributed
client

https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.aspireredisdistributedcacheextensions.addredisdistributedcache
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.caching.distributed.idistributedcache
https://learn.microsoft.com/en-us/dotnet/core/extensions/dependency-injection
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azureredisextensions.addazureredis
https://www.nuget.org/packages/Microsoft.Azure.StackExchangeRedis
https://www.nuget.org/packages/Microsoft.Azure.StackExchangeRedis

.NET CLI

The Redis connection can be consumed using the client integration and
Microsoft.Azure.StackExchangeRedis . Consider the following configuration code:

C#

For more information, see the Microsoft.Azure.StackExchangeRedis repo.

There might be situations where you want to register multiple IDistributedCache
instances with different connection names. To register keyed Redis clients, call the
AddKeyedRedisDistributedCache method:

C#

Then you can retrieve the IDistributedCache instances using dependency injection. For
example, to retrieve the connection from an example service:

.NET CLI

dotnet add package Microsoft.Azure.StackExchangeRedis

var azureOptionsProvider = new AzureOptionsProvider();

var configurationOptions = ConfigurationOptions.Parse(
 builder.Configuration.GetConnectionString("cache") ??
 throw new InvalidOperationException("Could not find a 'cache' connection
string."));

if (configurationOptions.EndPoints.Any(azureOptionsProvider.IsMatch))
{
 await configurationOptions.ConfigureForAzureWithTokenCredentialAsync(
 new DefaultAzureCredential());
}

builder.AddRedisDistributedCache("cache", configureOptions: options =>
{
 options.Defaults = configurationOptions.Defaults;
});

Add keyed Redis client

builder.AddKeyedRedisDistributedCache(name: "chat");
builder.AddKeyedRedisDistributedCache(name: "product");

https://github.com/Azure/Microsoft.Azure.StackExchangeRedis
https://github.com/Azure/Microsoft.Azure.StackExchangeRedis
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.aspireredisdistributedcacheextensions.addkeyedredisdistributedcache

C#

For more information on keyed services, see .NET dependency injection: Keyed services.

The .NET Aspire Redis distributed caching integration provides multiple options to
configure the Redis connection based on the requirements and conventions of your
project.

When using a connection string from the ConnectionStrings configuration section, you
can provide the name of the connection string when calling
builder.AddRedisDistributedCache :

C#

And then the connection string will be retrieved from the ConnectionStrings
configuration section:

JSON

For more information on how to format this connection string, see the Stack Exchange
Redis configuration docs .

public class ExampleService(
 [FromKeyedServices("chat")] IDistributedCache chatCache,
 [FromKeyedServices("product")] IDistributedCache productCache)
{
 // Use caches...
}

Configuration

Use a connection string

builder.AddRedisDistributedCache("cache");

{
 "ConnectionStrings": {
 "cache": "localhost:6379"
 }
}

Use configuration providers

https://learn.microsoft.com/en-us/dotnet/core/extensions/dependency-injection#keyed-services
https://stackexchange.github.io/StackExchange.Redis/Configuration.html#basic-configuration-strings
https://stackexchange.github.io/StackExchange.Redis/Configuration.html#basic-configuration-strings
https://stackexchange.github.io/StackExchange.Redis/Configuration.html#basic-configuration-strings

The .NET Aspire Stack Exchange Redis distributed caching integration supports
Microsoft.Extensions.Configuration. It loads the StackExchangeRedisSettings from
configuration by using the Aspire:StackExchange:Redis key. Example appsettings.json
that configures some of the options:

JSON

For the complete Redis distributed caching client integration JSON schema, see
Aspire.StackExchange.Redis.DistributedCaching/ConfigurationSchema.json .

You can also pass the Action<StackExchangeRedisSettings> delegate to set up some or
all the options inline, for example to configure DisableTracing :

C#

You can also set up the ConfigurationOptions using the Action<ConfigurationOptions>
configureOptions delegate parameter of the AddRedisDistributedCache method. For
example to set the connection timeout:

C#

{
 "Aspire": {
 "StackExchange": {
 "Redis": {
 "ConfigurationOptions": {
 "ConnectTimeout": 3000,
 "ConnectRetry": 2
 },
 "DisableHealthChecks": true,
 "DisableTracing": false
 }
 }
 }
}

Use inline delegates

builder.AddRedisDistributedCache(
 "cache",
 settings => settings.DisableTracing = true);

builder.AddRedisDistributedCache(
 "cache",
 static settings => settings.ConnectTimeout = 3_000);

https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration
https://learn.microsoft.com/en-us/dotnet/api/aspire.stackexchange.redis.stackexchangeredissettings
https://github.com/dotnet/aspire/blob/v9.1.0/src/Components/Aspire.StackExchange.Redis.DistributedCaching/ConfigurationSchema.json
https://github.com/dotnet/aspire/blob/v9.1.0/src/Components/Aspire.StackExchange.Redis.DistributedCaching/ConfigurationSchema.json
https://stackexchange.github.io/StackExchange.Redis/Configuration.html#configuration-options
https://stackexchange.github.io/StackExchange.Redis/Configuration.html#configuration-options

By default, .NET Aspire client integrations have health checks enabled for all services.
Similarly, many .NET Aspire hosting integrations also enable health check endpoints. For
more information, see:

.NET app health checks in C#
Health checks in ASP.NET Core

The .NET Aspire Redis distributed caching integration handles the following:

Adds the health check when StackExchangeRedisSettings.DisableHealthChecks is
false , which attempts to connect to the container instance.
Integrates with the /health HTTP endpoint, which specifies all registered health
checks must pass for app to be considered ready to accept traffic.

.NET Aspire integrations automatically set up Logging, Tracing, and Metrics
configurations, which are sometimes known as the pillars of observability

https://learn.microsoft.com/en-us/dotnet/core/diagnostics/diagnostic-health-checks
https://learn.microsoft.com/en-us/aspnet/core/host-and-deploy/health-checks
https://learn.microsoft.com/en-us/dotnet/api/aspire.stackexchange.redis.stackexchangeredissettings.disablehealthchecks#aspire-stackexchange-redis-stackexchangeredissettings-disablehealthchecks

The .NET Aspire Redis Distributed caching integration currently doesn't support metrics
by default due to limitations with the StackExchange.Redis library.

Azure Cache for Redis docs
Stack Exchange Redis docs
.NET Aspire integrations
.NET Aspire GitHub repo

*: Redis is a registered trademark of Redis Ltd. Any rights therein are reserved to Redis
Ltd. Any use by Microsoft is for referential purposes only and does not indicate any
sponsorship, endorsement or affiliation between Redis and Microsoft. Return to top?

See also

https://learn.microsoft.com/en-us/azure/azure-cache-for-redis/
https://stackexchange.github.io/StackExchange.Redis/
https://stackexchange.github.io/StackExchange.Redis/
https://github.com/dotnet/aspire
https://github.com/dotnet/aspire

.NET Aspire Azure Cache for Redis®
output caching integration
Article • 02/11/2025

Includes: Hosting integration and Client integration

Azure Cache for Redis provides an in-memory data store based on the Redis software.
Redis improves the performance and scalability of an application that uses backend data
stores heavily. It's able to process large volumes of application requests by keeping
frequently accessed data in the server memory, which can be written to and read from
quickly. Redis brings a critical low-latency and high-throughput data storage solution to
modern applications.

Azure Cache for Redis offers both the Redis open-source (OSS Redis) and a commercial
product from Redis Inc. (Redis Enterprise) as a managed service. It provides secure and
dedicated Redis server instances and full Redis API compatibility. Microsoft operates the
service, hosted on Azure, and usable by any application within or outside of Azure.

The .NET Aspire Azure Cache for Redis integration enables you to connect to existing
Azure Cache for Redis instances, or create new instances from .NET with the
docker.io/library/redis container image .

The .NET Aspire Azure Cache for Redis hosting integration models an Azure Redis
resource as the AzureRedisCacheResource type. To access this type and APIs for
expressing them as resources in your app host project, add the 📦
Aspire.Hosting.Azure.Redis NuGet package:

.NET CLI

For more information, see dotnet add package or Manage package dependencies in
.NET applications.

*

Hosting integration

.NET CLI

dotnet add package Aspire.Hosting.Azure.Redis

Add Azure Cache for Redis resource

https://learn.microsoft.com/en-us/azure/azure-cache-for-redis/cache-overview
https://redis.io/
https://redis.io/
https://hub.docker.com/_/redis/
https://hub.docker.com/_/redis/
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azure.azurerediscacheresource
https://www.nuget.org/packages/Aspire.Hosting.Azure.Redis
https://www.nuget.org/packages/Aspire.Hosting.Azure.Redis
https://www.nuget.org/packages/Aspire.Hosting.Azure.Redis
https://learn.microsoft.com/en-us/dotnet/core/tools/dotnet-add-package
https://learn.microsoft.com/en-us/dotnet/core/tools/dependencies
https://learn.microsoft.com/en-us/dotnet/core/tools/dependencies

In your app host project, call AddAzureRedis on the builder instance to add an Azure
Cache for Redis resource, as shown in the following example:

C#

The preceding call to AddAzureRedis configures the Redis server resource to be
deployed as an Azure Cache for Redis.

If you're new to Bicep, it's a domain-specific language for defining Azure resources. With
.NET Aspire, you don't need to write Bicep by-hand, instead the provisioning APIs
generate Bicep for you. When you publish your app, the generated Bicep is output
alongside the manifest file. When you add an Azure Cache for Redis resource, the
following Bicep is generated:

Bicep

var builder = DistributedApplication.CreateBuilder(args);

var cache = builder.AddAzureRedis("azcache");

builder.AddProject<Projects.ExampleProject>()
 .WithReference(cache);

// After adding all resources, run the app...

） Important

By default, AddAzureRedis configures Microsoft Entra ID authentication. This
requires changes to applications that need to connect to these resources, for
example, client integrations.

 Tip

When you call AddAzureRedis, it implicitly calls AddAzureProvisioning—which
adds support for generating Azure resources dynamically during app startup. The
app must configure the appropriate subscription and location. For more
information, see Local provisioning: Configuration.

Generated provisioning Bicep

@description('The location for the resource(s) to be deployed.')
param location string = resourceGroup().location

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azureredisextensions.addazureredis
https://learn.microsoft.com/en-us/azure/azure-cache-for-redis/cache-overview
https://learn.microsoft.com/en-us/azure/azure-resource-manager/bicep/overview
https://learn.microsoft.com/en-us/azure/azure-cache-for-redis/cache-azure-active-directory-for-authentication
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azureredisextensions.addazureredis
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azureprovisionerextensions.addazureprovisioning

The preceding Bicep is a module that provisions an Azure Cache for Redis with the
following defaults:

location : The location of the Azure Cache for Redis resource. The default is the
location of the resource group.
principalId : The principal ID of the Azure Cache for Redis resource.
principalName : The principal name of the Azure Cache for Redis resource.
sku : The SKU of the Azure Cache for Redis resource. The default is Basic with a
capacity of 1 .
enableNonSslPort : The non-SSL port of the Azure Cache for Redis resource. The
default is false .

param principalId string

param principalName string

resource redis 'Microsoft.Cache/redis@2024-03-01' = {
 name: take('redis-${uniqueString(resourceGroup().id)}', 63)
 location: location
 properties: {
 sku: {
 name: 'Basic'
 family: 'C'
 capacity: 1
 }
 enableNonSslPort: false
 disableAccessKeyAuthentication: true
 minimumTlsVersion: '1.2'
 redisConfiguration: {
 'aad-enabled': 'true'
 }
 }
 tags: {
 'aspire-resource-name': 'redis'
 }
}

resource redis_contributor
'Microsoft.Cache/redis/accessPolicyAssignments@2024-03-01' = {
 name: take('rediscontributor${uniqueString(resourceGroup().id)}', 24)
 properties: {
 accessPolicyName: 'Data Contributor'
 objectId: principalId
 objectIdAlias: principalName
 }
 parent: redis
}

output connectionString string = '${redis.properties.hostName},ssl=true'

disableAccessKeyAuthentication : The access key authentication of the Azure Cache
for Redis resource. The default is true .
minimumTlsVersion : The minimum TLS version of the Azure Cache for Redis
resource. The default is 1.2 .
redisConfiguration : The Redis configuration of the Azure Cache for Redis
resource. The default is aad-enabled set to true .
tags : The tags of the Azure Cache for Redis resource. The default is aspire-
resource-name set to the name of the Aspire resource, in this case redis .
redis_contributor : The contributor of the Azure Cache for Redis resource, with an
access policy name of Data Contributor .
connectionString : The connection string of the Azure Cache for Redis resource.

In addition to the Azure Cache for Redis, it also provisions an access policy assignment
to the application access to the cache. The generated Bicep is a starting point and is
influenced by changes to the provisioning infrastructure in C#. Customizations to the
Bicep file directly will be overwritten, so make changes through the C# provisioning APIs
to ensure they are reflected in the generated files.

All .NET Aspire Azure resources are subclasses of the AzureProvisioningResource type.
This type enables the customization of the generated Bicep by providing a fluent API to
configure the Azure resources—using the ConfigureInfrastructure<T>
(IResourceBuilder<T>, Action<AzureResourceInfrastructure>) API. For example, you can
configure the kind , consistencyPolicy , locations , and more. The following example
demonstrates how to customize the Azure Cache for Redis resource:

C#

Customize provisioning infrastructure

builder.AddAzureRedis("redis")
 .WithAccessKeyAuthentication()
 .ConfigureInfrastructure(infra =>
 {
 var redis = infra.GetProvisionableResources()
 .OfType<RedisResource>()
 .Single();

 redis.Sku = new()
 {
 Family = RedisSkuFamily.BasicOrStandard,
 Name = RedisSkuName.Standard,
 Capacity = 1,
 };

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azure.azureprovisioningresource
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azureprovisioningresourceextensions.configureinfrastructure#aspire-hosting-azureprovisioningresourceextensions-configureinfrastructure-1(aspire-hosting-applicationmodel-iresourcebuilder((-0))-system-action((aspire-hosting-azure-azureresourceinfrastructure)))
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azureprovisioningresourceextensions.configureinfrastructure#aspire-hosting-azureprovisioningresourceextensions-configureinfrastructure-1(aspire-hosting-applicationmodel-iresourcebuilder((-0))-system-action((aspire-hosting-azure-azureresourceinfrastructure)))

The preceding code:

Chains a call to the ConfigureInfrastructure API:
The infra parameter is an instance of the AzureResourceInfrastructure type.
The provisionable resources are retrieved by calling the
GetProvisionableResources() method.
The single RedisResource is retrieved.
The Sku is set with a family of BasicOrStandard , a name of Standard , and a
capacity of 1 .
A tag is added to the Redis resource with a key of ExampleKey and a value of
Example value .

There are many more configuration options available to customize the Azure Cache for
Redis resource. For more information, see Azure.Provisioning.Redis. For more
information, see Azure.Provisioning customization.

You might have an existing Azure Cache for Redis that you want to connect to. Instead
of representing a new Azure Cache for Redis resource, you can add a connection string
to the app host. To add a connection to an existing Azure Cache for Redis, call the
AddConnectionString method:

C#

 redis.Tags.Add("ExampleKey", "Example value");
 });

Connect to an existing Azure Cache for Redis

var builder = DistributedApplication.CreateBuilder(args);

var cache = builder.AddConnectionString("azure-redis");

builder.AddProject<Projects.WebApplication>("web")
 .WithReference(cache);

// After adding all resources, run the app...

７ Note

Connection strings are used to represent a wide range of connection information,
including database connections, message brokers, endpoint URIs, and other

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azureprovisioningresourceextensions.configureinfrastructure
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azure.azureresourceinfrastructure
https://learn.microsoft.com/en-us/dotnet/api/azure.provisioning.infrastructure.getprovisionableresources#azure-provisioning-infrastructure-getprovisionableresources
https://learn.microsoft.com/en-us/dotnet/api/azure.provisioning.redis.redisresource
https://learn.microsoft.com/en-us/dotnet/api/azure.provisioning.redis
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.parameterresourcebuilderextensions.addconnectionstring

The connection string is configured in the app host's configuration, typically under User
Secrets, under the ConnectionStrings section. The app host injects this connection
string as an environment variable into all dependent resources, for example:

JSON

The dependent resource can access the injected connection string by calling the
GetConnectionString method, and passing the connection name as the parameter, in
this case "azure-redis" . The GetConnectionString API is shorthand for
IConfiguration.GetSection("ConnectionStrings")[name] .

The Azure Cache for Redis hosting integration supports running the Redis server as a
local container. This is beneficial for situations where you want to run the Redis server
locally for development and testing purposes, avoiding the need to provision an Azure
resource or connect to an existing Azure Cache for Redis server.

To make use of the docker.io/library/redis container image, and run the Azure Cache
for Redis instance as a container locally, chain a call to RunAsContainer, as shown in the
following example:

C#

services. In .NET Aspire nomenclature, the term "connection string" is used to
represent any kind of connection information.

{
 "ConnectionStrings": {
 "azure-redis": "<your-redis-
name>.redis.cache.windows.net:6380,ssl=true,abortConnect=False"
 }
}

Run Azure Cache for Redis resource as a container

var builder = DistributedApplication.CreateBuilder(args);

var cache = builder.AddAzureRedis("azcache")
 .RunAsContainer();

builder.AddProject<Projects.ExampleProject>()
 .WithReference(cache);

// After adding all resources, run the app...

https://learn.microsoft.com/en-us/aspnet/core/security/app-secrets
https://learn.microsoft.com/en-us/aspnet/core/security/app-secrets
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.configurationextensions.getconnectionstring
https://hub.docker.com/_/redis/
https://hub.docker.com/_/redis/
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azureredisextensions.runascontainer

The preceding code configures the Redis resource to run locally in a container.

By default, the Azure Cache for Redis resource is configured to use Microsoft Entra ID
authentication. If you want to use password authentication (not recommended), you can
configure the server to use password authentication by calling the
WithAccessKeyAuthentication method:

C#

The preceding code configures the Azure Cache for Redis resource to use access key
authentication. This alters the generated Bicep to use access key authentication instead
of Microsoft Entra ID authentication. In other words, the connection string will contain a
password, and will be added to an Azure Key Vault secret.

To get started with the .NET Aspire Stack Exchange Redis output caching client
integration, install the 📦 Aspire.StackExchange.Redis.OutputCaching NuGet package
in the client-consuming project, that is, the project for the application that uses the
output caching client. The Redis output caching client integration registers services

 Tip

The RunAsContainer method is useful for local development and testing. The API
exposes an optional delegate that enables you to customize the underlying
RedisResource configuration, such adding Redis Insights , Redis Commander ,
adding a data volume or data bind mount. For more information, see the .NET
Aspire Redis hosting integration.

Configure the Azure Cache for Redis resource to use
access key authentication

var builder = DistributedApplication.CreateBuilder(args);

var cache = builder.AddAzureRedis("azcache")
 .WithAccessKeyAuthentication();

builder.AddProject<Projects.ExampleProject>()
 .WithReference(cache);

// After adding all resources, run the app...

Client integration

https://learn.microsoft.com/en-us/azure/postgresql/flexible-server/concepts-azure-ad-authentication
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azureredisextensions.withaccesskeyauthentication
https://www.nuget.org/packages/Aspire.StackExchange.Redis.OutputCaching
https://www.nuget.org/packages/Aspire.StackExchange.Redis.OutputCaching
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.redisresource
https://redis.io/insight/
https://redis.io/insight/
https://joeferner.github.io/redis-commander/
https://joeferner.github.io/redis-commander/

required for enabling CacheOutput method calls and [OutputCache] attribute usage to
rely on Redis as its caching mechanism.

.NET CLI

In the Program.cs file of your client-consuming project, call the AddRedisOutputCache
extension method on any IHostApplicationBuilder to register the required services for
output caching.

C#

Add the middleware to the request processing pipeline by calling
UseOutputCache(IApplicationBuilder):

C#

For minimal API apps, configure an endpoint to do caching by calling CacheOutput, or
by applying the OutputCacheAttribute, as shown in the following examples:

C#

.NET CLI

dotnet add package Aspire.StackExchange.Redis.OutputCaching

Add output caching

builder.AddRedisOutputCache(connectionName: "cache");

 Tip

The connectionName parameter must match the name used when adding the Azure
Cache for Redis resource in the app host project. For more information, see Add
Azure Cache for Redis resource.

var app = builder.Build();

app.UseOutputCache();

app.MapGet("/cached", () => "Hello world!")
 .CacheOutput();

https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.outputcacheconventionbuilderextensions.cacheoutput
https://learn.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.outputcaching.outputcacheattribute
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.aspireredisoutputcacheextensions.addredisoutputcache
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.ihostapplicationbuilder
https://learn.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.outputcacheapplicationbuilderextensions.useoutputcache#microsoft-aspnetcore-builder-outputcacheapplicationbuilderextensions-useoutputcache(microsoft-aspnetcore-builder-iapplicationbuilder)
https://learn.microsoft.com/en-us/aspnet/core/fundamentals/minimal-apis/overview
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.outputcacheconventionbuilderextensions.cacheoutput
https://learn.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.outputcaching.outputcacheattribute

For apps with controllers, apply the [OutputCache] attribute to the action method. For
Razor Pages apps, apply the attribute to the Razor page class.

By default, when you call AddAzureRedis in your Redis hosting integration, it configures
📦 Microsoft.Azure.StackExchangeRedis NuGet package to enable authentication:

.NET CLI

The Redis connection can be consumed using the client integration and
Microsoft.Azure.StackExchangeRedis . Consider the following configuration code:

C#

For more information, see the Microsoft.Azure.StackExchangeRedis repo.

app.MapGet(
 "/attribute",
 [OutputCache] () => "Hello world!");

Add Azure Cache for Redis authenticated output client

.NET CLI

dotnet add package Microsoft.Azure.StackExchangeRedis

var azureOptionsProvider = new AzureOptionsProvider();

var configurationOptions = ConfigurationOptions.Parse(
 builder.Configuration.GetConnectionString("cache") ??
 throw new InvalidOperationException("Could not find a 'cache' connection
string."));

if (configurationOptions.EndPoints.Any(azureOptionsProvider.IsMatch))
{
 await configurationOptions.ConfigureForAzureWithTokenCredentialAsync(
 new DefaultAzureCredential());
}

builder.AddRedisOutputCache("cache", configureOptions: options =>
{
 options.Defaults = configurationOptions.Defaults;
});

Configuration

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azureredisextensions.addazureredis
https://www.nuget.org/packages/Microsoft.Azure.StackExchangeRedis
https://www.nuget.org/packages/Microsoft.Azure.StackExchangeRedis
https://github.com/Azure/Microsoft.Azure.StackExchangeRedis
https://github.com/Azure/Microsoft.Azure.StackExchangeRedis

The .NET Aspire Stack Exchange Redis output caching integration provides multiple
options to configure the Redis connection based on the requirements and conventions
of your project.

When using a connection string from the ConnectionStrings configuration section, you
can provide the name of the connection string when calling AddRedisOutputCache:

C#

Then the connection string will be retrieved from the ConnectionStrings configuration
section:

JSON

For more information on how to format this connection string, see the Stack Exchange
Redis configuration docs .

The .NET Aspire Stack Exchange Redis output caching integration supports
Microsoft.Extensions.Configuration. It loads the StackExchangeRedisSettings from
configuration by using the Aspire:StackExchange:Redis key. Example appsettings.json
that configures some of the options:

JSON

Use a connection string

builder.AddRedisOutputCache(connectionName: "cache");

{
 "ConnectionStrings": {
 "cache": "localhost:6379"
 }
}

Use configuration providers

{
 "Aspire": {
 "StackExchange": {
 "Redis": {
 "ConfigurationOptions": {
 "ConnectTimeout": 3000,
 "ConnectRetry": 2
 },
 "DisableHealthChecks": true,

https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.aspireredisoutputcacheextensions.addredisoutputcache
https://stackexchange.github.io/StackExchange.Redis/Configuration.html#basic-configuration-strings
https://stackexchange.github.io/StackExchange.Redis/Configuration.html#basic-configuration-strings
https://stackexchange.github.io/StackExchange.Redis/Configuration.html#basic-configuration-strings
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration
https://learn.microsoft.com/en-us/dotnet/api/aspire.stackexchange.redis.stackexchangeredissettings

For the complete Redis output caching client integration JSON schema, see
Aspire.StackExchange.Redis.OutputCaching/ConfigurationSchema.json .

You can also pass the Action<StackExchangeRedisSettings> configurationSettings
delegate to set up some or all the options inline, for example to disable health checks
from code:

C#

You can also set up the ConfigurationOptions using the Action<ConfigurationOptions>
configureOptions delegate parameter of the AddRedisOutputCache method. For
example to set the connection timeout:

C#

By default, .NET Aspire client integrations have health checks enabled for all services.
Similarly, many .NET Aspire hosting integrations also enable health check endpoints. For
more information, see:

.NET app health checks in C#
Health checks in ASP.NET Core

The .NET Aspire Stack Exchange Redis output caching integration handles the following:

Adds the health check when StackExchangeRedisSettings.DisableHealthChecks is
false , which attempts to connect to the container instance.

 "DisableTracing": false
 }
 }
 }
}

Use inline delegates

builder.AddRedisOutputCache(
 "cache",
 static settings => settings.DisableHealthChecks = true);

builder.AddRedisOutputCache(
 "cache",
 static settings => settings.ConnectTimeout = 3_000);

Client integration health checks

https://github.com/dotnet/aspire/blob/v9.1.0/src/Components/Aspire.StackExchange.Redis.OutputCaching/ConfigurationSchema.json
https://github.com/dotnet/aspire/blob/v9.1.0/src/Components/Aspire.StackExchange.Redis.OutputCaching/ConfigurationSchema.json
https://stackexchange.github.io/StackExchange.Redis/Configuration.html#configuration-options
https://stackexchange.github.io/StackExchange.Redis/Configuration.html#configuration-options
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.aspireredisoutputcacheextensions.addredisoutputcache
https://learn.microsoft.com/en-us/dotnet/core/diagnostics/diagnostic-health-checks
https://learn.microsoft.com/en-us/aspnet/core/host-and-deploy/health-checks
https://learn.microsoft.com/en-us/dotnet/api/aspire.stackexchange.redis.stackexchangeredissettings.disablehealthchecks#aspire-stackexchange-redis-stackexchangeredissettings-disablehealthchecks

Integrates with the /health HTTP endpoint, which specifies all registered health
checks must pass for app to be considered ready to accept traffic.

.NET Aspire integrations automatically set up Logging, Tracing, and Metrics
configurations, which are sometimes known as the pillars of observability. For more
information about integration observability and telemetry, see .NET Aspire integrations
overview. Depending on the backing service, some integrations may only support some
of these features. For example, some integrations support logging and tracing, but not
metrics. Telemetry features can also be disabled using the techniques presented in the
Configuration section.

The .NET Aspire Stack Exchange Redis output caching integration uses the following Log
categories:

Aspire.StackExchange.Redis

Microsoft.AspNetCore.OutputCaching.StackExchangeRedis

The .NET Aspire Stack Exchange Redis output caching integration will emit the following
Tracing activities using OpenTelemetry:

OpenTelemetry.Instrumentation.StackExchangeRedis

The .NET Aspire Stack Exchange Redis output caching integration currently doesn't
support metrics by default due to limitations with the StackExchange.Redis library.

Azure Cache for Redis docs
Stack Exchange Redis docs
.NET Aspire integrations
.NET Aspire GitHub repo

Observability and telemetry

Logging

Tracing

Metrics

See also

https://learn.microsoft.com/en-us/azure/azure-cache-for-redis/
https://stackexchange.github.io/StackExchange.Redis/
https://stackexchange.github.io/StackExchange.Redis/
https://github.com/dotnet/aspire
https://github.com/dotnet/aspire

*: Redis is a registered trademark of Redis Ltd. Any rights therein are reserved to Redis
Ltd. Any use by Microsoft is for referential purposes only and does not indicate any
sponsorship, endorsement or affiliation between Redis and Microsoft. Return to top?

.NET Aspire Azure Cosmos DB
integration
Article • 02/26/2025

Includes: Hosting integration and Client integration

Azure Cosmos DB is a fully managed NoSQL database service for modern app
development. The .NET Aspire Azure Cosmos DB integration enables you to connect to
existing Cosmos DB instances or create new instances from .NET with the Azure Cosmos
DB emulator.

The .NET Aspire Azure Cosmos DB hosting integration models the various Cosmos DB
resources as the following types:

AzureCosmosDBResource: Represents an Azure Cosmos DB resource.
AzureCosmosDBEmulatorResource: Represents an Azure Cosmos DB emulator
resource.

To access these types and APIs for expressing them, add the 📦
Aspire.Hosting.Azure.CosmosDB NuGet package in the app host project.

.NET CLI

For more information, see dotnet add package or Manage package dependencies in
.NET applications.

In your app host project, call AddAzureCosmosDB to add and return an Azure Cosmos
DB resource builder.

C#

Hosting integration

.NET CLI

dotnet add package Aspire.Hosting.Azure.CosmosDB

Add Azure Cosmos DB resource

https://azure.microsoft.com/services/cosmos-db/
https://azure.microsoft.com/services/cosmos-db/
https://azure.microsoft.com/services/cosmos-db/
https://azure.microsoft.com/services/cosmos-db/
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azurecosmosdbresource
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azure.azurecosmosdbemulatorresource
https://www.nuget.org/packages/Aspire.Hosting.Azure.CosmosDB
https://www.nuget.org/packages/Aspire.Hosting.Azure.CosmosDB
https://www.nuget.org/packages/Aspire.Hosting.Azure.CosmosDB
https://learn.microsoft.com/en-us/dotnet/core/tools/dotnet-add-package
https://learn.microsoft.com/en-us/dotnet/core/tools/dependencies
https://learn.microsoft.com/en-us/dotnet/core/tools/dependencies
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azurecosmosextensions.addazurecosmosdb

When you add an AzureCosmosDBResource to the app host, it exposes other useful
APIs to add databases and containers. In other words, you must add an
AzureCosmosDBResource before adding any of the other Cosmos DB resources.

If you're new to Bicep, it's a domain-specific language for defining Azure resources. With
.NET Aspire, you don't need to write Bicep by-hand, instead the provisioning APIs
generate Bicep for you. When you publish your app, the generated Bicep is output
alongside the manifest file. When you add an Azure Cosmos DB resource, the following
Bicep is generated:

Bicep

var builder = DistributedApplication.CreateBuilder(args);

var cosmos = builder.AddAzureCosmosDB("cosmos-db");

// After adding all resources, run the app...

） Important

When you call AddAzureCosmosDB, it implicitly calls AddAzureProvisioning—
which adds support for generating Azure resources dynamically during app startup.
The app must configure the appropriate subscription and location. For more
information, see Local provisioning: Configuration.

Generated provisioning Bicep

@description('The location for the resource(s) to be deployed.')
param location string = resourceGroup().location

param principalType string

param principalId string

resource cosmos 'Microsoft.DocumentDB/databaseAccounts@2024-08-15' = {
 name: take('cosmos-${uniqueString(resourceGroup().id)}', 44)
 location: location
 properties: {
 locations: [
 {
 locationName: location
 failoverPriority: 0
 }
]
 consistencyPolicy: {

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azurecosmosdbresource
https://learn.microsoft.com/en-us/azure/azure-resource-manager/bicep/overview
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azurecosmosextensions.addazurecosmosdb
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azureprovisionerextensions.addazureprovisioning

The preceding Bicep is a module that provisions an Azure Cosmos DB account with the
following defaults:

kind : The kind of Cosmos DB account. The default is GlobalDocumentDB .
consistencyPolicy : The consistency policy of the Cosmos DB account. The default
is Session .
locations : The locations for the Cosmos DB account. The default is the resource
group's location.

In addition to the Cosmos DB account, it also adds the current application to the Data
Contributor role for the Cosmos DB account. The generated Bicep is a starting point
and is influenced by changes to the provisioning infrastructure in C#. Customizations to
the Bicep file directly will be overwritten, so make changes through the C# provisioning
APIs to ensure they are reflected in the generated files.

 defaultConsistencyLevel: 'Session'
 }
 databaseAccountOfferType: 'Standard'
 disableLocalAuth: true
 }
 kind: 'GlobalDocumentDB'
 tags: {
 'aspire-resource-name': 'cosmos'
 }
}

resource cosmos_roleDefinition
'Microsoft.DocumentDB/databaseAccounts/sqlRoleDefinitions@2024-08-15'
existing = {
 name: '00000000-0000-0000-0000-000000000002'
 parent: cosmos
}

resource cosmos_roleAssignment
'Microsoft.DocumentDB/databaseAccounts/sqlRoleAssignments@2024-08-15' = {
 name: guid(principalId, cosmos_roleDefinition.id, cosmos.id)
 properties: {
 principalId: principalId
 roleDefinitionId: cosmos_roleDefinition.id
 scope: cosmos.id
 }
 parent: cosmos
}

output connectionString string = cosmos.properties.documentEndpoint

Customize provisioning infrastructure

All .NET Aspire Azure resources are subclasses of the AzureProvisioningResource type.
This type enables the customization of the generated Bicep by providing a fluent API to
configure the Azure resources—using the ConfigureInfrastructure<T>
(IResourceBuilder<T>, Action<AzureResourceInfrastructure>) API. For example, you can
configure the kind , consistencyPolicy , locations , and more. The following example
demonstrates how to customize the Azure Cosmos DB resource:

C#

The preceding code:

Chains a call to the ConfigureInfrastructure API:
The infra parameter is an instance of the AzureResourceInfrastructure type.
The provisionable resources are retrieved by calling the
GetProvisionableResources() method.
The single CosmosDBAccount is retrieved.
The CosmosDBAccount.ConsistencyPolicy is assigned to a
DefaultConsistencyLevel.Strong.
A tag is added to the Cosmos DB account with a key of ExampleKey and a value
of Example value .

There are many more configuration options available to customize the Azure Cosmos
DB resource. For more information, see Azure.Provisioning.CosmosDB. For more
information, see Azure.Provisioning customization.

You might have an existing Azure Cosmos DB account that you want to connect to.
Instead of representing a new Azure Cosmos DB resource, you can add a connection

builder.AddAzureCosmosDB("cosmos-db")
 .ConfigureInfrastructure(infra =>
 {
 var cosmosDbAccount = infra.GetProvisionableResources()
 .OfType<CosmosDBAccount>()
 .Single();

 cosmosDbAccount.Kind = CosmosDBAccountKind.MongoDB;
 cosmosDbAccount.ConsistencyPolicy = new()
 {
 DefaultConsistencyLevel = DefaultConsistencyLevel.Strong,
 };
 cosmosDbAccount.Tags.Add("ExampleKey", "Example value");
 });

Connect to an existing Azure Cosmos DB account

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azure.azureprovisioningresource
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azureprovisioningresourceextensions.configureinfrastructure#aspire-hosting-azureprovisioningresourceextensions-configureinfrastructure-1(aspire-hosting-applicationmodel-iresourcebuilder((-0))-system-action((aspire-hosting-azure-azureresourceinfrastructure)))
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azureprovisioningresourceextensions.configureinfrastructure#aspire-hosting-azureprovisioningresourceextensions-configureinfrastructure-1(aspire-hosting-applicationmodel-iresourcebuilder((-0))-system-action((aspire-hosting-azure-azureresourceinfrastructure)))
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azureprovisioningresourceextensions.configureinfrastructure
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azure.azureresourceinfrastructure
https://learn.microsoft.com/en-us/dotnet/api/azure.provisioning.infrastructure.getprovisionableresources#azure-provisioning-infrastructure-getprovisionableresources
https://learn.microsoft.com/en-us/dotnet/api/azure.provisioning.cosmosdb.cosmosdbaccount
https://learn.microsoft.com/en-us/dotnet/api/azure.provisioning.cosmosdb.cosmosdbaccount.consistencypolicy#azure-provisioning-cosmosdb-cosmosdbaccount-consistencypolicy
https://learn.microsoft.com/en-us/dotnet/api/azure.provisioning.cosmosdb.defaultconsistencylevel#azure-provisioning-cosmosdb-defaultconsistencylevel-strong
https://learn.microsoft.com/en-us/dotnet/api/azure.provisioning.cosmosdb

string to the app host. To add a connection to an existing Azure Cosmos DB account,
call the AddConnectionString method:

C#

The connection string is configured in the app host's configuration, typically under User
Secrets, under the ConnectionStrings section. The app host injects this connection
string as an environment variable into all dependent resources, for example:

JSON

The dependent resource can access the injected connection string by calling the
GetConnectionString method, and passing the connection name as the parameter, in
this case "cosmos-db" . The GetConnectionString API is shorthand for
IConfiguration.GetSection("ConnectionStrings")[name] .

To add an Azure Cosmos DB database resource, call the AddCosmosDatabase method
on an IResourceBuilder<AzureCosmosDBResource> instance:

var builder = DistributedApplication.CreateBuilder(args);

var cosmos = builder.AddConnectionString("cosmos-db");

builder.AddProject<Projects.WebApplication>("web")
 .WithReference(cosmos);

// After adding all resources, run the app...

７ Note

Connection strings are used to represent a wide range of connection information,
including database connections, message brokers, endpoint URIs, and other
services. In .NET Aspire nomenclature, the term "connection string" is used to
represent any kind of connection information.

{
 "ConnectionStrings": {
 "cosmos-db":
"AccountEndpoint=https://{account_name}.documents.azure.com:443/;AccountKey=
{account_key};"
 }
}

Add Azure Cosmos DB database and container resources

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.parameterresourcebuilderextensions.addconnectionstring
https://learn.microsoft.com/en-us/aspnet/core/security/app-secrets
https://learn.microsoft.com/en-us/aspnet/core/security/app-secrets
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.configurationextensions.getconnectionstring
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azurecosmosextensions.addcosmosdatabase

C#

When you call AddCosmosDatabase , it adds a database named db to your Cosmos DB
resources and returns the newly created database resource. The database is created in
the Cosmos DB account that's represented by the AzureCosmosDBResource that you
added earlier. The database is a logical container for collections and users.

An Azure Cosmos DB container is where data is stored. When you create a container,
you need to supply a partition key.

To add an Azure Cosmos DB container resource, call the AddContainer method on an
IResourceBuilder<AzureCosmosDBDatabaseResource> instance:

C#

The container is created in the database that's represented by the
AzureCosmosDBDatabaseResource that you added earlier.

For more information, see Databases, containers, and items in Azure Cosmos DB.

To add an Azure Cosmos DB emulator resource, chain a call on an
IResourceBuilder<AzureCosmosDBResource> to the RunAsEmulator API:

C#

var builder = DistributedApplication.CreateBuilder(args);

var cosmos = builder.AddAzureCosmosDB("cosmos-db");
cosmos.AddCosmosDatabase("db");

// After adding all resources, run the app...

var builder = DistributedApplication.CreateBuilder(args);

var cosmos = builder.AddAzureCosmosDB("cosmos-db");
var db = cosmos.AddCosmosDatabase("db");
db.AddContainer("entries", "/id");

// After adding all resources, run the app...

Add Azure Cosmos DB emulator resource

var builder = DistributedApplication.CreateBuilder(args);

var cosmos = builder.AddAzureCosmosDB("cosmos-db")
 .RunAsEmulator();

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azurecosmosextensions.addcontainer
https://learn.microsoft.com/en-us/azure/cosmos-db/resource-model
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azurecosmosextensions.runasemulator

When you call RunAsEmulator , it configures your Cosmos DB resources to run locally
using an emulator. The emulator in this case is the Azure Cosmos DB Emulator. The
Azure Cosmos DB Emulator provides a free local environment for testing your Azure
Cosmos DB apps and it's a perfect companion to the .NET Aspire Azure hosting
integration. The emulator isn't installed, instead, it's accessible to .NET Aspire as a
container. When you add a container to the app host, as shown in the preceding
example with the mcr.microsoft.com/cosmosdb/emulator image, it creates and starts the
container when the app host starts. For more information, see Container resource
lifecycle.

There are various configurations available to container resources, for example, you can
configure the container's ports, environment variables, it's lifetime, and more.

By default, the Cosmos DB emulator container when configured by .NET Aspire, exposes
the following endpoints:

Endpoint Container port Host port

https 8081 dynamic

The port that it's listening on is dynamic by default. When the container starts, the port
is mapped to a random port on the host machine. To configure the endpoint port, chain
calls on the container resource builder provided by the RunAsEmulator method as shown
in the following example:

C#

// After adding all resources, run the app...

Configure Cosmos DB emulator container

Configure Cosmos DB emulator container gateway port

ﾉ Expand table

var builder = DistributedApplication.CreateBuilder(args);

var cosmos = builder.AddAzureCosmosDB("cosmos-db").RunAsEmulator(
 emulator =>
 {
 emulator.WithGatewayPort(7777);
 });

https://learn.microsoft.com/en-us/azure/cosmos-db/local-emulator

The preceding code configures the Cosmos DB emulator container's existing https
endpoint to listen on port 8081 . The Cosmos DB emulator container's port is mapped to
the host port as shown in the following table:

Endpoint name Port mapping (container:host)

https 8081:7777

To configure the Cosmos DB emulator container with a persistent lifetime, call the
WithLifetime method on the Cosmos DB emulator container resource and pass
ContainerLifetime.Persistent:

C#

For more information, see Container resource lifetime.

To add a data volume to the Azure Cosmos DB emulator resource, call the
WithDataVolume method on the Azure Cosmos DB emulator resource:

C#

// After adding all resources, run the app...

ﾉ Expand table

Configure Cosmos DB emulator container with persistent lifetime

var builder = DistributedApplication.CreateBuilder(args);

var cosmos = builder.AddAzureCosmosDB("cosmos-db").RunAsEmulator(
 emulator =>
 {

emulator.WithLifetime(ContainerLifetime.Persistent);
 });

// After adding all resources, run the app...

Configure Cosmos DB emulator container with data volume

var builder = DistributedApplication.CreateBuilder(args);

var cosmos = builder.AddAzureCosmosDB("cosmos-db").RunAsEmulator(
 emulator =>
 {

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.containerresourcebuilderextensions.withlifetime
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.containerlifetime#aspire-hosting-applicationmodel-containerlifetime-persistent
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azurecosmosextensions.withdatavolume

The data volume is used to persist the Cosmos DB emulator data outside the lifecycle of
its container. The data volume is mounted at the /tmp/cosmos/appdata path in the
Cosmos DB emulator container and when a name parameter isn't provided, the name is
generated. The emulator has its AZURE_COSMOS_EMULATOR_ENABLE_DATA_PERSISTENCE
environment variable set to true . For more information on data volumes and details on
why they're preferred over bind mounts, see Docker docs: Volumes .

To configure the partition count of the Cosmos DB emulator container, call the
WithPartitionCount method:

C#

The preceding code configures the Cosmos DB emulator container to have a partition
count of 100 . This is a shorthand for setting the AZURE_COSMOS_EMULATOR_PARTITION_COUNT
environment variable.

The next generation of the Azure Cosmos DB emulator is entirely Linux-based and is
available as a Docker container. It supports running on a wide variety of processors and
operating systems.

To use the preview version of the Cosmos DB emulator, call the RunAsPreviewEmulator
method. Since this feature is in preview, you need to explicitly opt into the preview
feature by suppressing the ASPIRECOSMOSDB001 experimental diagnostic.

 emulator.WithDataVolume();
 });

// After adding all resources, run the app...

Configure Cosmos DB emulator container partition count

var builder = DistributedApplication.CreateBuilder(args);

var cosmos = builder.AddAzureCosmosDB("cosmos-db").RunAsEmulator(
 emulator =>
 {
 emulator.WithPartitionCount(100); // Defaults to 25
 });

// After adding all resources, run the app...

Use Linux-based emulator (preview)

https://docs.docker.com/engine/storage/volumes
https://docs.docker.com/engine/storage/volumes
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azurecosmosextensions.withpartitioncount
https://learn.microsoft.com/en-us/azure/cosmos-db/emulator-linux
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azurecosmosextensions.runaspreviewemulator

The preview emulator also supports exposing a "Data Explorer" endpoint which allows
you to view the data stored in the Cosmos DB emulator via a web UI. To enable the Data
Explorer, call the WithDataExplorer method.

C#

The preceding code configures the Linux-based preview Cosmos DB emulator container,
with the Data Explorer endpoint, to use at run time.

The Azure Cosmos DB hosting integration automatically adds a health check for the
Cosmos DB resource. The health check verifies that the Cosmos DB is running and that a
connection can be established to it.

The hosting integration relies on the 📦 AspNetCore.HealthChecks.CosmosDb NuGet
package.

To get started with the .NET Aspire Azure Cosmos DB client integration, install the 📦
Aspire.Microsoft.Azure.Cosmos NuGet package in the client-consuming project, that
is, the project for the application that uses the Cosmos DB client. The Cosmos DB client
integration registers a CosmosClient instance that you can use to interact with Cosmos
DB.

.NET CLI

#pragma warning disable ASPIRECOSMOSDB001

var builder = DistributedApplication.CreateBuilder(args);

var cosmos = builder.AddAzureCosmosDB("cosmos-db").RunAsPreviewEmulator(
 emulator =>
 {
 emulator.WithDataExplorer();
 });

// After adding all resources, run the app...

Hosting integration health checks

Client integration

.NET CLI

dotnet add package Aspire.Microsoft.Azure.Cosmos

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azurecosmosextensions.withdataexplorer
https://www.nuget.org/packages/AspNetCore.HealthChecks.CosmosDb
https://www.nuget.org/packages/AspNetCore.HealthChecks.CosmosDb
https://www.nuget.org/packages/Aspire.Microsoft.Azure.Cosmos
https://www.nuget.org/packages/Aspire.Microsoft.Azure.Cosmos
https://www.nuget.org/packages/Aspire.Microsoft.Azure.Cosmos
https://learn.microsoft.com/en-us/dotnet/api/microsoft.azure.cosmos.cosmosclient

In the Program.cs file of your client-consuming project, call the AddAzureCosmosClient
extension method on any IHostApplicationBuilder to register a CosmosClient for use via
the dependency injection container. The method takes a connection name parameter.

C#

You can then retrieve the CosmosClient instance using dependency injection. For
example, to retrieve the connection from an example service:

C#

For more information on dependency injection, see .NET dependency injection.

There might be situations where you want to register multiple CosmosClient instances
with different connection names. To register keyed Cosmos DB clients, call the
AddKeyedAzureCosmosClient method:

C#

Add Cosmos DB client

builder.AddAzureCosmosClient(connectionName: "cosmos-db");

 Tip

The connectionName parameter must match the name used when adding the
Cosmos DB resource in the app host project. In other words, when you call
AddAzureCosmosDB and provide a name of cosmos-db that same name should be
used when calling AddAzureCosmosClient . For more information, see Add Azure
Cosmos DB resource.

public class ExampleService(CosmosClient client)
{
 // Use client...
}

Add keyed Cosmos DB client

builder.AddKeyedAzureCosmosClient(name: "mainDb");
builder.AddKeyedAzureCosmosClient(name: "loggingDb");

https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.aspiremicrosoftazurecosmosextensions.addazurecosmosclient
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.ihostapplicationbuilder
https://learn.microsoft.com/en-us/dotnet/api/azure.cosmos.cosmosclient
https://learn.microsoft.com/en-us/dotnet/api/azure.cosmos.cosmosclient
https://learn.microsoft.com/en-us/dotnet/core/extensions/dependency-injection
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.aspiremicrosoftazurecosmosextensions.addkeyedazurecosmosclient

Then you can retrieve the CosmosClient instances using dependency injection. For
example, to retrieve the connection from an example service:

C#

For more information on keyed services, see .NET dependency injection: Keyed services.

The .NET Aspire Azure Cosmos DB integration provides multiple options to configure
the connection based on the requirements and conventions of your project.

When using a connection string from the ConnectionStrings configuration section, you
can provide the name of the connection string when calling the AddAzureCosmosClient
method:

C#

Then the connection string is retrieved from the ConnectionStrings configuration
section:

JSON

） Important

When using keyed services, it's expected that your Cosmos DB resource configured
two named databases, one for the mainDb and one for the loggingDb .

public class ExampleService(
 [FromKeyedServices("mainDb")] CosmosClient mainDbClient,
 [FromKeyedServices("loggingDb")] CosmosClient loggingDbClient)
{
 // Use clients...
}

Configuration

Use a connection string

builder.AddAzureCosmosClient("cosmos-db");

{
 "ConnectionStrings": {
 "cosmos-db":
"AccountEndpoint=https://{account_name}.documents.azure.com:443/;AccountKey=

https://learn.microsoft.com/en-us/dotnet/core/extensions/dependency-injection#keyed-services
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.aspiremicrosoftazurecosmosextensions.addazurecosmosclient

For more information on how to format this connection string, see the ConnectionString
documentation.

The .NET Aspire Azure Cosmos DB integration supports
Microsoft.Extensions.Configuration. It loads the MicrosoftAzureCosmosSettings from
configuration by using the Aspire:Microsoft:Azure:Cosmos key. The following snippet is
an example of a appsettings.json file that configures some of the options:

JSON

For the complete Cosmos DB client integration JSON schema, see
Aspire.Microsoft.Azure.Cosmos/ConfigurationSchema.json .

Also you can pass the Action<MicrosoftAzureCosmosSettings> configureSettings
delegate to set up some or all the options inline, for example to disable tracing from
code:

C#

{account_key};"
 }
}

Use configuration providers

{
 "Aspire": {
 "Microsoft": {
 "Azure": {
 "Cosmos": {
 "DisableTracing": false,
 }
 }
 }
 }
}

Use inline delegates

builder.AddAzureCosmosClient(
 "cosmos-db",
 static settings => settings.DisableTracing = true);

https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration
https://learn.microsoft.com/en-us/dotnet/api/aspire.microsoft.azure.cosmos.microsoftazurecosmossettings
https://github.com/dotnet/aspire/blob/v9.1.0/src/Components/Aspire.Microsoft.Azure.Cosmos/ConfigurationSchema.json
https://github.com/dotnet/aspire/blob/v9.1.0/src/Components/Aspire.Microsoft.Azure.Cosmos/ConfigurationSchema.json

You can also set up the Microsoft.Azure.Cosmos.CosmosClientOptions using the
optional Action<CosmosClientOptions> configureClientOptions parameter of the
AddAzureCosmosClient method. For example to set the
CosmosClientOptions.ApplicationName user-agent header suffix for all requests issues
by this client:

C#

The .NET Aspire Cosmos DB client integration currently doesn't implement health
checks, though this may change in future releases.

.NET Aspire integrations automatically set up Logging, Tracing, and Metrics
configurations, which are sometimes known as the pillars of observability. For more
information about integration observability and telemetry, see .NET Aspire integrations
overview. Depending on the backing service, some integrations may only support some
of these features. For example, some integrations support logging and tracing, but not
metrics. Telemetry features can also be disabled using the techniques presented in the
Configuration section.

The .NET Aspire Azure Cosmos DB integration uses the following log categories:

https://learn.microsoft.com/en-us/dotnet/api/microsoft.azure.cosmos.cosmosclientoptions
https://learn.microsoft.com/en-us/dotnet/api/microsoft.azure.cosmos.cosmosclientoptions.applicationname#microsoft-azure-cosmos-cosmosclientoptions-applicationname

The .NET Aspire Azure Cosmos DB integration will emit the following tracing activities
using OpenTelemetry:

Azure.Cosmos.Operation

Azure Cosmos DB tracing is currently in preview, so you must set the experimental
switch to ensure traces are emitted.

C#

For more information, see Azure Cosmos DB SDK observability: Trace attributes.

The .NET Aspire Azure Cosmos DB integration currently doesn't support metrics by
default due to limitations with the Azure SDK.

Azure Cosmos DB
.NET Aspire Cosmos DB Entity Framework Core integration
.NET Aspire integrations overview
.NET Aspire Azure integrations overview
.NET Aspire GitHub repo

 configureClientOptions:
 clientOptions => {
 clientOptions.CosmosClientTelemetryOptions = new()
 {
 CosmosThresholdOptions = new()
 {
 PointOperationLatencyThreshold =
TimeSpan.FromMilliseconds(50),
 NonPointOperationLatencyThreshold =
TimeSpan.FromMilliseconds(300)
 }
 };
 });

Tracing

AppContext.SetSwitch("Azure.Experimental.EnableActivitySource", true);

Metrics

See also

https://learn.microsoft.com/en-us/azure/cosmos-db/nosql/sdk-observability?tabs=dotnet#trace-attributes
https://azure.microsoft.com/services/cosmos-db
https://azure.microsoft.com/services/cosmos-db
https://github.com/dotnet/aspire
https://github.com/dotnet/aspire

.NET Aspire Azure Event Hubs integration
Article • 03/18/2025

Includes: Hosting integration and Client integration

Azure Event Hubs is a native data-streaming service in the cloud that can stream millions of events per second,
with low latency, from any source to any destination. The .NET Aspire Azure Event Hubs integration enables
you to connect to Azure Event Hubs instances from your .NET applications.

The .NET Aspire Azure Event Hubs hosting integration models the various Event Hub resources as the
following types:

AzureEventHubsResource: Represents a top-level Azure Event Hubs resource, used for representing
collections of hubs and the connection information to the underlying Azure resource.
AzureEventHubResource: Represents a single Event Hub resource.
AzureEventHubsEmulatorResource: Represents an Azure Event Hubs emulator as a container resource.
AzureEventHubConsumerGroupResource: Represents a consumer group within an Event Hub resource.

To access these types and APIs for expressing them within your app host project, install the 📦
Aspire.Hosting.Azure.EventHubs NuGet package:

.NET CLI

For more information, see dotnet add package or Manage package dependencies in .NET applications.

To add an AzureEventHubsResource to your app host project, call the AddAzureEventHubs method providing a
name, and then call AddHub:

C#

When you add an Azure Event Hubs resource to the app host, it exposes other useful APIs to add Event Hub
resources, consumer groups, express explicit provisioning configuration, and enables the use of the Azure
Event Hubs emulator. The preceding code adds an Azure Event Hubs resource named event-hubs and an Event

Hosting integration

.NET CLI

dotnet add package Aspire.Hosting.Azure.EventHubs

Add an Azure Event Hubs resource

var builder = DistributedApplication.CreateBuilder(args);

var eventHubs = builder.AddAzureEventHubs("event-hubs");
eventHubs.AddHub("messages");

builder.AddProject<Projects.ExampleService>()
 .WithReference(eventHubs);

// After adding all resources, run the app...

https://learn.microsoft.com/en-us/azure/event-hubs/event-hubs-about
https://azure.microsoft.com/products/event-hubs
https://azure.microsoft.com/products/event-hubs
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azure.azureeventhubsresource
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azure.azureeventhubresource
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azure.azureeventhubsemulatorresource
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azure.azureeventhubconsumergroupresource
https://www.nuget.org/packages/Aspire.Hosting.Azure.EventHubs
https://www.nuget.org/packages/Aspire.Hosting.Azure.EventHubs
https://www.nuget.org/packages/Aspire.Hosting.Azure.EventHubs
https://learn.microsoft.com/en-us/dotnet/core/tools/dotnet-add-package
https://learn.microsoft.com/en-us/dotnet/core/tools/dependencies
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azure.azureeventhubsresource
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azureeventhubsextensions.addazureeventhubs
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azureeventhubsextensions.addhub

Hub named messages to the app host project. The WithReference method passes the connection information
to the ExampleService project.

If you're new to Bicep, it's a domain-specific language for defining Azure resources. With .NET Aspire, you don't
need to write Bicep by-hand, instead the provisioning APIs generate Bicep for you. When you publish your app,
the generated Bicep is output alongside the manifest file. When you add an Azure Event Hubs resource, the
following Bicep is generated:

Bicep

） Important

When you call AddAzureEventHubs, it implicitly calls

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.resourcebuilderextensions.withreference
https://learn.microsoft.com/en-us/azure/azure-resource-manager/bicep/overview
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azureeventhubsextensions.addazureeventhubs
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azureprovisionerextensions.addazureprovisioning#aspire-hosting-azureprovisionerextensions-addazureprovisioning(aspire-hosting-idistributedapplicationbuilder)

The preceding Bicep is a module that provisions an Azure Event Hubs resource with the following defaults:

location : The location of the resource group.
sku : The SKU of the Event Hubs resource, defaults to Standard .
principalId : The principal ID of the Event Hubs resource.
principalType : The principal type of the Event Hubs resource.
event_hubs : The Event Hubs namespace resource.
event_hubs_AzureEventHubsDataOwner : The Event Hubs resource owner, based on the build-in Azure Event
Hubs Data Owner role. For more information, see Azure Event Hubs Data Owner.
messages : The Event Hub resource.

eventHubsEndpoint : The endpoint of the Event Hubs resource.

The generated Bicep is a starting point and is influenced by changes to the provisioning infrastructure in C#.
Customizations to the Bicep file directly will be overwritten, so make changes through the C# provisioning APIs
to ensure they are reflected in the generated files.

All .NET Aspire Azure resources are subclasses of the

AzureProvisioningResource type. This type enables the
customization of the generated Bicep by providing a fluent API to configure the Azure resources—using the
ConfigureInfrastructure<T>(IResourceBuilder<T>, Action<AzureResourceInfrastructure>) API. For example, you
can configure the kind , consistencyPolicy , locations , and more. The following example demonstrates how to

customize the Azure Cosmos DB resource:

C#

The preceding code:

Chains a call to the ConfigureInfrastructure API:
The infra parameter is an instance of the AzureResourceInfrastructure type.
The provisionable resources are retrieved by calling the GetProvisionableResources() method.
The single

EventHubsNamespace

 resource is retrieved.
The EventHubsNamespace.Sku property is assigned to a new instance of EventHubsSku with a Premium
name and tier, and a Capacity of 7 .
The PublicNetworkAccess property is assigned to SecuredByPerimeter .
A tag is added to the Event Hubs resource with a key of ExampleKey and a value of Example value .

Customize provisioning infrastructure

builder.AddAzureEventHubs("event-hubs")
 .ConfigureInfrastructure(infra =>
 {

var

 eventHubs = infra.GetProvisionableResources()
 .OfType<EventHubsNamespace>()
 .Single();

 eventHubs.Sku = new EventHubsSku()
 {
 Name = EventHubsSkuName.Premium,
 Tier = EventHubsSkuTier.Premium,
 Capacity = 7,
 };
 eventHubs.PublicNetworkAccess = EventHubsPublicNetworkAccess.SecuredByPerimeter;
 eventHubs.Tags.Add("ExampleKey", "Example value");
 });

https://learn.microsoft.com/en-us/azure/role-based-access-control/built-in-roles/analytics#azure-event-hubs-data-owner
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azure.azureprovisioningresource
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azureprovisioningresourceextensions.configureinfrastructure#aspire-hosting-azureprovisioningresourceextensions-configureinfrastructure-1(aspire-hosting-applicationmodel-iresourcebuilder((-0))-system-action((aspire-hosting-azure-azureresourceinfrastructure)))
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azureprovisioningresourceextensions.configureinfrastructure
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azure.azureresourceinfrastructure
https://learn.microsoft.com/en-us/dotnet/api/azure.provisioning.infrastructure.getprovisionableresources#azure-provisioning-infrastructure-getprovisionableresources
https://learn.microsoft.com/en-us/dotnet/api/azure.provisioning.eventhubs.eventhubsnamespace
https://learn.microsoft.com/en-us/dotnet/api/azure.provisioning.eventhubs.eventhubsnamespace.sku#azure-provisioning-eventhubs-eventhubsnamespace-sku
https://learn.microsoft.com/en-us/dotnet/api/azure.provisioning.eventhubs.eventhubssku
https://learn.microsoft.com/en-us/dotnet/api/azure.provisioning.eventhubs.eventhubsnamespace.publicnetworkaccess#azure-provisioning-eventhubs-eventhubsnamespace-publicnetworkaccess

There are many more configuration options available to customize the Event Hubs resource resource. For more
information, see Azure.Provisioning.PostgreSql. For more information, see Azure.Provisioning customization.

You might have an existing Azure Event Hubs namespace that you want to connect to. Instead of representing
a new Azure Event Hubs resource, you can add a connection string to the app host. To add a connection to an
existing Azure Event Hubs namespace, call the AddConnectionString method:

C#

The connection string is configured in the app host's configuration, typically under User Secrets, under the
ConnectionStrings section. The app host injects this connection string as an environment variable into all
dependent resources, for example:

JSON

The dependent resource can access the injected connection string by calling the GetConnectionString method,
and passing the connection name as the parameter, in this case "event-hubs" . The GetConnectionString API is
shorthand for IConfiguration.GetSection("ConnectionStrings")[name] .

To add a consumer group, chain a call on an IResourceBuilder<AzureEventHubsResource> to the
AddConsumerGroup API:

C#

Connect to an existing Azure Event Hubs namespace

var builder = DistributedApplication.CreateBuilder(args);

var eventHubs = builder.AddConnectionString("event-hubs");

builder.AddProject<Projects.WebApplication>("web")
 .WithReference(eventHubs);

// After adding all resources, run the app...

７ Note

Connection strings are used to represent a wide range of connection information, including database
connections, message brokers, endpoint URIs, and other services. In .NET Aspire nomenclature, the term
"connection string" is used to represent any kind of connection information.

{
 "ConnectionStrings": {
 "event-hubs": "{your_namespace}.servicebus.windows.net"
 }
}

Add Event Hub consumer group

var builder = DistributedApplication.CreateBuilder(args);

var eventHubs = builder.AddAzureEventHubs("event-hubs");
var messages = eventHubs.AddHub("messages");
messages.AddConsumerGroup("messagesConsumer");

https://learn.microsoft.com/en-us/dotnet/api/azure.provisioning.postgresql
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.parameterresourcebuilderextensions.addconnectionstring
https://learn.microsoft.com/en-us/aspnet/core/security/app-secrets
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.configurationextensions.getconnectionstring
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azureeventhubsextensions.addconsumergroup

When you call AddConsumerGroup , it configures your messages Event Hub resource to have a consumer group
named messagesConsumer . The consumer group is created in the Azure Event Hubs namespace that's
represented by the AzureEventHubsResource that you added earlier. For more information, see Azure Event
Hubs: Consumer groups.

The .NET Aspire Azure Event Hubs hosting integration supports running the Event Hubs resource as an
emulator locally, based on the mcr.microsoft.com/azure-messaging/eventhubs-emulator/latest container
image. This is beneficial for situations where you want to run the Event Hubs resource locally for development
and testing purposes, avoiding the need to provision an Azure resource or connect to an existing Azure Event
Hubs server.

To run the Event Hubs resource as an emulator, call the RunAsEmulator method:

C#

The preceding code configures an Azure Event Hubs resource to run locally in a container. For more
information, see Azure Event Hubs Emulator.

There are various configurations available for container resources, for example, you can configure the
container's ports, data bind mounts, data volumes, or providing a wholistic JSON configuration which overrides
everything.

By default, the Event Hubs emulator container when configured by .NET Aspire, exposes the following
endpoints:

Endpoint Image Container port Host port

https://learn.microsoft.com/en-us/azure/event-hubs/event-hubs-features#consumer-groups
https://learn.microsoft.com/en-us/azure/event-hubs/event-hubs-features#consumer-groups
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azureeventhubsextensions.runasemulator
https://learn.microsoft.com/en-us/azure/event-hubs/overview-emulator

The port that it's listening on is dynamic by default. When the container starts, the port is mapped to a random
port on the host machine. To configure the endpoint port, chain calls on the container resource builder
provided by the RunAsEmulator method and then the
WithHostPort(IResourceBuilder<AzureEventHubsEmulatorResource>, Nullable<Int32>) as shown in the
following example:

C#

The preceding code configures the Azure Event emulator container's existing emulator endpoint to listen on
port 7777 . The Azure Event emulator container's port is mapped to the host port as shown in the following
table:

Endpoint name Port mapping (container:host)

emulator 5672:7777

To add a data volume to the Event Hubs emulator resource, call the WithDataVolume method on the Event
Hubs emulator resource:

C#

The data volume is used to persist the Event Hubs emulator data outside the lifecycle of its container. The data
volume is mounted at the /data path in the container. A name is generated at random unless you provide a

var builder = DistributedApplication.CreateBuilder(args);

var eventHubs = builder.AddAzureEventHubs("event-hubs")
 .RunAsEmulator(emulator =>
 {
 emulator.WithHostPort(7777);
 });

eventHubs.AddHub("messages");

builder.AddProject<Projects.ExampleService>()
 .WithReference(eventHubs);

// After adding all resources, run the app...

ﾉ Expand table

Add Event Hubs emulator with data volume

var builder = DistributedApplication.CreateBuilder(args);

var eventHubs = builder.AddAzureEventHubs("event-hubs")
 .RunAsEmulator(emulator =>
 {
 emulator.WithDataVolume();
 });

eventHubs.AddHub("messages");

builder.AddProject<Projects.ExampleService>()
 .WithReference(eventHubs);

// After adding all resources, run the app...

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azureeventhubsextensions.withhostport#aspire-hosting-azureeventhubsextensions-withhostport(aspire-hosting-applicationmodel-iresourcebuilder((aspire-hosting-azure-azureeventhubsemulatorresource))-system-nullable((system-int32)))
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azureeventhubsextensions.withdatavolume

set the name parameter. For more information on data volumes and details on why they're preferred over bind
mounts, see Docker docs: Volumes .

The add a bind mount to the Event Hubs emulator container, chain a call to the WithDataBindMount API, as
shown in the following example:

C#

Data bind mounts rely on the host machine's filesystem to persist the Azure Event Hubs emulator resource
data across container restarts. The data bind mount is mounted at the /path/to/data path on the host
machine in the container. For more information on data bind mounts, see Docker docs: Bind mounts .

The Event Hubs emulator container runs with a default config.json file. You can override this file entirely, or
update the JSON configuration with a JsonNode representation of the configuration.

To provide a custom JSON configuration file, call the
WithConfigurationFile(IResourceBuilder<AzureEventHubsEmulatorResource>, String) method:

C#

Add Event Hubs emulator with data bind mount

var builder = DistributedApplication.CreateBuilder(args);

var eventHubs = builder.AddAzureEventHubs("event-hubs")
 .RunAsEmulator(emulator =>
 {
 emulator.WithDataBindMount("/path/to/data");
 });

eventHubs.AddHub("messages");

builder.AddProject<Projects.ExampleService>()
 .WithReference(eventHubs);

// After adding all resources, run the app...

） Important

Data bind mounts have limited functionality compared to volumes , which offer better performance,
portability, and security, making them more suitable for production environments. However, bind mounts
allow direct access and modification of files on the host system, ideal for development and testing where
real-time changes are needed.

Configure Event Hubs emulator container JSON configuration

var builder = DistributedApplication.CreateBuilder(args);

var eventHubs = builder.AddAzureEventHubs("event-hubs")
 .RunAsEmulator(emulator =>
 {
 emulator.WithConfigurationFile("./messaging/custom-config.json");
 });

eventHubs.AddHub("messages");

https://docs.docker.com/engine/storage/volumes
https://docs.docker.com/engine/storage/volumes
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azureeventhubsextensions.withdatabindmount
https://docs.docker.com/engine/storage/bind-mounts
https://docs.docker.com/engine/storage/bind-mounts
https://github.com/Azure/azure-event-hubs-emulator-installer/blob/main/EventHub-Emulator/Config/Config.json
https://github.com/Azure/azure-event-hubs-emulator-installer/blob/main/EventHub-Emulator/Config/Config.json
https://learn.microsoft.com/en-us/dotnet/api/system.text.json.nodes.jsonnode
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azureeventhubsextensions.withconfigurationfile#aspire-hosting-azureeventhubsextensions-withconfigurationfile(aspire-hosting-applicationmodel-iresourcebuilder((aspire-hosting-azure-azureeventhubsemulatorresource))-system-string)
https://docs.docker.com/engine/storage/bind-mounts/
https://docs.docker.com/engine/storage/bind-mounts/
https://docs.docker.com/engine/storage/volumes/
https://docs.docker.com/engine/storage/volumes/

The preceding code configures the Event Hubs emulator container to use a custom JSON configuration file
located at ./messaging/custom-config.json . This will be mounted at the
/Eventhubs_Emulator/ConfigFiles/Config.json path on the container, as a read-only file. To instead override
specific properties in the default configuration, call the
WithConfiguration(IResourceBuilder<AzureEventHubsEmulatorResource>, Action<JsonNode>) method:

C#

The preceding code retrieves the UserConfig node from the default configuration. It then updates the first
entity's PartitionCount to a 5 .

The Azure Event Hubs hosting integration automatically adds a health check for the Event Hubs resource. The
health check verifies that the Event Hubs is running and that a connection can be established to it.

The hosting integration relies on the 📦 AspNetCore.HealthChecks.Azure.Messaging.EventHubs NuGet
package.

To get started with the .NET Aspire Azure Event Hubs client integration, install the 📦
Aspire.Azure.Messaging.EventHubs NuGet package in the client-consuming project, that is, the project for
the application that uses the Event Hubs client.

.NET CLI

builder.AddProject<Projects.ExampleService>()
 .WithReference(eventHubs);

// After adding all resources, run the app...

var builder = DistributedApplication.CreateBuilder(args);

var eventHubs = builder.AddAzureEventHubs("event-hubs")
 .RunAsEmulator(emulator =>
 {
 emulator.WithConfiguration(
 (JsonNode configuration) =>
 {
 var userConfig = configuration["UserConfig"];
 var ns = userConfig["NamespaceConfig"][0];
 var firstEntity = ns["Entities"][0];

 firstEntity["PartitionCount"] = 5;
 });
 });

eventHubs.AddHub("messages");

builder.AddProject<Projects.ExampleService>()
 .WithReference(eventHubs);

// After adding all resources, run the app...

Hosting integration health checks

Client integration

.NET CLI

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azureeventhubsextensions.withconfiguration#aspire-hosting-azureeventhubsextensions-withconfiguration(aspire-hosting-applicationmodel-iresourcebuilder((aspire-hosting-azure-azureeventhubsemulatorresource))-system-action((system-text-json-nodes-jsonnode)))
https://www.nuget.org/packages/AspNetCore.HealthChecks.Azure.Messaging.EventHubs
https://www.nuget.org/packages/AspNetCore.HealthChecks.Azure.Messaging.EventHubs
https://www.nuget.org/packages/Aspire.Azure.Messaging.EventHubs
https://www.nuget.org/packages/Aspire.Azure.Messaging.EventHubs
https://www.nuget.org/packages/Aspire.Azure.Messaging.EventHubs

The following Event Hub clients are supported by the library, along with their corresponding options and
settings classes:

Azure client type Azure options class .NET Aspire settings class

EventHubProducerClient EventHubProducerClientOptions AzureMessagingEventHubsProducerSettings

EventHubBufferedProducerClient EventHubBufferedProducerClientOptions AzureMessagingEventHubsBufferedProducerSettings

EventHubConsumerClient EventHubConsumerClientOptions AzureMessagingEventHubsConsumerSettings

EventProcessorClient EventProcessorClientOptions AzureMessagingEventHubsProcessorSettings

PartitionReceiver PartitionReceiverOptions AzureMessagingEventHubsPartitionReceiverSettings

The client types are from the Azure SDK for .NET, as are the corresponding options classes. The settings classes
are provided by the .NET Aspire. The settings classes are used to configure the client instances.

In the Program.cs file of your client-consuming project, call the AddAzureEventHubProducerClient extension
method on any IHostApplicationBuilder to register an EventHubProducerClient for use via the dependency
injection container. The method takes a connection name parameter.

C#

After adding the EventHubProducerClient , you can retrieve the client instance using dependency injection. For
example, to retrieve your data source object from an example service define it as a constructor parameter and
ensure the ExampleService class is registered with the dependency injection container:

C#

For more information, see:

dotnet add package Aspire.Azure.Messaging.EventHubs

Supported Event Hubs client types

ﾉ Expand table

Add an Event Hubs producer client

builder.AddAzureEventHubProducerClient(connectionName: "event-hubs");

 Tip

The connectionName parameter must match the name used when adding the Event Hubs resource in the
app host project. For more information, see Add an Azure Event Hubs resource.

public class ExampleService(EventHubProducerClient client)
{
 // Use client...
}

https://learn.microsoft.com/en-us/dotnet/api/azure.messaging.eventhubs.producer.eventhubproducerclient
https://learn.microsoft.com/en-us/dotnet/api/azure.messaging.eventhubs.producer.eventhubproducerclientoptions
https://learn.microsoft.com/en-us/dotnet/api/aspire.azure.messaging.eventhubs.azuremessagingeventhubsproducersettings
https://learn.microsoft.com/en-us/dotnet/api/azure.messaging.eventhubs.producer.eventhubbufferedproducerclient
https://learn.microsoft.com/en-us/dotnet/api/azure.messaging.eventhubs.producer.eventhubbufferedproducerclientoptions
https://learn.microsoft.com/en-us/dotnet/api/aspire.azure.messaging.eventhubs.azuremessagingeventhubsbufferedproducersettings
https://learn.microsoft.com/en-us/dotnet/api/azure.messaging.eventhubs.consumer.eventhubconsumerclient
https://learn.microsoft.com/en-us/dotnet/api/azure.messaging.eventhubs.consumer.eventhubconsumerclientoptions
https://learn.microsoft.com/en-us/dotnet/api/aspire.azure.messaging.eventhubs.azuremessagingeventhubsconsumersettings
https://learn.microsoft.com/en-us/dotnet/api/azure.messaging.eventhubs.eventprocessorclient
https://learn.microsoft.com/en-us/dotnet/api/azure.messaging.eventhubs.eventprocessorclientoptions
https://learn.microsoft.com/en-us/dotnet/api/aspire.azure.messaging.eventhubs.azuremessagingeventhubsprocessorsettings
https://learn.microsoft.com/en-us/dotnet/api/microsoft.azure.eventhubs.partitionreceiver
https://learn.microsoft.com/en-us/dotnet/api/azure.messaging.eventhubs.primitives.partitionreceiveroptions
https://learn.microsoft.com/en-us/dotnet/api/aspire.azure.messaging.eventhubs.azuremessagingeventhubspartitionreceiversettings
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.aspireeventhubsextensions.addazureeventhubproducerclient
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.ihostapplicationbuilder
https://learn.microsoft.com/en-us/dotnet/api/azure.messaging.eventhubs.producer.eventhubproducerclient

Azure.Messaging.EventHubs documentation for examples on using the EventHubProducerClient .
Dependency injection in .NET for details on dependency injection.

The client integration provides additional APIs to configure client instances. When you need to register an
Event Hubs client, consider the following APIs:

Azure client type Registration API

EventHubProducerClient AddAzureEventHubProducerClient

EventHubBufferedProducerClient AddAzureEventHubBufferedProducerClient

EventHubConsumerClient AddAzureEventHubConsumerClient

EventProcessorClient AddAzureEventProcessorClient

PartitionReceiver AddAzurePartitionReceiverClient

All of the aforementioned APIs include optional parameters to configure the client instances.

There might be situations where you want to register multiple EventHubProducerClient instances with different
connection names. To register keyed Event Hubs clients, call the AddKeyedAzureServiceBusClient method:

C#

Then you can retrieve the client instances using dependency injection. For example, to retrieve the clients from
a service:

C#

For more information, see Keyed services in .NET.

Additional APIs to consider

ﾉﾉ

https://github.com/Azure/azure-sdk-for-net/blob/main/sdk/eventhub/Azure.Messaging.EventHubs/README.md
https://github.com/Azure/azure-sdk-for-net/blob/main/sdk/eventhub/Azure.Messaging.EventHubs/README.md
https://learn.microsoft.com/en-us/dotnet/core/extensions/dependency-injection
https://learn.microsoft.com/en-us/dotnet/api/azure.messaging.eventhubs.producer.eventhubproducerclient
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.aspireeventhubsextensions.addazureeventhubproducerclient
https://learn.microsoft.com/en-us/dotnet/api/azure.messaging.eventhubs.producer.eventhubbufferedproducerclient
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.aspireeventhubsextensions.addazureeventhubbufferedproducerclient
https://learn.microsoft.com/en-us/dotnet/api/azure.messaging.eventhubs.consumer.eventhubconsumerclient
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.aspireeventhubsextensions.addazureeventhubconsumerclient
https://learn.microsoft.com/en-us/dotnet/api/azure.messaging.eventhubs.eventprocessorclient
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.aspireeventhubsextensions.addazureeventprocessorclient
https://learn.microsoft.com/en-us/dotnet/api/microsoft.azure.eventhubs.partitionreceiver
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.aspireeventhubsextensions.addazurepartitionreceiverclient
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.aspireservicebusextensions.addkeyedazureservicebusclient
https://learn.microsoft.com/en-us/dotnet/core/extensions/dependency-injection#keyed-services

The client integration provides additional APIs to configure keyed client instances. When you need to register a
keyed Event Hubs client, consider the following APIs:

Azure client type Registration API

EventHubProducerClient AddKeyedAzureEventHubProducerClient

EventHubBufferedProducerClient AddKeyedAzureEventHubBufferedProducerClient

EventHubConsumerClient AddKeyedAzureEventHubConsumerClient

EventProcessorClient AddKeyedAzureEventProcessorClient

PartitionReceiver AddKeyedAzurePartitionReceiverClient

All of the aforementioned APIs include optional parameters to configure the client instances.

The .NET Aspire Azure Event Hubs library provides multiple options to configure the Azure Event Hubs
connection based on the requirements and conventions of your project. Either a FullyQualifiedNamespace or a
ConnectionString is a required to be supplied.

When using a connection string from the ConnectionStrings configuration section, provide the name of the
connection string when calling builder.AddAzureEventHubProducerClient() and other supported Event Hubs
clients. In this example, the connection string does not include the EntityPath property, so the EventHubName
property must be set in the settings callback:

C#

And then the connection information will be retrieved from the ConnectionStrings configuration section. Two
connection formats are supported:

The recommended approach is to use a fully qualified namespace, which works with the
AzureMessagingEventHubsSettings.Credential property to establish a connection. If no credential is configured,
the DefaultAzureCredential is used.

JSON

Additional keyed APIs to consider

ﾉ Expand table

Configuration

Use a connection string

builder.AddAzureEventHubProducerClient(
 "event-hubs",
 static settings =>
 {
 settings.EventHubName = "MyHub";
 });

Fully Qualified Namespace (FQN)

https://learn.microsoft.com/en-us/dotnet/api/azure.messaging.eventhubs.producer.eventhubproducerclient
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.aspireeventhubsextensions.addkeyedazureeventhubproducerclient
https://learn.microsoft.com/en-us/dotnet/api/azure.messaging.eventhubs.producer.eventhubbufferedproducerclient
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.aspireeventhubsextensions.addkeyedazureeventhubbufferedproducerclient
https://learn.microsoft.com/en-us/dotnet/api/azure.messaging.eventhubs.consumer.eventhubconsumerclient
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.aspireeventhubsextensions.addkeyedazureeventhubconsumerclient
https://learn.microsoft.com/en-us/dotnet/api/azure.messaging.eventhubs.eventprocessorclient
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.aspireeventhubsextensions.addkeyedazureeventprocessorclient
https://learn.microsoft.com/en-us/dotnet/api/microsoft.azure.eventhubs.partitionreceiver
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.aspireeventhubsextensions.addkeyedazurepartitionreceiverclient
https://learn.microsoft.com/en-us/dotnet/api/aspire.azure.messaging.eventhubs.azuremessagingeventhubssettings.credential#aspire-azure-messaging-eventhubs-azuremessagingeventhubssettings-credential
https://learn.microsoft.com/en-us/dotnet/api/azure.identity.defaultazurecredential

Alternatively, use a connection string:

JSON

The .NET Aspire Azure Event Hubs library supports Microsoft.Extensions.Configuration. It loads the
AzureMessagingEventHubsSettings and the associated Options, e.g. EventProcessorClientOptions , from
configuration by using the Aspire:Azure:Messaging:EventHubs: key prefix, followed by the name of the specific
client in use. For example, consider the appsettings.json that configures some of the options for an
EventProcessorClient :

JSON

For the complete Azure Event Hubs client integration JSON schema, see
Aspire.Azure.Messaging.EventHubs/ConfigurationSchema.json .

You can also setup the Options type using the optional Action<IAzureClientBuilder<EventProcessorClient,
EventProcessorClientOptions>> configureClientBuilder parameter of the AddAzureEventProcessorClient
method. For example, to set the processor's client ID for this client:

C#

{
 "ConnectionStrings": {
 "event-hubs": "{your_namespace}.servicebus.windows.net"
 }
}

Connection string

{
 "ConnectionStrings": {
 "event-hubs":
"Endpoint=sb://mynamespace.servicebus.windows.net/;SharedAccessKeyName=accesskeyname;SharedAccess
Key=accesskey;EntityPath=MyHub"
 }
}

Use configuration providers

{
 "Aspire": {
 "Azure": {
 "Messaging": {
 "EventHubs": {
 "EventProcessorClient": {
 "EventHubName": "MyHub",
 "ClientOptions": {
 "Identifier": "PROCESSOR_ID"
 }
 }
 }
 }
 }
 }
}

https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration
https://github.com/dotnet/aspire/blob/v9.1.0/src/Components/Aspire.Azure.Messaging.EventHubs/ConfigurationSchema.json
https://github.com/dotnet/aspire/blob/v9.1.0/src/Components/Aspire.Azure.Messaging.EventHubs/ConfigurationSchema.json

.NET Aspire integrations automatically set up Logging, Tracing, and Metrics configurations, which are
sometimes known as the pillars of observability. For more information about integration observability and
telemetry, see .NET Aspire integrations overview. Depending on the backing service, some integrations may
only support some of these features. For example, some integrations support logging and tracing, but not
metrics. Telemetry features can also be disabled using the techniques presented in the Configuration section.

The .NET Aspire Azure Event Hubs integration uses the following log categories:

Azure.Core

Azure.Identity

The .NET Aspire Azure Event Hubs integration will emit the following tracing activities using OpenTelemetry:

Azure.Messaging.EventHubs.*

The .NET Aspire Azure Event Hubs integration currently doesn't support metrics by default due to limitations
with the Azure SDK for .NET. If that changes in the future, this section will be updated to reflect those changes.

Azure Event Hubs
.NET Aspire Azure integrations overview
.NET Aspire integrations
.NET Aspire GitHub repo

builder.AddAzureEventProcessorClient(
 "event-hubs",
 configureClientBuilder: clientBuilder => clientBuilder.ConfigureOptions(
 options => options.Identifier = "PROCESSOR_ID"));

Observability and telemetry

Logging

Tracing

Metrics

See also

https://learn.microsoft.com/en-us/azure/event-hubs/
https://github.com/dotnet/aspire
https://github.com/dotnet/aspire

.NET Aspire Azure Functions integration
(Preview)
Article • 11/14/2024

Includes: Hosting integration not Client integration

Azure Functions is a serverless solution that allows you to write less code, maintain less
infrastructure, and save on costs. The .NET Aspire Azure Functions integration enables
you to develop, debug, and orchestrate an Azure Functions .NET project as part of the
app host.

It's expected that you've installed the required Azure tooling:

Configure Visual Studio for Azure development with .NET

The .NET Aspire Azure Functions integration has several key supported scenarios. This
section outlines the scenarios and provides details related to the implementation of
each approach.

The following table lists the supported triggers for Azure Functions in the .NET Aspire
integration:

Trigger Attribute Details

Azure Event Hubs
trigger

EventHubTrigger
📦 Aspire.Hosting.Azure.EventHubs

Azure Service Bus
trigger

ServiceBusTrigger
📦 Aspire.Hosting.Azure.ServiceBus

） Important

The .NET Aspire Azure Functions integration is currently in preview and is subject to
change.

Supported scenarios

Supported triggers

ﾉ Expand table

https://learn.microsoft.com/en-us/azure/azure-functions/functions-overview
https://learn.microsoft.com/en-us/dotnet/azure/configure-visual-studio
https://www.nuget.org/packages/Aspire.Hosting.Azure.EventHubs
https://www.nuget.org/packages/Aspire.Hosting.Azure.EventHubs
https://www.nuget.org/packages/Aspire.Hosting.Azure.ServiceBus
https://www.nuget.org/packages/Aspire.Hosting.Azure.ServiceBus

Trigger Attribute Details

Azure Storage
Blobs trigger

BlobTrigger 📦 Aspire.Hosting.Azure.Storage

Azure Storage
Queues trigger

QueueTrigger 📦 Aspire.Hosting.Azure.Storage

Azure CosmosDB
trigger

CosmosDbTrigger 📦 Aspire.Hosting.Azure.CosmosDB

HTTP trigger HttpTrigger Supported without any additional resource
dependencies.

Timer trigger TimerTrigger Supported without any additional resource
dependencies—relies on implicit host storage.

Currently, deployment is supported only to containers on Azure Container Apps (ACA)
using the SDK container publish function in Microsoft.Azure.Functions.Worker.Sdk . This
deployment methodology doesn't currently support KEDA-based autoscaling.

To make HTTP triggers publicly accessible, call the WithExternalHttpEndpoints API on
the AzureFunctionsProjectResource. For more information, see Add Azure Functions
resource.

The .NET Aspire Azure Functions integration has the following project constraints:

You must target .NET 8.0 or later.
You must use a .NET 9 SDK.
It currently only supports .NET workers with the isolated worker model.
Requires the following NuGet packages:
📦 Microsoft.Azure.Functions.Worker : Use the FunctionsApplicationBuilder .

） Important

Other Azure Functions triggers and bindings aren't currently supported in the .NET
Aspire Azure Functions integration.

Deployment

Configure external HTTP endpoints

Azure Function project constraints

https://www.nuget.org/packages/Aspire.Hosting.Azure.Storage
https://www.nuget.org/packages/Aspire.Hosting.Azure.Storage
https://www.nuget.org/packages/Aspire.Hosting.Azure.Storage
https://www.nuget.org/packages/Aspire.Hosting.Azure.Storage
https://www.nuget.org/packages/Aspire.Hosting.Azure.CosmosDB
https://www.nuget.org/packages/Aspire.Hosting.Azure.CosmosDB
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.resourcebuilderextensions.withexternalhttpendpoints
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azure.azurefunctionsprojectresource
https://learn.microsoft.com/en-us/azure/azure-functions/dotnet-isolated-process-guide
https://www.nuget.org/packages/Microsoft.Azure.Functions.Worker
https://www.nuget.org/packages/Microsoft.Azure.Functions.Worker

📦 Microsoft.Azure.Functions.Worker.Sdk : Adds support for dotnet run and
azd publish .
📦 Microsoft.Azure.Functions.Http.AspNetCore : Adds HTTP trigger-
supporting APIs.

If you encounter issues with the Azure Functions project, such as:

There is no Functions runtime available that matches the version specified in the
project

In Visual Studio, try checking for an update on the Azure Functions tooling. Open the
Options dialog, navigate to Projects and Solutions, and then select Azure Functions.
Select the Check for updates button to ensure you have the latest version of the Azure
Functions tooling:

The Azure Functions hosting integration models an Azure Functions resource as the
AzureFunctionsProjectResource (subtype of ProjectResource) type. To access this type
and APIs that allow you to add it to your app host project install the 📦
Aspire.Hosting.Azure.Functions NuGet package.

Hosting integration

.NET CLI

https://www.nuget.org/packages/Microsoft.Azure.Functions.Worker.Sdk
https://www.nuget.org/packages/Microsoft.Azure.Functions.Worker.Sdk
https://www.nuget.org/packages/Microsoft.Azure.Functions.Worker.Extensions.Http.AspNetCore
https://www.nuget.org/packages/Microsoft.Azure.Functions.Worker.Extensions.Http.AspNetCore
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azure.azurefunctionsprojectresource
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.projectresource
https://www.nuget.org/packages/Aspire.Hosting.Azure.Functions
https://www.nuget.org/packages/Aspire.Hosting.Azure.Functions
https://www.nuget.org/packages/Aspire.Hosting.Azure.Functions

.NET CLI

For more information, see dotnet add package or Manage package dependencies in
.NET applications.

In your app host project, call AddAzureFunctionsProject on the builder instance to add
an Azure Functions resource:

C#

When .NET Aspire adds an Azure Functions project resource the app host, as shown in
the preceding example, the functions resource can be referenced by other project
resources. The WithReference method configures a connection in the ExampleProject
named "functions" . If the Azure Resource was deployed and it exposed an HTTP
trigger, its endpoint would be external due to the call to WithExternalHttpEndpoints. For
more information, see Reference resources.

If you want to modify the default host storage account that the Azure Functions host
uses, call the WithHostStorage method on the Azure Functions project resource:

C#

dotnet add package Aspire.Hosting.Azure.Functions --prerelease

Add Azure Functions resource

var builder = DistributedApplication.CreateBuilder(args);

var functions = builder.AddAzureFunctionsProject<Projects.ExampleFunctions>
("functions")
 .WithExternalHttpEndpoints();

builder.AddProject<Projects.ExampleProject>()
 .WithReference(functions)
 .WaitFor(functions);

// After adding all resources, run the app...

Add Azure Functions resource with host storage

var builder = DistributedApplication.CreateBuilder(args);

var storage = builder.AddAzureStorage("storage")

https://learn.microsoft.com/en-us/dotnet/core/tools/dotnet-add-package
https://learn.microsoft.com/en-us/dotnet/core/tools/dependencies
https://learn.microsoft.com/en-us/dotnet/core/tools/dependencies
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azurefunctionsprojectresourceextensions.addazurefunctionsproject
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.resourcebuilderextensions.withreference
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.resourcebuilderextensions.withexternalhttpendpoints
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azurefunctionsprojectresourceextensions.withhoststorage

The preceding code relies on the 📦 Aspire.Hosting.Azure.Storage NuGet package to
add an Azure Storage resource that runs as an emulator. The storage resource is then
passed to the WithHostStorage API, explicitly setting the host storage to the emulated
resource.

To reference other Azure resources in an Azure Functions project, chain a call to
WithReference on the Azure Functions project resource and provide the resource to
reference:

C#

The preceding code adds an Azure Storage resource to the app host and references it in
the Azure Functions project. The blobs resource is added to the storage resource and
then referenced by the functions resource. The connection information required to

 .RunAsEmulator();

var functions = builder.AddAzureFunctionsProject<Projects.ExampleFunctions>
("functions")
 .WithHostStorage(storage);

builder.AddProject<Projects.ExampleProject>()
 .WithReference(functions)
 .WaitFor(functions);

// After adding all resources, run the app...

７ Note

If you're not using the implicit host storage, you must manually assign the
StorageAccountContributor role to your resource for deployed instances. This role
is automatically assigned for the implicitly generated host storage.

Reference resources in Azure Functions

var builder = DistributedApplication.CreateBuilder(args);

var storage = builder.AddAzureStorage("storage").RunAsEmulator();
var blobs = storage.AddBlobs("blobs");

builder.AddAzureFunctionsProject<Projects.ExampleFunctions>("functions")
 .WithHostStorage(storage)
 .WithReference(blobs);

builder.Build().Run();

https://www.nuget.org/packages/Aspire.Hosting.Azure.Storage
https://www.nuget.org/packages/Aspire.Hosting.Azure.Storage

connect to the blobs resource is automatically injected into the Azure Functions project
and enables the project to define a BlobTrigger that relies on blobs resource.

.NET Aspire integrations

.NET Aspire GitHub repo
Azure Functions documentation
.NET Aspire and Functions image gallery sample

See also

https://github.com/dotnet/aspire
https://github.com/dotnet/aspire
https://learn.microsoft.com/en-us/azure/azure-functions/functions-overview
https://learn.microsoft.com/en-us/samples/dotnet/aspire-samples/aspire-azure-functions-with-blob-triggers

.NET Aspire Azure Key Vault integration
Article • 02/15/2025

Includes: Hosting integration and Client integration

Azure Key Vault is a cloud service for securely storing and accessing secrets. The .NET
Aspire Azure Key Vault integration enables you to connect to Azure Key Vault instances
from your .NET applications.

The Azure Key Vault hosting integration models a Key Vault resource as the
AzureKeyVaultResource type. To access this type and APIs for expressing them within
your app host project, install the 📦 Aspire.Hosting.Azure.KeyVault NuGet package:

.NET CLI

For more information, see dotnet add package or Manage package dependencies in
.NET applications.

In your app host project, call AddAzureKeyVault on the builder instance to add an Azure
Key Vault resource:

C#

Hosting integration

.NET CLI

dotnet add package Aspire.Hosting.Azure.KeyVault

Add Azure Key Vault resource

var builder = DistributedApplication.CreateBuilder(args);

var keyVault = builder.AddAzureKeyVault("key-vault");

builder.AddProject<Projects.ExampleProject>()
 .WithReference(keyVault);

// After adding all resources, run the app...

https://learn.microsoft.com/en-us/azure/key-vault/
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azure.azurekeyvaultresource
https://www.nuget.org/packages/Aspire.Hosting.Azure.KeyVault
https://www.nuget.org/packages/Aspire.Hosting.Azure.KeyVault
https://learn.microsoft.com/en-us/dotnet/core/tools/dotnet-add-package
https://learn.microsoft.com/en-us/dotnet/core/tools/dependencies
https://learn.microsoft.com/en-us/dotnet/core/tools/dependencies
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azurekeyvaultresourceextensions.addazurekeyvault

The WithReference method configures a connection in the ExampleProject named "key-
vault" .

If you're new to Bicep, it's a domain-specific language for defining Azure resources. With
.NET Aspire, you don't need to write Bicep by-hand, instead the provisioning APIs
generate Bicep for you. When you publish your app, the generated Bicep is output
alongside the manifest file. When you add an Azure Key Vault resource, the following
Bicep is generated:

Bicep

） Important

By default, AddAzureKeyVault configures a Key Vault Administrator built-in role.

 Tip

When you call AddAzureKeyVault, it implicitly calls AddAzureProvisioning, which
adds support for generating Azure resources dynamically during app startup. The
app must configure the appropriate subscription and location. For more
information, see Local provisioning: Configuration.

Generated provisioning Bicep

@description('The location for the resource(s) to be deployed.')
param location string = resourceGroup().location

param principalType string

param principalId string

resource key_vault 'Microsoft.KeyVault/vaults@2023-07-01' = {
 name: take('keyvault-${uniqueString(resourceGroup().id)}', 24)
 location: location
 properties: {
 tenantId: tenant().tenantId
 sku: {
 family: 'A'
 name: 'standard'
 }
 enableRbacAuthorization: true
 }
 tags: {
 'aspire-resource-name': 'key-vault'
 }

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.resourcebuilderextensions.withreference
https://learn.microsoft.com/en-us/azure/azure-resource-manager/bicep/overview
https://learn.microsoft.com/en-us/azure/role-based-access-control/built-in-roles/security#key-vault-administrator
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azurekeyvaultresourceextensions.addazurekeyvault
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azureprovisionerextensions.addazureprovisioning

The preceding Bicep is a module that provisions an Azure Key Vault resource with the
following defaults:

location : The location of the resource group.
principalId : The principal ID of the user or service principal.
principalType : The principal type of the user or service principal.
key_vault : The Azure Key Vault resource:

name : A unique name for the Azure Key Vault.
properties : The Azure Key Vault properties:

tenantId : The tenant ID of the Azure Key Vault.
sku : The Azure Key Vault SKU:

family : The SKU family.
name : The SKU name.

enableRbacAuthorization : A boolean value that indicates whether the Azure
Key Vault has role-based access control (RBAC) authorization enabled.

tags : The Azure Key Vault tags.
key_vault_KeyVaultAdministrator : The Azure Key Vault administrator role
assignment:

name : A unique name for the role assignment.
properties : The role assignment properties:

principalId : The principal ID of the user or service principal.
roleDefinitionId : The role definition ID of the Azure Key Vault administrator
role.
principalType : The principal type of the user or service principal.

scope : The scope of the role assignment.

}

resource key_vault_KeyVaultAdministrator
'Microsoft.Authorization/roleAssignments@2022-04-01' = {
 name: guid(key_vault.id, principalId,
subscriptionResourceId('Microsoft.Authorization/roleDefinitions', '00482a5a-
887f-4fb3-b363-3b7fe8e74483'))
 properties: {
 principalId: principalId
 roleDefinitionId:
subscriptionResourceId('Microsoft.Authorization/roleDefinitions', '00482a5a-
887f-4fb3-b363-3b7fe8e74483')
 principalType: principalType
 }
 scope: key_vault
}

output vaultUri string = key_vault.properties.vaultUri

output : The Azure Key Vault URI.

The generated Bicep is a starting point and is influenced by changes to the provisioning
infrastructure in C#. Customizations to the Bicep file directly will be overwritten, so make
changes through the C# provisioning APIs to ensure they are reflected in the generated
files.

All .NET Aspire Azure resources are subclasses of the AzureProvisioningResource type.
This type enables the customization of the generated Bicep by providing a fluent API to
configure the Azure resources by using the ConfigureInfrastructure<T>
(IResourceBuilder<T>, Action<AzureResourceInfrastructure>) API. For example, you can
configure the sku , RBAC , tags , and more. The following example demonstrates how to
customize the Azure Key Vault resource:

C#

The preceding code:

Chains a call to the ConfigureInfrastructure API:
The infra parameter is an instance of the AzureResourceInfrastructure type.
The provisionable resources are retrieved by calling the
GetProvisionableResources() method.
The single KeyVaultService resource is retrieved.
The Sku property is set to a new KeyVaultSku instance.
The KeyVaultProperties.EnableRbacAuthorization property is set to true .
A tag is added to the resource with a key of ExampleKey and a value of Example
value .

Customize provisioning infrastructure

builder.AddAzureKeyVault("key-vault")
 .ConfigureInfrastructure(infra =>
 {
 var keyVault = infra.GetProvisionableResources()
 .OfType<KeyVaultService>()
 .Single();

 keyVault.Properties.Sku = new()
 {
 Family = KeyVaultSkuFamily.A,
 Name = KeyVaultSkuName.Premium,
 };
 keyVault.Properties.EnableRbacAuthorization = true;
 keyVault.Tags.Add("ExampleKey", "Example value");
 });

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azure.azureprovisioningresource
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azureprovisioningresourceextensions.configureinfrastructure#aspire-hosting-azureprovisioningresourceextensions-configureinfrastructure-1(aspire-hosting-applicationmodel-iresourcebuilder((-0))-system-action((aspire-hosting-azure-azureresourceinfrastructure)))
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azureprovisioningresourceextensions.configureinfrastructure#aspire-hosting-azureprovisioningresourceextensions-configureinfrastructure-1(aspire-hosting-applicationmodel-iresourcebuilder((-0))-system-action((aspire-hosting-azure-azureresourceinfrastructure)))
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azureprovisioningresourceextensions.configureinfrastructure
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azure.azureresourceinfrastructure
https://learn.microsoft.com/en-us/dotnet/api/azure.provisioning.infrastructure.getprovisionableresources#azure-provisioning-infrastructure-getprovisionableresources
https://learn.microsoft.com/en-us/dotnet/api/azure.provisioning.keyvault.keyvaultservice
https://learn.microsoft.com/en-us/dotnet/api/azure.provisioning.keyvault.keyvaultsku
https://learn.microsoft.com/en-us/dotnet/api/azure.provisioning.keyvault.keyvaultproperties.enablerbacauthorization#azure-provisioning-keyvault-keyvaultproperties-enablerbacauthorization

There are many more configuration options available to customize the Key Vault
resource. For more information, see Azure.Provisioning.KeyVault and Azure.Provisioning
customization.

You might have an existing Azure Key Vault instance that you want to connect to.
Instead of representing a new Azure Key Vault resource, you can add a connection string
to the app host. To add a connection to an existing Azure Key Vault resource, call the
AddConnectionString method:

C#

The connection string is configured in the app host's configuration, typically under User
Secrets, under the ConnectionStrings section. The app host injects this connection
string as an environment variable into all dependent resources, for example:

JSON

The dependent resource can access the injected connection string by calling the
GetConnectionString method, and passing the connection name as the parameter, in

Connect to an existing Azure Key Vault instance

var builder = DistributedApplication.CreateBuilder(args);

var keyVault = builder.AddConnectionString("key-vault");

builder.AddProject<Projects.WebApplication>("web")
 .WithReference(keyVault);

// After adding all resources, run the app...

７ Note

Connection strings are used to represent a wide range of connection information,
including database connections, message brokers, endpoint URIs, and other
services. In .NET Aspire nomenclature, the term "connection string" is used to
represent any kind of connection information.

{
 "ConnectionStrings": {
 "key-vault": "https://{account_name}.vault.azure.net/"
 }
}

https://learn.microsoft.com/en-us/dotnet/api/azure.provisioning.keyvault
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.parameterresourcebuilderextensions.addconnectionstring
https://learn.microsoft.com/en-us/aspnet/core/security/app-secrets
https://learn.microsoft.com/en-us/aspnet/core/security/app-secrets
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.configurationextensions.getconnectionstring

this case "key-vault" . The GetConnectionString API is shorthand for
IConfiguration.GetSection("ConnectionStrings")[name] .

To get started with the .NET Aspire Azure Key Vault client integration, install the 📦
Aspire.Azure.Security.KeyVault NuGet package in the client-consuming project, that is,
the project for the application that uses the Azure Key Vault client.

.NET CLI

The client integration provides two ways to access secrets from Azure Key Vault:

Add secrets to app configuration, using either the IConfiguration or the
IOptions<T> pattern.
Use a SecretClient to retrieve secrets on demand.

In the Program.cs file of your client-consuming project, call the
AddAzureKeyVaultSecrets extension method on the IConfiguration to add the secrets as
part of your app's configuration. The method takes a connection name parameter.

C#

Client integration

.NET CLI

dotnet add package Aspire.Azure.Security.KeyVault

Add secrets to configuration

builder.Configuration.AddAzureKeyVaultSecrets(connectionName: "key-vault");

７ Note

The AddAzureKeyVaultSecrets API name has caused a bit of confusion. The method
is used to configure the SecretClient based on the given connection name, and it's
not used to add secrets to the configuration.

 Tip

https://www.nuget.org/packages/Aspire.Azure.Security.KeyVault
https://www.nuget.org/packages/Aspire.Azure.Security.KeyVault
https://www.nuget.org/packages/Aspire.Azure.Security.KeyVault
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.aspirekeyvaultextensions.addazurekeyvaultsecrets
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.iconfiguration

You can then retrieve a secret-based configuration value through the normal
IConfiguration APIs, or even by binding to strongly-typed classes with the options
pattern. To retrieve a secret from an example service class that's been registered with
the dependency injection container, consider the following snippets:

C#

The preceding example assumes that you've also registered the IConfiguration instance
for dependency injection. For more information, see Dependency injection in .NET.

C#

The preceding example assumes that you've configured a SecretOptions class for use
with the options pattern. For more information, see Options pattern in .NET.

Additional AddAzureKeyVaultSecrets API parameters are available optionally for the
following scenarios:

Action<AzureSecurityKeyVaultSettings>? configureSettings : To set up some or all
the options inline.
Action<SecretClientOptions>? configureClientOptions : To set up the
SecretClientOptions inline.

The connectionName parameter must match the name used when adding the Azure
Key Vault resource in the app host project. For more information, see Add Azure
Key Vault resource.

Retrieve IConfiguration instance

public class ExampleService(IConfiguration configuration)
{
 // Use configuration...
 private string _secretValue = configuration["SecretKey"];
}

Retrieve IOptions<T> instance

public class ExampleService(IOptions<SecretOptions> options)
{
 // Use options...
 private string _secretValue = options.Value.SecretKey;
}

https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.iconfiguration
https://learn.microsoft.com/en-us/dotnet/core/extensions/options
https://learn.microsoft.com/en-us/dotnet/core/extensions/options
https://learn.microsoft.com/en-us/dotnet/core/extensions/dependency-injection
https://learn.microsoft.com/en-us/dotnet/core/extensions/options
https://learn.microsoft.com/en-us/dotnet/api/azure.security.keyvault.secrets.secretclientoptions

AzureKeyVaultConfigurationOptions? options : To configure the
AzureKeyVaultConfigurationOptions inline.

Alternatively, you can use the SecretClient directly to retrieve the secrets on demand.
This requires a slightly different registration API.

In the Program.cs file of your client-consuming project, call the AddAzureKeyVaultClient
extension on the IHostApplicationBuilder instance to register a SecretClient for use via
the dependency injection container.

C#

After adding the SecretClient to the builder, you can get the SecretClient instance
using dependency injection. For example, to retrieve the client from an example service
define it as a constructor parameter and ensure the ExampleService class is registered
with the dependency injection container:

C#

For more information on dependency injection, see .NET dependency injection.

There might be situations where you want to register multiple SecretClient instances
with different connection names. To register keyed Azure Key Vault clients, call the
AddKeyedAzureKeyVaultClient method:

Add an Azure Secret client

builder.AddAzureKeyVaultClient(connectionName: "key-vault");

 Tip

The connectionName parameter must match the name used when adding the Azure
Key Vault resource in the app host project. For more information, see Add Azure
Key Vault resource.

public class ExampleService(SecretClient client)
{
 // Use client...
}

Add keyed Azure Key Vault client

https://learn.microsoft.com/en-us/dotnet/api/azure.extensions.aspnetcore.configuration.secrets.azurekeyvaultconfigurationoptions
https://learn.microsoft.com/en-us/dotnet/api/azure.security.keyvault.secrets.secretclient
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.aspirekeyvaultextensions.addazurekeyvaultclient
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.ihostapplicationbuilder
https://learn.microsoft.com/en-us/dotnet/api/azure.security.keyvault.secrets.secretclient
https://learn.microsoft.com/en-us/dotnet/core/extensions/dependency-injection
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.aspirekeyvaultextensions.addkeyedazurekeyvaultclient

C#

Then you can retrieve the SecretClient instances using dependency injection. For
example, to retrieve the client from an example service:

C#

For more information on keyed services, see .NET dependency injection: Keyed services.

The .NET Aspire Azure Key Vault integration provides multiple options to configure the
SecretClient based on the requirements and conventions of your project.

The .NET Aspire Azure Key Vault integration supports
Microsoft.Extensions.Configuration. It loads the AzureSecurityKeyVaultSettings from
appsettings.json or other configuration files using Aspire:Azure:Security:KeyVault key.

JSON

builder.AddKeyedAzureKeyVaultClient(name: "feature-toggles");
builder.AddKeyedAzureKeyVaultClient(name: "admin-portal");

public class ExampleService(
 [FromKeyedServices("feature-toggles")] SecretClient
featureTogglesClient,
 [FromKeyedServices("admin-portal")] SecretClient adminPortalClient)
{
 // Use clients...
}

Configuration

Use configuration providers

{
 "Aspire": {
 "Azure": {
 "Security": {
 "KeyVault": {
 "DisableHealthChecks": true,
 "DisableTracing": false,
 "ClientOptions": {
 "Diagnostics": {
 "ApplicationId": "myapp"
 }
 }
 }
 }

https://learn.microsoft.com/en-us/dotnet/core/extensions/dependency-injection#keyed-services
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration
https://learn.microsoft.com/en-us/dotnet/api/aspire.azure.security.keyvault.azuresecuritykeyvaultsettings

For the complete Azure Key Vault client integration JSON schema, see
Aspire.Azure.Security.KeyVault/ConfigurationSchema.json .

If you have set up your configurations in the Aspire:Azure:Security:KeyVault section of
your appsettings.json file you can just call the method AddAzureKeyVaultSecrets without
passing any parameters.

You can also pass the Action<AzureSecurityKeyVaultSettings> delegate to set up some
or all the options inline, for example to set the AzureSecurityKeyVaultSettings.VaultUri:

C#

You can also set up the SecretClientOptions using Action<SecretClientOptions>
delegate, which is an optional parameter of the AddAzureKeyVaultSecrets method. For
example to set the KeyClientOptions.DisableChallengeResourceVerification ID to identify
the client:

C#

The following configurable options are exposed through the
AzureSecurityKeyVaultSettings class:

 }
 }
}

Use inline delegates

builder.AddAzureKeyVaultSecrets(
 connectionName: "key-vault",
 configureSettings: settings => settings.VaultUri = new
Uri("KEY_VAULT_URI"));

builder.AddAzureKeyVaultSecrets(
 connectionName: "key-vault",
 configureClientOptions: options =>
options.DisableChallengeResourceVerification = true))

Configuration options

ﾉ Expand table

https://github.com/dotnet/aspire/blob/v9.1.0/src/Components/Aspire.Azure.Security.KeyVault/ConfigurationSchema.json
https://github.com/dotnet/aspire/blob/v9.1.0/src/Components/Aspire.Azure.Security.KeyVault/ConfigurationSchema.json
https://learn.microsoft.com/en-us/dotnet/api/aspire.azure.security.keyvault.azuresecuritykeyvaultsettings.vaulturi#aspire-azure-security-keyvault-azuresecuritykeyvaultsettings-vaulturi
https://learn.microsoft.com/en-us/dotnet/api/azure.security.keyvault.secrets.secretclientoptions
https://learn.microsoft.com/en-us/dotnet/api/azure.security.keyvault.keys.keyclientoptions.disablechallengeresourceverification#azure-security-keyvault-keys-keyclientoptions-disablechallengeresourceverification
https://learn.microsoft.com/en-us/dotnet/api/aspire.azure.security.keyvault.azuresecuritykeyvaultsettings

Name Description

AzureSecurityKeyVaultSettings.Credential The credential used to authenticate to the
Azure Key Vault.

AzureSecurityKeyVaultSettings.DisableHealthChecks A boolean value that indicates whether the
Key Vault health check is disabled or not.

AzureSecurityKeyVaultSettings.DisableTracing A boolean value that indicates whether the
OpenTelemetry tracing is disabled or not.

AzureSecurityKeyVaultSettings.VaultUri A URI to the vault on which the client
operates. Appears as "DNS Name" in the
Azure portal.

By default, .NET Aspire client integrations have health checks enabled for all services.
Similarly, many .NET Aspire hosting integrations also enable health check endpoints. For
more information, see:

.NET app health checks in C#
Health checks in ASP.NET Core

The .NET Aspire Azure Key Vault integration includes the following health checks:

Adds the AzureKeyVaultSecretsHealthCheck health check, which attempts to
connect to and query the Key Vault
Integrates with the /health HTTP endpoint, which specifies all registered health
checks must pass for app to be considered ready to accept traffic

.NET Aspire integrations automatically set up Logging, Tracing, and Metrics
configurations, which are sometimes known as the pillars of observability. For more
information about integration observability and telemetry, see .NET Aspire integrations
overview. Depending on the backing service, some integrations may only support some
of these features. For example, some integrations support logging and tracing, but not
metrics. Telemetry features can also be disabled using the techniques presented in the
Configuration section.

The .NET Aspire Azure Key Vault integration uses the following log categories:

Client integration health checks

Observability and telemetry

Logging

https://learn.microsoft.com/en-us/dotnet/api/aspire.azure.security.keyvault.azuresecuritykeyvaultsettings.credential#aspire-azure-security-keyvault-azuresecuritykeyvaultsettings-credential
https://learn.microsoft.com/en-us/dotnet/api/aspire.azure.security.keyvault.azuresecuritykeyvaultsettings.disablehealthchecks#aspire-azure-security-keyvault-azuresecuritykeyvaultsettings-disablehealthchecks
https://learn.microsoft.com/en-us/dotnet/api/aspire.azure.security.keyvault.azuresecuritykeyvaultsettings.disabletracing#aspire-azure-security-keyvault-azuresecuritykeyvaultsettings-disabletracing
https://learn.microsoft.com/en-us/dotnet/api/aspire.azure.security.keyvault.azuresecuritykeyvaultsettings.vaulturi#aspire-azure-security-keyvault-azuresecuritykeyvaultsettings-vaulturi
https://learn.microsoft.com/en-us/dotnet/core/diagnostics/diagnostic-health-checks
https://learn.microsoft.com/en-us/aspnet/core/host-and-deploy/health-checks

Azure.Core

Azure.Identity

The .NET Aspire Azure Key Vault integration will emit the following tracing activities
using OpenTelemetry:

Azure.Security.KeyVault.Secrets.SecretClient

The .NET Aspire Azure Key Vault integration currently does not support metrics by
default due to limitations with the Azure SDK.

Azure Key Vault docs
Video: Introduction to Azure Key Vault and .NET Aspire
.NET Aspire Azure integrations overview
.NET Aspire integrations overview
.NET Aspire GitHub repo

Tracing

Metrics

See also

https://learn.microsoft.com/en-us/azure/key-vault/general/
https://www.youtube.com/watch?v=1K5riRctUIg
https://www.youtube.com/watch?v=1K5riRctUIg
https://github.com/dotnet/aspire
https://github.com/dotnet/aspire

.NET Aspire Azure PostgreSQL
integration
Article • 01/31/2025

Includes: Hosting integration and Client integration

Azure Database for PostgreSQL—Flexible Server is a relational database service based
on the open-source Postgres database engine. It's a fully managed database-as-a-
service that can handle mission-critical workloads with predictable performance,
security, high availability, and dynamic scalability. The .NET Aspire Azure PostgreSQL
integration provides a way to connect to existing Azure PostgreSQL databases, or create
new instances from .NET with the docker.io/library/postgres container image .

The .NET Aspire Azure PostgreSQL hosting integration models a PostgreSQL flexible
server and database as the AzurePostgresFlexibleServerResource and
AzurePostgresFlexibleServerDatabaseResource types. Other types that are inherently
available in the hosting integration are represented in the following resources:

PostgresServerResource
PostgresDatabaseResource
PgAdminContainerResource
PgWebContainerResource

To access these types and APIs for expressing them as resources in your app host
project, install the 📦 Aspire.Hosting.Azure.PostgreSQL NuGet package:

.NET CLI

For more information, see dotnet add package.

The Azure PostgreSQL hosting integration takes a dependency on the 📦
Aspire.Hosting.PostgreSQL NuGet package, extending it to support Azure. Everything
that you can do with the .NET Aspire PostgreSQL integration and .NET Aspire
PostgreSQL Entity Framework Core integration you can also do with this integration.

Hosting integration

.NET CLI

dotnet add package Aspire.Hosting.Azure.PostgreSQL

https://learn.microsoft.com/en-us/azure/postgresql/
https://hub.docker.com/_/postgres
https://hub.docker.com/_/postgres
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azure.azurepostgresflexibleserverresource
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azure.azurepostgresflexibleserverdatabaseresource
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.postgresserverresource
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.postgresdatabaseresource
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.postgres.pgadmincontainerresource
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.postgres.pgwebcontainerresource
https://www.nuget.org/packages/Aspire.Hosting.Azure.PostgreSQL
https://www.nuget.org/packages/Aspire.Hosting.Azure.PostgreSQL
https://learn.microsoft.com/en-us/dotnet/core/tools/dotnet-add-package
https://www.nuget.org/packages/Aspire.Hosting.PostgreSQL
https://www.nuget.org/packages/Aspire.Hosting.PostgreSQL
https://www.nuget.org/packages/Aspire.Hosting.PostgreSQL

After you've installed the .NET Aspire Azure PostgreSQL hosting integration, call the
AddAzurePostgresFlexibleServer extension method in your app host project:

C#

The preceding call to AddAzurePostgresFlexibleServer configures the PostgresSQL
server resource to be deployed as an Azure Postgres Flexible Server.

If you're new to Bicep, it's a domain-specific language for defining Azure resources. With
.NET Aspire, you don't need to write Bicep by hand, because the provisioning APIs
generate Bicep for you. When you publish your app, the generated Bicep is output
alongside the manifest file. When you add an Azure PostgreSQL resource, the following
Bicep is generated:

Bicep

Add Azure PostgreSQL server resource

var builder = DistributedApplication.CreateBuilder(args);

var postgres = builder.AddAzurePostgresFlexibleServer("postgres");
var postgresdb = postgres.AddDatabase("postgresdb");

var exampleProject = builder.AddProject<Projects.ExampleProject>()
 .WithReference(postgresdb);

） Important

By default, AddAzurePostgresFlexibleServer configures Microsoft Entra ID
authentication. This requires changes to applications that need to connect to these
resources. For more information, see Client integration.

 Tip

When you call AddAzurePostgresFlexibleServer, it implicitly calls
AddAzureProvisioning—which adds support for generating Azure resources
dynamically during app startup. The app must configure the appropriate
subscription and location. For more information, see Local provisioning:
Configuration.

Generated provisioning Bicep

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azurepostgresextensions.addazurepostgresflexibleserver
https://learn.microsoft.com/en-us/azure/postgresql/flexible-server/overview
https://learn.microsoft.com/en-us/azure/azure-resource-manager/bicep/overview
https://learn.microsoft.com/en-us/azure/postgresql/flexible-server/concepts-azure-ad-authentication
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azurepostgresextensions.addazurepostgresflexibleserver
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azureprovisionerextensions.addazureprovisioning

@description('The location for the resource(s) to be deployed.')
param location string = resourceGroup().location

param principalId string

param principalType string

param principalName string

resource postgres_flexible 'Microsoft.DBforPostgreSQL/flexibleServers@2024-
08-01' = {
 name: take('postgresflexible-${uniqueString(resourceGroup().id)}', 63)
 location: location
 properties: {
 authConfig: {
 activeDirectoryAuth: 'Enabled'
 passwordAuth: 'Disabled'
 }
 availabilityZone: '1'
 backup: {
 backupRetentionDays: 7
 geoRedundantBackup: 'Disabled'
 }
 highAvailability: {
 mode: 'Disabled'
 }
 storage: {
 storageSizeGB: 32
 }
 version: '16'
 }
 sku: {
 name: 'Standard_B1ms'
 tier: 'Burstable'
 }
 tags: {
 'aspire-resource-name': 'postgres-flexible'
 }
}

resource postgreSqlFirewallRule_AllowAllAzureIps
'Microsoft.DBforPostgreSQL/flexibleServers/firewallRules@2024-08-01' = {
 name: 'AllowAllAzureIps'
 properties: {
 endIpAddress: '0.0.0.0'
 startIpAddress: '0.0.0.0'
 }
 parent: postgres_flexible
}

resource postgres_flexible_admin
'Microsoft.DBforPostgreSQL/flexibleServers/administrators@2024-08-01' = {
 name: principalId
 properties: {

The preceding Bicep is a module that provisions an Azure PostgreSQL flexible server
with the following defaults:

authConfig : The authentication configuration of the PostgreSQL server. The default
is ActiveDirectoryAuth enabled and PasswordAuth disabled.
availabilityZone : The availability zone of the PostgreSQL server. The default is 1 .
backup : The backup configuration of the PostgreSQL server. The default is
BackupRetentionDays set to 7 and GeoRedundantBackup set to Disabled .
highAvailability : The high availability configuration of the PostgreSQL server. The
default is Disabled .
storage : The storage configuration of the PostgreSQL server. The default is
StorageSizeGB set to 32 .
version : The version of the PostgreSQL server. The default is 16 .
sku : The SKU of the PostgreSQL server. The default is Standard_B1ms .
tags : The tags of the PostgreSQL server. The default is aspire-resource-name set
to the name of the Aspire resource, in this case postgres-flexible .

In addition to the PostgreSQL flexible server, it also provisions an Azure Firewall rule to
allow all Azure IP addresses. Finally, an administrator is created for the PostgreSQL
server, and the connection string is outputted as an output variable. The generated
Bicep is a starting point and is influenced by changes to the provisioning infrastructure
in C#. Customizations to the Bicep file directly will be overwritten, so make changes
through the C# provisioning APIs to ensure they are reflected in the generated files.

All .NET Aspire Azure resources are subclasses of the AzureProvisioningResource type.
This type enables the customization of the generated Bicep by providing a fluent API to
configure the Azure resources by using the ConfigureInfrastructure<T>

 principalName: principalName
 principalType: principalType
 }
 parent: postgres_flexible
 dependsOn: [
 postgres_flexible
 postgreSqlFirewallRule_AllowAllAzureIps
]
}

output connectionString string =
'Host=${postgres_flexible.properties.fullyQualifiedDomainName};Username=${pr
incipalName}'

Customize provisioning infrastructure

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azure.azureprovisioningresource
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azureprovisioningresourceextensions.configureinfrastructure#aspire-hosting-azureprovisioningresourceextensions-configureinfrastructure-1(aspire-hosting-applicationmodel-iresourcebuilder((-0))-system-action((aspire-hosting-azure-azureresourceinfrastructure)))

(IResourceBuilder<T>, Action<AzureResourceInfrastructure>) API. For example, you can
configure the kind , consistencyPolicy , locations , and more. The following example
demonstrates how to customize the PostgreSQL server resource:

C#

The preceding code:

Chains a call to the ConfigureInfrastructure API:
The infra parameter is an instance of the AzureResourceInfrastructure type.
The provisionable resources are retrieved by calling the
GetProvisionableResources() method.
The single PostgreSqlFlexibleServer is retrieved.
The sku is set with PostgreSqlFlexibleServerSkuTier.Burstable.
The high availability properties are set with
PostgreSqlFlexibleServerHighAvailabilityMode.ZoneRedundant in standby
availability zone "2" .
A tag is added to the flexible server with a key of ExampleKey and a value of
Example value .

There are many more configuration options available to customize the PostgreSQL
flexible server resource. For more information, see Azure.Provisioning.PostgreSql and
Azure.Provisioning customization.

builder.AddAzurePostgresFlexibleServer("postgres")
 .ConfigureInfrastructure(infra =>
 {
 var flexibleServer = infra.GetProvisionableResources()
 .OfType<PostgreSqlFlexibleServer>()
 .Single();

 flexibleServer.Sku = new PostgreSqlFlexibleServerSku
 {
 Tier = PostgreSqlFlexibleServerSkuTier.Burstable,
 };
 flexibleServer.HighAvailability = new
PostgreSqlFlexibleServerHighAvailability
 {
 Mode =
PostgreSqlFlexibleServerHighAvailabilityMode.ZoneRedundant,
 StandbyAvailabilityZone = "2",
 };
 flexibleServer.Tags.Add("ExampleKey", "Example value");
 });

Connect to an existing Azure PostgreSQL flexible server

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azureprovisioningresourceextensions.configureinfrastructure#aspire-hosting-azureprovisioningresourceextensions-configureinfrastructure-1(aspire-hosting-applicationmodel-iresourcebuilder((-0))-system-action((aspire-hosting-azure-azureresourceinfrastructure)))
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azureprovisioningresourceextensions.configureinfrastructure
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azure.azureresourceinfrastructure
https://learn.microsoft.com/en-us/dotnet/api/azure.provisioning.infrastructure.getprovisionableresources#azure-provisioning-infrastructure-getprovisionableresources
https://learn.microsoft.com/en-us/dotnet/api/azure.provisioning.postgresql.postgresqlflexibleserver
https://learn.microsoft.com/en-us/dotnet/api/azure.provisioning.postgresql.postgresqlflexibleserverskutier#azure-provisioning-postgresql-postgresqlflexibleserverskutier-burstable
https://learn.microsoft.com/en-us/dotnet/api/azure.provisioning.postgresql.postgresqlflexibleserverhighavailabilitymode#azure-provisioning-postgresql-postgresqlflexibleserverhighavailabilitymode-zoneredundant
https://learn.microsoft.com/en-us/dotnet/api/azure.provisioning.postgresql

You might have an existing Azure PostgreSQL flexible server that you want to connect
to. Instead of representing a new Azure PostgreSQL flexible server resource, you can add
a connection string to the app host. To add a connection to an existing Azure
PostgreSQL flexible server, call the AddConnectionString method:

C#

The connection string is configured in the app host's configuration, typically under User
Secrets, under the ConnectionStrings section. The app host injects this connection
string as an environment variable into all dependent resources, for example:

JSON

The dependent resource can access the injected connection string by calling the
GetConnectionString method, and passing the connection name as the parameter, in
this case "postgres" . The GetConnectionString API is shorthand for
IConfiguration.GetSection("ConnectionStrings")[name] .

var builder = DistributedApplication.CreateBuilder(args);

var postgres = builder.AddConnectionString("postgres");

builder.AddProject<Projects.WebApplication>("web")
 .WithReference(postgres);

// After adding all resources, run the app...

７ Note

Connection strings are used to represent a wide range of connection information,
including database connections, message brokers, endpoint URIs, and other
services. In .NET Aspire nomenclature, the term "connection string" is used to
represent any kind of connection information.

{
 "ConnectionStrings": {
 "postgres": "Server=<PostgreSQL-server-
name>.postgres.database.azure.com;Database=<database-name>;Port=5432;Ssl
Mode=Require;User Id=<username>;"
 }
}

Run Azure PostgreSQL resource as a container

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.parameterresourcebuilderextensions.addconnectionstring
https://learn.microsoft.com/en-us/aspnet/core/security/app-secrets
https://learn.microsoft.com/en-us/aspnet/core/security/app-secrets
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.configurationextensions.getconnectionstring

The Azure PostgreSQL hosting integration supports running the PostgreSQL server as a
local container. This is beneficial for situations where you want to run the PostgreSQL
server locally for development and testing purposes, avoiding the need to provision an
Azure resource or connect to an existing Azure PostgreSQL server.

To run the PostgreSQL server as a container, call the RunAsContainer method:

C#

The preceding code configures an Azure PostgreSQL Flexible Server resource to run
locally in a container.

By default, the Azure PostgreSQL server is configured to use Microsoft Entra ID
authentication. If you want to use password authentication, you can configure the server
to use password authentication by calling the WithPasswordAuthentication method:

C#

var builder = DistributedApplication.CreateBuilder(args);

var postgres = builder.AddAzurePostgresFlexibleServer("postgres")
 .RunAsContainer();

var postgresdb = postgres.AddDatabase("postgresdb");

var exampleProject = builder.AddProject<Projects.ExampleProject>()
 .WithReference(postgresdb);

 Tip

The RunAsContainer method is useful for local development and testing. The API
exposes an optional delegate that enables you to customize the underlying
PostgresServerResource configuration. For example, you can add pgAdmin and
pgWeb, add a data volume or data bind mount, and add an init bind mount. For
more information, see the .NET Aspire PostgreSQL hosting integration section.

Configure the Azure PostgreSQL server to use password
authentication

var builder = DistributedApplication.CreateBuilder(args);

var username = builder.AddParameter("username", secret: true);
var password = builder.AddParameter("password", secret: true);

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azurepostgresextensions.runascontainer
https://learn.microsoft.com/en-us/azure/postgresql/flexible-server/concepts-azure-ad-authentication
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azurepostgresextensions.withpasswordauthentication
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.postgresserverresource

The preceding code configures the Azure PostgreSQL server to use password
authentication. The username and password parameters are added to the app host as
parameters, and the WithPasswordAuthentication method is called to configure the
Azure PostgreSQL server to use password authentication. For more information, see
External parameters.

To get started with the .NET Aspire PostgreSQL client integration, install the 📦
Aspire.Npgsql NuGet package in the client-consuming project, that is, the project for
the application that uses the PostgreSQL client. The PostgreSQL client integration
registers an NpgsqlDataSource instance that you can use to interact with PostgreSQL.

.NET CLI

In the Program.cs file of your client-consuming project, call the AddNpgsqlDataSource
extension method on any IHostApplicationBuilder to register an NpgsqlDataSource for
use via the dependency injection container. The method takes a connection name
parameter.

C#

var postgres = builder.AddAzurePostgresFlexibleServer("postgres")
 .WithPasswordAuthentication(username, password);

var postgresdb = postgres.AddDatabase("postgresdb");

var exampleProject = builder.AddProject<Projects.ExampleProject>()
 .WithReference(postgresdb);

Client integration

.NET CLI

dotnet add package Aspire.Npgsql

Add Npgsql client

builder.AddNpgsqlDataSource(connectionName: "postgresdb");

 Tip

https://www.nuget.org/packages/Aspire.Npgsql
https://www.nuget.org/packages/Aspire.Npgsql
https://www.nuget.org/packages/Aspire.Npgsql
https://www.npgsql.org/doc/api/Npgsql.NpgsqlDataSource.html
https://www.npgsql.org/doc/api/Npgsql.NpgsqlDataSource.html
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.aspirepostgresqlnpgsqlextensions.addnpgsqldatasource
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.ihostapplicationbuilder

After adding NpgsqlDataSource to the builder, you can get the NpgsqlDataSource
instance using dependency injection. For example, to retrieve your data source object
from an example service define it as a constructor parameter and ensure the
ExampleService class is registered with the dependency injection container:

C#

For more information on dependency injection, see .NET dependency injection.

There might be situations where you want to register multiple NpgsqlDataSource
instances with different connection names. To register keyed Npgsql clients, call the
AddKeyedNpgsqlDataSource method:

C#

Then you can retrieve the NpgsqlDataSource instances using dependency injection. For
example, to retrieve the connection from an example service:

C#

For more information on keyed services, see .NET dependency injection: Keyed services.

The connectionName parameter must match the name used when adding the
PostgreSQL server resource in the app host project. For more information, see Add
PostgreSQL server resource.

public class ExampleService(NpgsqlDataSource dataSource)
{
 // Use dataSource...
}

Add keyed Npgsql client

builder.AddKeyedNpgsqlDataSource(name: "chat");
builder.AddKeyedNpgsqlDataSource(name: "queue");

public class ExampleService(
 [FromKeyedServices("chat")] NpgsqlDataSource chatDataSource,
 [FromKeyedServices("queue")] NpgsqlDataSource queueDataSource)
{
 // Use data sources...
}

https://learn.microsoft.com/en-us/dotnet/core/extensions/dependency-injection
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.aspirepostgresqlnpgsqlextensions.addkeyednpgsqldatasource
https://learn.microsoft.com/en-us/dotnet/core/extensions/dependency-injection#keyed-services

The .NET Aspire PostgreSQL integration provides multiple configuration approaches and
options to meet the requirements and conventions of your project.

When using a connection string from the ConnectionStrings configuration section, you
can provide the name of the connection string when calling the AddNpgsqlDataSource
method:

C#

Then the connection string will be retrieved from the ConnectionStrings configuration
section:

JSON

For more information, see the ConnectionString .

The .NET Aspire PostgreSQL integration supports Microsoft.Extensions.Configuration. It
loads the NpgsqlSettings from appsettings.json or other configuration files by using the
Aspire:Npgsql key. Example appsettings.json that configures some of the options:

The following example shows an appsettings.json file that configures some of the
available options:

JSON

Configuration

Use a connection string

builder.AddNpgsqlDataSource("postgresdb");

{
 "ConnectionStrings": {
 "postgresdb": "Host=myserver;Database=postgresdb"
 }
}

Use configuration providers

{
 "Aspire": {
 "Npgsql": {
 "ConnectionString": "Host=myserver;Database=postgresdb",
 "DisableHealthChecks": false,

https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.aspirepostgresqlnpgsqlextensions.addnpgsqldatasource
https://www.npgsql.org/doc/connection-string-parameters.html
https://www.npgsql.org/doc/connection-string-parameters.html
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration
https://learn.microsoft.com/en-us/dotnet/api/aspire.npgsql.npgsqlsettings

For the complete PostgreSQL client integration JSON schema, see
Aspire.Npgsql/ConfigurationSchema.json .

You can also pass the Action<NpgsqlSettings> configureSettings delegate to set up
some or all the options inline, for example to disable health checks:

C#

By default, .NET Aspire client integrations have health checks enabled for all services.
Similarly, many .NET Aspire hosting integrations also enable health check endpoints. For
more information, see:

.NET app health checks in C#
Health checks in ASP.NET Core

Adds the NpgSqlHealthCheck , which verifies that commands can be successfully
executed against the underlying Postgres database.
Integrates with the /health HTTP endpoint, which specifies all registered health
checks must pass for app to be considered ready to accept traffic

.NET Aspire integrations automatically set up Logging, Tracing, and Metrics
configurations, which are sometimes known as the pillars of observability. For more
information about integration observability and telemetry, see .NET Aspire integrations
overview. Depending on the backing service, some integrations may only support some
of these features. For example, some integrations support logging and tracing, but not

 "DisableTracing": true,
 "DisableMetrics": false
 }
 }
}

Use inline delegates

builder.AddNpgsqlDataSource(
 "postgresdb",
 static settings => settings.DisableHealthChecks = true);

Client integration health checks

Observability and telemetry

https://github.com/dotnet/aspire/blob/v9.1.0/src/Components/Aspire.Npgsql/ConfigurationSchema.json
https://github.com/dotnet/aspire/blob/v9.1.0/src/Components/Aspire.Npgsql/ConfigurationSchema.json
https://learn.microsoft.com/en-us/dotnet/core/diagnostics/diagnostic-health-checks
https://learn.microsoft.com/en-us/aspnet/core/host-and-deploy/health-checks
https://github.com/Xabaril/AspNetCore.Diagnostics.HealthChecks/blob/master/src/HealthChecks.NpgSql/NpgSqlHealthCheck.cs
https://github.com/Xabaril/AspNetCore.Diagnostics.HealthChecks/blob/master/src/HealthChecks.NpgSql/NpgSqlHealthCheck.cs

metrics. Telemetry features can also be disabled using the techniques presented in the
Configuration section.

The .NET Aspire PostgreSQL integration uses the following log categories:

Npgsql.Connection

Npgsql.Command

Npgsql.Transaction

Npgsql.Copy

Npgsql.Replication

Npgsql.Exception

The .NET Aspire PostgreSQL integration will emit the following tracing activities using
OpenTelemetry:

Npgsql

The .NET Aspire PostgreSQL integration will emit the following metrics using
OpenTelemetry:

Npgsql:
ec_Npgsql_bytes_written_per_second

ec_Npgsql_bytes_read_per_second

ec_Npgsql_commands_per_second

ec_Npgsql_total_commands

ec_Npgsql_current_commands

ec_Npgsql_failed_commands

ec_Npgsql_prepared_commands_ratio

ec_Npgsql_connection_pools

ec_Npgsql_multiplexing_average_commands_per_batch

ec_Npgsql_multiplexing_average_write_time_per_batch

Logging

Tracing

Metrics

Add Azure authenticated Npgsql client

By default, when you call AddAzurePostgresFlexibleServer in your PostgreSQL hosting
integration, it configures 📦 Azure.Identity NuGet package to enable authentication:

.NET CLI

The PostgreSQL connection can be consumed using the client integration and
Azure.Identity:

C#

The preceding code snippet demonstrates how to use the DefaultAzureCredential class
from the Azure.Identity package to authenticate with Microsoft Entra ID and retrieve a
token to connect to the PostgreSQL database. The UsePasswordProvider method is
used to provide the token to the data source builder.

PostgreSQL docs
Azure Database for PostgreSQL
.NET Aspire Azure PostgreSQL Entity Framework Core integration
.NET Aspire PostgreSQL integration
.NET Aspire integrations

.NET CLI

dotnet add package Azure.Identity

builder.AddNpgsqlDataSource(
 "postgresdb",
 configureDataSourceBuilder: (dataSourceBuilder) =>
{
 if
(string.IsNullOrEmpty(dataSourceBuilder.ConnectionStringBuilder.Password))
 {
 var credentials = new DefaultAzureCredential();
 var tokenRequest = new TokenRequestContext(["https://ossrdbms-
aad.database.windows.net/.default"]);

 dataSourceBuilder.UsePasswordProvider(
 passwordProvider: _ => credentials.GetToken(tokenRequest).Token,
 passwordProviderAsync: async (_, ct) => (await
credentials.GetTokenAsync(tokenRequest, ct)).Token);
 }
});

See also

https://www.nuget.org/packages/Azure.Identity
https://www.nuget.org/packages/Azure.Identity
https://learn.microsoft.com/en-us/dotnet/api/azure.identity
https://learn.microsoft.com/en-us/dotnet/api/azure.identity.defaultazurecredential
https://learn.microsoft.com/en-us/dotnet/api/azure.identity
https://learn.microsoft.com/en-us/azure/postgresql/flexible-server/concepts-azure-ad-authentication
https://www.npgsql.org/doc/api/Npgsql.NpgsqlDataSourceBuilder.html#Npgsql_NpgsqlDataSourceBuilder_UsePasswordProvider_System_Func_Npgsql_NpgsqlConnectionStringBuilder_System_String__System_Func_Npgsql_NpgsqlConnectionStringBuilder_System_Threading_CancellationToken_System_Threading_Tasks_ValueTask_System_String___
https://www.npgsql.org/doc/api/Npgsql.NpgsqlDataSourceBuilder.html#Npgsql_NpgsqlDataSourceBuilder_UsePasswordProvider_System_Func_Npgsql_NpgsqlConnectionStringBuilder_System_String__System_Func_Npgsql_NpgsqlConnectionStringBuilder_System_Threading_CancellationToken_System_Threading_Tasks_ValueTask_System_String___
https://www.npgsql.org/doc/api/Npgsql.html
https://www.npgsql.org/doc/api/Npgsql.html
https://learn.microsoft.com/en-us/azure/postgresql/

.NET Aspire GitHub repo

https://github.com/dotnet/aspire
https://github.com/dotnet/aspire

.NET Aspire Azure OpenAI integration
(Preview)
Article • 03/07/2025

Includes: Hosting integration and Client integration

Azure OpenAI Service provides access to OpenAI's powerful language and embedding
models with the security and enterprise promise of Azure. The .NET Aspire Azure
OpenAI integration enables you to connect to Azure OpenAI Service or OpenAI's API
from your .NET applications.

The .NET Aspire Azure OpenAI hosting integration models Azure OpenAI resources as
AzureOpenAIResource. To access these types and APIs for expressing them within your
app host project, install the 📦 Aspire.Hosting.Azure.CognitiveServices NuGet
package:

.NET CLI

For more information, see dotnet add package or Manage package dependencies in
.NET applications.

To add an AzureOpenAIResource to your app host project, call the AddAzureOpenAI
method:

C#

Hosting integration

.NET CLI

dotnet add package Aspire.Hosting.Azure.CognitiveServices

Add an Azure OpenAI resource

var builder = DistributedApplication.CreateBuilder(args);

var openai = builder.AddAzureOpenAI("openai");

builder.AddProject<Projects.ExampleProject>()
 .WithReference(openai);

https://azure.microsoft.com/products/ai-services/openai-service
https://azure.microsoft.com/products/ai-services/openai-service
https://learn.microsoft.com/en-us/azure/ai-services/openai/
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.azureopenairesource
https://www.nuget.org/packages/Aspire.Hosting.Azure.CognitiveServices
https://www.nuget.org/packages/Aspire.Hosting.Azure.CognitiveServices
https://learn.microsoft.com/en-us/dotnet/core/tools/dotnet-add-package
https://learn.microsoft.com/en-us/dotnet/core/tools/dependencies
https://learn.microsoft.com/en-us/dotnet/core/tools/dependencies
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.azureopenairesource
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azureopenaiextensions.addazureopenai

The preceding code adds an Azure OpenAI resource named openai to the app host
project. The WithReference method passes the connection information to the
ExampleProject project.

To add an Azure OpenAI deployment resource, call the
AddDeployment(IResourceBuilder<AzureOpenAIResource>, AzureOpenAIDeployment)
method:

C#

The preceding code:

Adds an Azure OpenAI resource named openai .
Adds an Azure OpenAI deployment resource named preview with a model name
of gpt-4.5-preview . The model name must correspond to an available model in
the Azure OpenAI service.

// After adding all resources, run the app...

） Important

When you call AddAzureOpenAI, it implicitly calls
AddAzureProvisioning(IDistributedApplicationBuilder)—which adds support for
generating Azure resources dynamically during app startup. The app must
configure the appropriate subscription and location. For more information, see
Local provisioning: Configuration.

Add an Azure OpenAI deployment resource

var builder = DistributedApplication.CreateBuilder(args);

var openai = builder.AddAzureOpenAI("openai");
openai.AddDeployment(
 new AzureOpenAIDeployment(
 name: "preview",
 modelName: "gpt-4.5-preview",
 modelVersion: "2025-02-27"));

builder.AddProject<Projects.ExampleProject>()
 .WithReference(openai)
 .WaitFor(openai);

// After adding all resources, run the app...

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.resourcebuilderextensions.withreference
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azureopenaiextensions.adddeployment#aspire-hosting-azureopenaiextensions-adddeployment(aspire-hosting-applicationmodel-iresourcebuilder((aspire-hosting-applicationmodel-azureopenairesource))-aspire-hosting-applicationmodel-azureopenaideployment)
https://learn.microsoft.com/en-us/azure/ai-services/openai/concepts/models
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azureopenaiextensions.addazureopenai
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azureprovisionerextensions.addazureprovisioning#aspire-hosting-azureprovisionerextensions-addazureprovisioning(aspire-hosting-idistributedapplicationbuilder)

If you're new to Bicep, it's a domain-specific language for defining Azure resources. With
.NET Aspire, you don't need to write Bicep by-hand, instead the provisioning APIs
generate Bicep for you. When you publish your app, the generated Bicep provisions an
Azure OpenAI resource with standard defaults.

Bicep

Generated provisioning Bicep

@description('The location for the resource(s) to be deployed.')
param location string = resourceGroup().location

param principalType string

param principalId string

resource openai 'Microsoft.CognitiveServices/accounts@2024-10-01' = {
 name: take('openai-${uniqueString(resourceGroup().id)}', 64)
 location: location
 kind: 'OpenAI'
 properties: {
 customSubDomainName: toLower(take(concat('openai',
uniqueString(resourceGroup().id)), 24))
 publicNetworkAccess: 'Enabled'
 disableLocalAuth: true
 }
 sku: {
 name: 'S0'
 }
 tags: {
 'aspire-resource-name': 'openai'
 }
}

resource openai_CognitiveServicesOpenAIContributor
'Microsoft.Authorization/roleAssignments@2022-04-01' = {
 name: guid(openai.id, principalId,
subscriptionResourceId('Microsoft.Authorization/roleDefinitions', 'a001fd3d-
188f-4b5d-821b-7da978bf7442'))
 properties: {
 principalId: principalId
 roleDefinitionId:
subscriptionResourceId('Microsoft.Authorization/roleDefinitions', 'a001fd3d-
188f-4b5d-821b-7da978bf7442')
 principalType: principalType
 }
 scope: openai
}

resource preview 'Microsoft.CognitiveServices/accounts/deployments@2024-10-
01' = {
 name: 'preview'

https://learn.microsoft.com/en-us/azure/azure-resource-manager/bicep/overview

The preceding Bicep is a module that provisions an Azure Cognitive Services resource
with the following defaults:

location : The location of the resource group.
principalType : The principal type of the Cognitive Services resource.
principalId : The principal ID of the Cognitive Services resource.
openai : The Cognitive Services account resource.

kind : The kind of the resource, set to OpenAI .
properties : The properties of the resource.

customSubDomainName : The custom subdomain name for the resource, based
on the unique string of the resource group ID.
publicNetworkAccess : Set to Enabled .
disableLocalAuth : Set to true .

sku : The SKU of the resource, set to S0 .
openai_CognitiveServicesOpenAIContributor : The Cognitive Services resource
owner, based on the build-in Azure Cognitive Services OpenAI Contributor role.
For more information, see Azure Cognitive Services OpenAI Contributor.
preview : The deployment resource, based on the preview name.

properties : The properties of the deployment resource.
format : The format of the deployment resource, set to OpenAI .
modelName : The model name of the deployment resource, set to gpt-4.5-
preview .
modelVersion : The model version of the deployment resource, set to 2025-
02-27 .

connectionString : The connection string, containing the endpoint of the Cognitive
Services resource.

 properties: {
 model: {
 format: 'OpenAI'
 name: 'gpt-4.5-preview'
 version: '2025-02-27'
 }
 }
 sku: {
 name: 'Standard'
 capacity: 8
 }
 parent: openai
}

output connectionString string = 'Endpoint=${openai.properties.endpoint}'

https://learn.microsoft.com/en-us/azure/role-based-access-control/built-in-roles/ai-machine-learning#cognitive-services-openai-contributor

The generated Bicep is a starting point and is influenced by changes to the provisioning
infrastructure in C#. Customizations to the Bicep file directly will be overwritten, so make
changes through the C# provisioning APIs to ensure they are reflected in the generated
files.

All .NET Aspire Azure resources are subclasses of the AzureProvisioningResource type.
This enables customization of the generated Bicep by providing a fluent API to
configure the Azure resources—using the ConfigureInfrastructure<T>
(IResourceBuilder<T>, Action<AzureResourceInfrastructure>) API:

C#

The preceding code:

Chains a call to the ConfigureInfrastructure API:
The infra parameter is an instance of the AzureResourceInfrastructure type.
The provisionable resources are retrieved by calling the
GetProvisionableResources() method.
The single CognitiveServicesAccount resource is retrieved.
The CognitiveServicesAccount.Sku property is assigned to a new instance of
CognitiveServicesSku with an E0 name and CognitiveServicesSkuTier.Enterprise
tier.
A tag is added to the Cognitive Services resource with a key of ExampleKey and
a value of Example value .

Customize provisioning infrastructure

builder.AddAzureOpenAI("openai")
 .ConfigureInfrastructure(infra =>
 {
 var resources = infra.GetProvisionableResources();
 var account = resources.OfType<CognitiveServicesAccount>().Single();

 account.Sku = new CognitiveServicesSku
 {
 Tier = CognitiveServicesSkuTier.Enterprise,
 Name = "E0"
 };
 account.Tags.Add("ExampleKey", "Example value");
 });

Connect to an existing Azure OpenAI service

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azure.azureprovisioningresource
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azureprovisioningresourceextensions.configureinfrastructure#aspire-hosting-azureprovisioningresourceextensions-configureinfrastructure-1(aspire-hosting-applicationmodel-iresourcebuilder((-0))-system-action((aspire-hosting-azure-azureresourceinfrastructure)))
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azureprovisioningresourceextensions.configureinfrastructure#aspire-hosting-azureprovisioningresourceextensions-configureinfrastructure-1(aspire-hosting-applicationmodel-iresourcebuilder((-0))-system-action((aspire-hosting-azure-azureresourceinfrastructure)))
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azureprovisioningresourceextensions.configureinfrastructure
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azure.azureresourceinfrastructure
https://learn.microsoft.com/en-us/dotnet/api/azure.provisioning.infrastructure.getprovisionableresources#azure-provisioning-infrastructure-getprovisionableresources
https://learn.microsoft.com/en-us/dotnet/api/azure.provisioning.cognitiveservices.cognitiveservicesaccount
https://learn.microsoft.com/en-us/dotnet/api/azure.provisioning.cognitiveservices.cognitiveservicesaccount.sku#azure-provisioning-cognitiveservices-cognitiveservicesaccount-sku
https://learn.microsoft.com/en-us/dotnet/api/azure.provisioning.cognitiveservices.cognitiveservicessku
https://learn.microsoft.com/en-us/dotnet/api/azure.provisioning.cognitiveservices.cognitiveservicesskutier#azure-provisioning-cognitiveservices-cognitiveservicesskutier-enterprise

You might have an existing Azure OpenAI service that you want to connect to. You can
chain a call to annotate that your AzureOpenAIResource is an existing resource:

C#

For more information on treating Azure OpenAI resources as existing resources, see Use
existing Azure resources.

Alternatively, instead of representing an Azure OpenAI resource, you can add a
connection string to the app host. Which is a weakly-typed approach that's based solely
on a string value. To add a connection to an existing Azure OpenAI service, call the
AddConnectionString method:

C#

var builder = DistributedApplication.CreateBuilder(args);

var existingOpenAIName = builder.AddParameter("existingOpenAIName");
var existingOpenAIResourceGroup =
builder.AddParameter("existingOpenAIResourceGroup");

var openai = builder.AddAzureOpenAI("openai")
 .AsExisting(existingOpenAIName,
existingOpenAIResourceGroup);

builder.AddProject<Projects.ExampleProject>()
 .WithReference(openai);

// After adding all resources, run the app...

var builder = DistributedApplication.CreateBuilder(args);

var openai = builder.ExecutionContext.IsPublishMode
 ? builder.AddAzureOpenAI("openai")
 : builder.AddConnectionString("openai");

builder.AddProject<Projects.ExampleProject>()
 .WithReference(openai);

// After adding all resources, run the app...

７ Note

Connection strings are used to represent a wide range of connection information,
including database connections, message brokers, endpoint URIs, and other

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.azureopenairesource
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.parameterresourcebuilderextensions.addconnectionstring

The connection string is configured in the app host's configuration, typically under User
Secrets, under the ConnectionStrings section:

JSON

For more information, see Add existing Azure resources with connection strings.

To get started with the .NET Aspire Azure OpenAI client integration, install the 📦
Aspire.Azure.AI.OpenAI NuGet package in the client-consuming project, that is, the
project for the application that uses the Azure OpenAI client.

.NET CLI

In the Program.cs file of your client-consuming project, use the
AddAzureOpenAIClient(IHostApplicationBuilder, String, Action<AzureOpenAISettings>,
Action<IAzureClientBuilder<AzureOpenAIClient,AzureOpenAIClientOptions>>) method
on any IHostApplicationBuilder to register an OpenAIClient for dependency injection
(DI). The AzureOpenAIClient is a subclass of OpenAIClient , allowing you to request either
type from DI. This ensures code not dependent on Azure-specific features remains
generic. The AddAzureOpenAIClient method requires a connection name parameter.

C#

services. In .NET Aspire nomenclature, the term "connection string" is used to
represent any kind of connection information.

{
 "ConnectionStrings": {
 "openai": "https://{account_name}.openai.azure.com/"
 }
}

Client integration

.NET CLI

dotnet add package Aspire.Azure.AI.OpenAI

Add an Azure OpenAI client

https://www.nuget.org/packages/Aspire.Azure.AI.OpenAI
https://www.nuget.org/packages/Aspire.Azure.AI.OpenAI
https://www.nuget.org/packages/Aspire.Azure.AI.OpenAI
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.aspireazureopenaiextensions.addazureopenaiclient#microsoft-extensions-hosting-aspireazureopenaiextensions-addazureopenaiclient(microsoft-extensions-hosting-ihostapplicationbuilder-system-string-system-action((aspire-azure-ai-openai-azureopenaisettings))-system-action((azure-core-extensions-iazureclientbuilder((azure-ai-openai-azureopenaiclient-azure-ai-openai-azureopenaiclientoptions)))))
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.aspireazureopenaiextensions.addazureopenaiclient#microsoft-extensions-hosting-aspireazureopenaiextensions-addazureopenaiclient(microsoft-extensions-hosting-ihostapplicationbuilder-system-string-system-action((aspire-azure-ai-openai-azureopenaisettings))-system-action((azure-core-extensions-iazureclientbuilder((azure-ai-openai-azureopenaiclient-azure-ai-openai-azureopenaiclientoptions)))))
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.ihostapplicationbuilder

After adding the OpenAIClient , you can retrieve the client instance using dependency
injection:

C#

For more information, see:

Azure.AI.OpenAI documentation for examples on using the OpenAIClient .
Dependency injection in .NET for details on dependency injection.
Quickstart: Get started using GPT-35-Turbo and GPT-4 with Azure OpenAI Service.

If you're interested in using the IChatClient interface, with the OpenAI client, simply
chain either of the following APIs to the AddAzureOpenAIClient method:

AddChatClient(AspireOpenAIClientBuilder, String): Registers a singleton
IChatClient in the services provided by the AspireOpenAIClientBuilder.
AddKeyedChatClient(AspireOpenAIClientBuilder, String, String): Registers a keyed
singleton IChatClient in the services provided by the AspireOpenAIClientBuilder.

For example, consider the following C# code that adds an IChatClient to the DI
container:

C#

builder.AddAzureOpenAIClient(connectionName: "openai");

 Tip

The connectionName parameter must match the name used when adding the Azure
OpenAI resource in the app host project. For more information, see Add an Azure
OpenAI resource.

public class ExampleService(OpenAIClient client)
{
 // Use client...
}

Add Azure OpenAI client with registered IChatClient

builder.AddAzureOpenAIClient(connectionName: "openai")
 .AddChatClient("deploymentName");

https://github.com/Azure/azure-sdk-for-net/blob/main/sdk/openai/Azure.AI.OpenAI/README.md
https://github.com/Azure/azure-sdk-for-net/blob/main/sdk/openai/Azure.AI.OpenAI/README.md
https://learn.microsoft.com/en-us/dotnet/core/extensions/dependency-injection
https://learn.microsoft.com/en-us/azure/ai-services/openai/chatgpt-quickstart?pivots=programming-language-csharp
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.ai.ichatclient
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.aspireopenaiclientbuilderchatclientextensions.addchatclient#microsoft-extensions-hosting-aspireopenaiclientbuilderchatclientextensions-addchatclient(aspire-openai-aspireopenaiclientbuilder-system-string)
https://learn.microsoft.com/en-us/dotnet/api/aspire.openai.aspireopenaiclientbuilder
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.aspireopenaiclientbuilderchatclientextensions.addkeyedchatclient#microsoft-extensions-hosting-aspireopenaiclientbuilderchatclientextensions-addkeyedchatclient(aspire-openai-aspireopenaiclientbuilder-system-string-system-string)
https://learn.microsoft.com/en-us/dotnet/api/aspire.openai.aspireopenaiclientbuilder

Similarly, you can add a keyed IChatClient with the following C# code:

C#

For more information on the IChatClient and its corresponding library, see Artificial
intelligence in .NET (Preview).

The .NET Aspire Azure OpenAI library provides a set of settings to configure the Azure
OpenAI client. The AddAzureOpenAIClient method exposes an optional
configureSettings parameter of type Action<AzureOpenAISettings>? . To configure
settings inline, consider the following example:

C#

The preceding code sets the AzureOpenAISettings.DisableTracing property to true , and
sets the AzureOpenAISettings.Endpoint property to the Azure OpenAI endpoint.

To configure the AzureOpenAIClientOptions for the client, you can use the
AddAzureOpenAIClient method. This method takes an optional configureClientBuilder
parameter of type Action<IAzureClientBuilder<OpenAIClient,
AzureOpenAIClientOptions>>? . Consider the following example:

C#

builder.AddAzureOpenAIClient(connectionName: "openai")
 .AddKeyedChatClient("serviceKey", "deploymentName");

Configure Azure OpenAI client settings

builder.AddAzureOpenAIClient(
 connectionName: "openai",
 configureSettings: settings =>
 {
 settings.DisableTracing = true;

 var uriString = builder.Configuration["AZURE_OPENAI_ENDPOINT"]
 ?? throw new InvalidOperationException("AZURE_OPENAI_ENDPOINT is
not set.");

 settings.Endpoint = new Uri(uriString);
 });

Configure Azure OpenAI client builder options

https://learn.microsoft.com/en-us/dotnet/core/extensions/artificial-intelligence
https://learn.microsoft.com/en-us/dotnet/core/extensions/artificial-intelligence
https://learn.microsoft.com/en-us/dotnet/api/aspire.azure.ai.openai.azureopenaisettings.disabletracing#aspire-azure-ai-openai-azureopenaisettings-disabletracing
https://learn.microsoft.com/en-us/dotnet/api/aspire.azure.ai.openai.azureopenaisettings.endpoint#aspire-azure-ai-openai-azureopenaisettings-endpoint
https://learn.microsoft.com/en-us/dotnet/api/azure.ai.openai.azureopenaiclientoptions
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.aspireazureopenaiextensions.addazureopenaiclient

The client builder is an instance of the IAzureClientBuilder<TClient,TOptions> type,
which provides a fluent API to configure the client options. The preceding code sets the
AzureOpenAIClientOptions.UserAgentApplicationId property to CLIENT_ID . For more
information, see ConfigureOptions(ChatClientBuilder, Action<ChatOptions>).

Additionally, the package provides the
AddOpenAIClientFromConfiguration(IHostApplicationBuilder, String) extension method
to register an OpenAIClient or AzureOpenAIClient instance based on the provided
connection string. This method follows these rules:

If the Endpoint attribute is empty or missing, an OpenAIClient instance is
registered using the provided key, for example, Key={key}; .
If the IsAzure attribute is true , an AzureOpenAIClient is registered; otherwise, an
OpenAIClient is registered, for example, Endpoint={azure_endpoint};Key=
{key};IsAzure=true registers an AzureOpenAIClient , while
Endpoint=https://localhost:18889;Key={key} registers an OpenAIClient .
If the Endpoint attribute contains ".azure." , an AzureOpenAIClient is registered;
otherwise, an OpenAIClient is registered, for example,
Endpoint=https://{account}.azure.com;Key={key}; .

Consider the following example:

C#

builder.AddAzureOpenAIClient(
 connectionName: "openai",
 configureClientBuilder: clientBuilder =>
 {
 clientBuilder.ConfigureOptions(options =>
 {
 options.UserAgentApplicationId = "CLIENT_ID";
 });
 });

Add Azure OpenAI client from configuration

builder.AddOpenAIClientFromConfiguration("openai");

 Tip

A valid connection string must contain at least an Endpoint or a Key .

https://learn.microsoft.com/en-us/dotnet/api/azure.core.extensions.iazureclientbuilder-2
https://learn.microsoft.com/en-us/dotnet/api/azure.ai.openai.azureopenaiclientoptions.useragentapplicationid#azure-ai-openai-azureopenaiclientoptions-useragentapplicationid
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.ai.configureoptionschatclientbuilderextensions.configureoptions#microsoft-extensions-ai-configureoptionschatclientbuilderextensions-configureoptions(microsoft-extensions-ai-chatclientbuilder-system-action((microsoft-extensions-ai-chatoptions)))
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.aspireconfigurableopenaiextensions.addopenaiclientfromconfiguration#microsoft-extensions-hosting-aspireconfigurableopenaiextensions-addopenaiclientfromconfiguration(microsoft-extensions-hosting-ihostapplicationbuilder-system-string)

Consider the following example connection strings and whether they register an
OpenAIClient or AzureOpenAIClient :

Example connection string Registered client
type

Endpoint=https://{account_name}.openai.azure.com/;Key={account_key} AzureOpenAIClient

Endpoint=https://{account_name}.openai.azure.com/;Key=

{account_key};IsAzure=false

OpenAIClient

Endpoint=https://{account_name}.openai.azure.com/;Key=

{account_key};IsAzure=true

AzureOpenAIClient

Endpoint=https://localhost:18889;Key={account_key} OpenAIClient

There might be situations where you want to register multiple OpenAIClient instances
with different connection names. To register keyed Azure OpenAI clients, call the
AddKeyedAzureOpenAIClient method:

C#

Then you can retrieve the client instances using dependency injection. For example, to
retrieve the clients from a service:

C#

ﾉ Expand table

Add keyed Azure OpenAI clients

builder.AddKeyedAzureOpenAIClient(name: "chat");
builder.AddKeyedAzureOpenAIClient(name: "code");

） Important

When using keyed services, ensure that your Azure OpenAI resource configures two
named connections, one for chat and one for code .

public class ExampleService(
 [KeyedService("chat")] OpenAIClient chatClient,
 [KeyedService("code")] OpenAIClient codeClient)
{

https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.aspireazureopenaiextensions.addkeyedazureopenaiclient

For more information, see Keyed services in .NET.

The same functionality and rules exist for keyed Azure OpenAI clients as for the
nonkeyed clients. You can use the
AddKeyedOpenAIClientFromConfiguration(IHostApplicationBuilder, String) extension
method to register an OpenAIClient or AzureOpenAIClient instance based on the
provided connection string.

Consider the following example:

C#

This method follows the same rules as detailed in the Add Azure OpenAI client from
configuration.

The .NET Aspire Azure OpenAI library provides multiple options to configure the Azure
OpenAI connection based on the requirements and conventions of your project. Either a
Endpoint or a ConnectionString is required to be supplied.

When using a connection string from the ConnectionStrings configuration section, you
can provide the name of the connection string when calling
builder.AddAzureOpenAIClient :

C#

The connection string is retrieved from the ConnectionStrings configuration section,
and there are two supported formats:

 // Use clients...
}

Add keyed Azure OpenAI clients from configuration

builder.AddKeyedOpenAIClientFromConfiguration("openai");

Configuration

Use a connection string

builder.AddAzureOpenAIClient("openai");

https://learn.microsoft.com/en-us/dotnet/core/extensions/dependency-injection#keyed-services
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.aspireconfigurableopenaiextensions.addkeyedopenaiclientfromconfiguration#microsoft-extensions-hosting-aspireconfigurableopenaiextensions-addkeyedopenaiclientfromconfiguration(microsoft-extensions-hosting-ihostapplicationbuilder-system-string)

The recommended approach is to use an Endpoint, which works with the
AzureOpenAISettings.Credential property to establish a connection. If no credential is
configured, the DefaultAzureCredential is used.

JSON

For more information, see Use Azure OpenAI without keys.

Alternatively, a custom connection string can be used:

JSON

In order to connect to the non-Azure OpenAI service, drop the Endpoint property and
only set the Key property to set the API key .

The .NET Aspire Azure OpenAI integration supports Microsoft.Extensions.Configuration.
It loads the AzureOpenAISettings from configuration by using the
Aspire:Azure:AI:OpenAI key. Example appsettings.json that configures some of the
options:

JSON

Account endpoint

{
 "ConnectionStrings": {
 "openai": "https://{account_name}.openai.azure.com/"
 }
}

Connection string

{
 "ConnectionStrings": {
 "openai": "Endpoint=https://{account_name}.openai.azure.com/;Key=
{account_key};"
 }
}

Use configuration providers

{
 "Aspire": {
 "Azure": {
 "AI": {

https://learn.microsoft.com/en-us/dotnet/api/azure.identity.defaultazurecredential
https://learn.microsoft.com/en-us/azure/developer/ai/keyless-connections?tabs=csharp%2Cazure-cli
https://platform.openai.com/account/api-keys
https://platform.openai.com/account/api-keys
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration

For the complete Azure OpenAI client integration JSON schema, see
Aspire.Azure.AI.OpenAI/ConfigurationSchema.json .

You can pass the Action<AzureOpenAISettings> configureSettings delegate to set up
some or all the options inline, for example to disable tracing from code:

C#

You can also set up the OpenAIClientOptions using the optional
Action<IAzureClientBuilder<OpenAIClient, OpenAIClientOptions>>

configureClientBuilder parameter of the AddAzureOpenAIClient method. For example,
to set the client ID for this client:

C#

.NET Aspire integrations automatically set up Logging, Tracing, and Metrics
configurations, which are sometimes known as the pillars of observability. For more
information about integration observability and telemetry, see .NET Aspire integrations
overview. Depending on the backing service, some integrations may only support some
of these features. For example, some integrations support logging and tracing, but not
metrics. Telemetry features can also be disabled using the techniques presented in the
Configuration section.

 "OpenAI": {
 "DisableTracing": false
 }
 }
 }
 }
}

Use inline delegates

builder.AddAzureOpenAIClient(
 "openai",
 static settings => settings.DisableTracing = true);

builder.AddAzureOpenAIClient(
 "openai",
 configureClientBuilder: builder => builder.ConfigureOptions(
 options => options.Diagnostics.ApplicationId = "CLIENT_ID"));

Observability and telemetry

https://github.com/dotnet/aspire/blob/v9.1.0/src/Components/Aspire.Azure.AI.OpenAI/ConfigurationSchema.json
https://github.com/dotnet/aspire/blob/v9.1.0/src/Components/Aspire.Azure.AI.OpenAI/ConfigurationSchema.json

The .NET Aspire Azure OpenAI integration uses the following log categories:

Azure

Azure.Core

Azure.Identity

The .NET Aspire Azure OpenAI integration emits tracing activities using OpenTelemetry
for operations performed with the OpenAIClient .

Azure OpenAI
.NET Aspire integrations overview
.NET Aspire Azure integrations overview
.NET Aspire GitHub repo

Logging

Tracing

） Important

Tracing is currently experimental with this integration. To opt-in to it, set either the
OPENAI_EXPERIMENTAL_ENABLE_OPEN_TELEMETRY environment variable to true or 1 , or
call AppContext.SetSwitch("OpenAI.Experimental.EnableOpenTelemetry", true))
during app startup.

See also

https://azure.microsoft.com/products/ai-services/openai-service/
https://azure.microsoft.com/products/ai-services/openai-service/
https://github.com/dotnet/aspire
https://github.com/dotnet/aspire

.NET Aspire Azure SignalR Service
integration
Article • 03/27/2025

Includes: Hosting integration not Client integration

Azure SignalR Service is a fully managed real-time messaging service that simplifies
adding real-time web functionality to your applications. The .NET Aspire Azure SignalR
Service integration enables you to easily provision, configure, and connect your .NET
applications to Azure SignalR Service instances.

This article describes how to integrate Azure SignalR Service into your .NET Aspire
applications, covering both hosting and client integration.

The .NET Aspire Azure SignalR Service hosting integration models Azure SignalR
resources as the following types:

AzureSignalRResource: Represents an Azure SignalR Service resource, including
connection information to the underlying Azure resource.
AzureSignalREmulatorResource: Represents an emulator for Azure SignalR Service,
allowing local development and testing without requiring an Azure subscription.

To access the hosting types and APIs for expressing these resources in the distributed
application builder, install the 📦 Aspire.Hosting.Azure.SignalR NuGet package in
your app host project:

.NET CLI

For more information, see dotnet add package or Manage package dependencies in
.NET applications.

Hosting integration

.NET CLI

dotnet add package Aspire.Hosting.Azure.SignalR

Add an Azure SignalR Service resource

https://learn.microsoft.com/en-us/azure/azure-signalr/signalr-overview
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.azuresignalrresource
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azure.azuresignalremulatorresource
https://www.nuget.org/packages/Aspire.Hosting.Azure.SignalR
https://www.nuget.org/packages/Aspire.Hosting.Azure.SignalR
https://learn.microsoft.com/en-us/dotnet/core/tools/dotnet-add-package
https://learn.microsoft.com/en-us/dotnet/core/tools/dependencies
https://learn.microsoft.com/en-us/dotnet/core/tools/dependencies

To add an Azure SignalR Service resource to your app host project, call the
AddAzureSignalR method:

C#

In the preceding example:

An Azure SignalR Service resource named signalr is added.
The signalr resource is referenced by the api project.
The api project is referenced by the webapp project.

This architecture allows the webapp project to communicate with the api project, which
in turn communicates with the Azure SignalR Service resource.

When you add an Azure SignalR Service resource, .NET Aspire generates provisioning
infrastructure using Bicep. The generated Bicep includes defaults for location, SKU, and
role assignments:

Bicep

var builder = DistributedApplication.CreateBuilder(args);

var signalR = builder.AddAzureSignalR("signalr");

var api = builder.AddProject<Projects.ApiService>("api")
 .WithReference(signalR)
 .WaitFor(signalR);

builder.AddProject<Projects.WebApp>("webapp")
 .WithReference(api)
 .WaitFor(api);

// Continue configuring and run the app...

） Important

Calling AddAzureSignalR implicitly enables Azure provisioning support. Ensure your
app host is configured with the appropriate Azure subscription and location. For
more information, see Local provisioning: Configuration.

Generated provisioning Bicep

@description('The location for the resource(s) to be deployed.')
param location string = resourceGroup().location

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azuresignalrextensions.addazuresignalr
https://learn.microsoft.com/en-us/azure/azure-resource-manager/bicep/overview

The generated Bicep provides a starting point and can be customized further.

param principalType string

param principalId string

resource signalr 'Microsoft.SignalRService/signalR@2024-03-01' = {
 name: take('signalr-${uniqueString(resourceGroup().id)}', 63)
 location: location
 properties: {
 cors: {
 allowedOrigins: [
 '*'
]
 }
 features: [
 {
 flag: 'ServiceMode'
 value: 'Default'
 }
]
 }
 kind: 'SignalR'
 sku: {
 name: 'Free_F1'
 capacity: 1
 }
 tags: {
 'aspire-resource-name': 'signalr'
 }
}

resource signalr_SignalRAppServer
'Microsoft.Authorization/roleAssignments@2022-04-01' = {
 name: guid(signalr.id, principalId,
subscriptionResourceId('Microsoft.Authorization/roleDefinitions', '420fcaa2-
552c-430f-98ca-3264be4806c7'))
 properties: {
 principalId: principalId
 roleDefinitionId:
subscriptionResourceId('Microsoft.Authorization/roleDefinitions', '420fcaa2-
552c-430f-98ca-3264be4806c7')
 principalType: principalType
 }
 scope: signalr
}

output hostName string = signalr.properties.hostName

Customize provisioning infrastructure

All .NET Aspire Azure resources are subclasses of the AzureProvisioningResource type.
This enables customization of the generated Bicep by providing a fluent API to
configure the Azure resources using the ConfigureInfrastructure<T>
(IResourceBuilder<T>, Action<AzureResourceInfrastructure>) API:

C#

The preceding code:

Chains a call to the ConfigureInfrastructure API:
The infra parameter is an instance of the AzureResourceInfrastructure type.
The provisionable resources are retrieved by calling the
GetProvisionableResources() method.
The single SignalRService resource is retrieved.
The SignalRService.Sku property is assigned a name of Premium_P1 and a
capacity of 10 .
The SignalRService.PublicNetworkAccess property is set to Enabled .
A tag is added to the SignalR service resource with a key of ExampleKey and a
value of Example value .

You might have an existing Azure SignalR Service that you want to connect to. You can
chain a call to annotate that your AzureSignalRResource is an existing resource:

C#

builder.AddAzureSignalR("signalr")
 .ConfigureInfrastructure(infra =>
 {
 var signalRService = infra.GetProvisionableResources()
 .OfType<SignalRService>()
 .Single();

 signalRService.Sku.Name = "Premium_P1";
 signalRService.Sku.Capacity = 10;
 signalRService.PublicNetworkAccess = "Enabled";
 signalRService.Tags.Add("ExampleKey", "Example value");
 });

Connect to an existing Azure SignalR Service

var builder = DistributedApplication.CreateBuilder(args);

var existingSignalRName = builder.AddParameter("existingSignalRName");
var existingSignalRResourceGroup =
builder.AddParameter("existingSignalRResourceGroup");

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azure.azureprovisioningresource
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azureprovisioningresourceextensions.configureinfrastructure#aspire-hosting-azureprovisioningresourceextensions-configureinfrastructure-1(aspire-hosting-applicationmodel-iresourcebuilder((-0))-system-action((aspire-hosting-azure-azureresourceinfrastructure)))
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azureprovisioningresourceextensions.configureinfrastructure#aspire-hosting-azureprovisioningresourceextensions-configureinfrastructure-1(aspire-hosting-applicationmodel-iresourcebuilder((-0))-system-action((aspire-hosting-azure-azureresourceinfrastructure)))
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azureprovisioningresourceextensions.configureinfrastructure
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azure.azureresourceinfrastructure
https://learn.microsoft.com/en-us/dotnet/api/azure.provisioning.infrastructure.getprovisionableresources#azure-provisioning-infrastructure-getprovisionableresources
https://learn.microsoft.com/en-us/dotnet/api/azure.provisioning.signalr.signalrservice
https://learn.microsoft.com/en-us/dotnet/api/azure.provisioning.signalr.signalrservice.sku#azure-provisioning-signalr-signalrservice-sku
https://learn.microsoft.com/en-us/dotnet/api/azure.provisioning.signalr.signalrservice.publicnetworkaccess#azure-provisioning-signalr-signalrservice-publicnetworkaccess
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.azuresignalrresource

For more information on treating Azure SignalR resources as existing resources, see Use
existing Azure resources.

Alternatively, instead of representing an Azure SignalR resource, you can add a
connection string to the app host. Which is a weakly-typed approach that's based solely
on a string value. To add a connection to an existing Azure SignalR Service, call the
AddConnectionString method:

C#

The connection string is configured in the app host's configuration, typically under User
Secrets, under the ConnectionStrings section:

JSON

var signalr = builder.AddAzureSignalR("signalr")
 .AsExisting(existingSignalRName,
existingSignalRResourceGroup);

builder.AddProject<Projects.ExampleProject>()
 .WithReference(signalr);

// After adding all resources, run the app...

var builder = DistributedApplication.CreateBuilder(args);

var signalr = builder.ExecutionContext.IsPublishMode
 ? builder.AddAzureSignalR("signalr")
 : builder.AddConnectionString("signalr");

builder.AddProject<Projects.ApiService>("apiService")
 .WithReference(signalr);

７ Note

Connection strings are used to represent a wide range of connection information,
including database connections, message brokers, endpoint URIs, and other
services. In .NET Aspire nomenclature, the term "connection string" is used to
represent any kind of connection information.

{
 "ConnectionStrings": {
 "signalr": "Endpoint=https://your-signalr-
instance.service.signalr.net;AccessKey=your-access-key;Version=1.0;"

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.parameterresourcebuilderextensions.addconnectionstring
https://learn.microsoft.com/en-us/aspnet/core/security/app-secrets
https://learn.microsoft.com/en-us/aspnet/core/security/app-secrets

For more information, see Add existing Azure resources with connection strings.

The Azure SignalR Service emulator is a local development and testing tool that
emulates the behavior of Azure SignalR Service. This emulator only supports Serverless
mode, which requires a specific configuration when using the emulator.

To use the emulator, chain a call to the
RunAsEmulator(IResourceBuilder<AzureSignalRResource>,
Action<IResourceBuilder<AzureSignalREmulatorResource>>) method:

C#

In the preceding example, the RunAsEmulator method configures the Azure SignalR
Service resource to run as an emulator. The emulator is based on the
mcr.microsoft.com/signalr/signalr-emulator:latest container image. The emulator is
started when the app host is run, and is stopped when the app host is stopped.

While the Azure SignalR Service emulator only supports the Serverless mode, the Azure
SignalR Service resource can be configured to use either of the following modes:

AzureSignalRServiceMode.Default
AzureSignalRServiceMode.Serverless

 }
}

Add an Azure SignalR Service emulator resource

using Aspire.Hosting.Azure;

var builder = DistributedApplication.CreateBuilder(args);

var signalR = builder.AddAzureSignalR("signalr",
AzureSignalRServiceMode.Serverless)
 .RunAsEmulator();

builder.AddProject<Projects.ApiService>("apiService")
 .WithReference(signalR)
 .WaitFor(signalR);

// After adding all resources, run the app...

Azure SignalR Service modes

https://learn.microsoft.com/en-us/azure/azure-signalr/concept-service-mode#serverless-mode
https://learn.microsoft.com/en-us/azure/azure-signalr/concept-service-mode#serverless-mode
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azuresignalrextensions.runasemulator#aspire-hosting-azuresignalrextensions-runasemulator(aspire-hosting-applicationmodel-iresourcebuilder((aspire-hosting-applicationmodel-azuresignalrresource))-system-action((aspire-hosting-applicationmodel-iresourcebuilder((aspire-hosting-azure-azuresignalremulatorresource)))))
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azuresignalrextensions.runasemulator#aspire-hosting-azuresignalrextensions-runasemulator(aspire-hosting-applicationmodel-iresourcebuilder((aspire-hosting-applicationmodel-azuresignalrresource))-system-action((aspire-hosting-applicationmodel-iresourcebuilder((aspire-hosting-azure-azuresignalremulatorresource)))))
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.azuresignalrservicemode#aspire-hosting-applicationmodel-azuresignalrservicemode-default
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.azuresignalrservicemode#aspire-hosting-applicationmodel-azuresignalrservicemode-serverless

The Default mode is the "default" configuration for Azure SignalR Service. Each mode
has its own set of features and limitations. For more information, see Azure SignalR
Service modes.

There isn't an official .NET Aspire Azure SignalR client integration. However, there is
limited support for similar experiences. In these scenarios, the Azure SignalR Service acts
as a proxy between the server (where the Hub or Hub<T> are hosted) and the client
(where the SignalR client is hosted). The Azure SignalR Service routes traffic between the
server and client, allowing for real-time communication.

There are two packages available for, each with addressing specific scenarios such as
managing the client connection to Azure SignalR Service, and hooking up to the Azure
SignalR Service resource. To get started, install the 📦 Microsoft.Azure.SignalR NuGet
package in the project hosting your SignalR hub.

.NET CLI

） Important

The Azure SignalR Service emulator only works in Serverless mode and the
AddNamedAzureSignalR method doesn't support Serverless mode.

Hub host integration

） Important

It's important to disambiguate between .NET Aspire client integrations and the .NET
SignalR client. SignalR exposes hubs—which act as a server-side concept—and
SignalR clients connect to those hubs. The .NET projects that host SignalR hubs are
where you integrate with .NET Aspire. The SignalR client is a separate library that
connects to those hubs, in a different project.

.NET CLI

dotnet add package Microsoft.Azure.SignalR

Configure named Azure SignalR Service in Default mode

https://learn.microsoft.com/en-us/azure/azure-signalr/concept-service-mode
https://learn.microsoft.com/en-us/azure/azure-signalr/concept-service-mode
https://learn.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.signalr.hub
https://learn.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.signalr.hub-1
https://www.nuget.org/packages/Microsoft.Azure.SignalR
https://www.nuget.org/packages/Microsoft.Azure.SignalR

In Default mode, your consuming project needs to rely on a named Azure SignalR
Service resource. Consider the following diagram that illustrates the architecture of
Azure SignalR Service in Default mode:

For more information on Default mode, see Azure SignalR Service: Default mode.

In your SignalR hub host project, configure Azure SignalR Service by chaining calls to
.AddSignalR().AddNamedAzureSignalR("name") :

C#

The AddNamedAzureSignalR method configures the project to use the Azure SignalR
Service resource named signalr . The connection string is read from the configuration
key ConnectionStrings:signalr , and additional settings are loaded from the
Azure:SignalR:signalr configuration section.



var builder = WebApplication.CreateBuilder(args);

builder.Services.AddSignalR()
 .AddNamedAzureSignalR("signalr");

var app = builder.Build();

app.MapHub<ChatHub>("/chat");

app.Run();

７ Note

If you're using the Azure SignalR emulator, you cannot use the
AddNamedAzureSignalR method.

Configure Azure SignalR Service in Serverless mode

https://learn.microsoft.com/en-us/azure/azure-signalr/concept-service-mode#default-mode
https://learn.microsoft.com/en-us/dotnet/aspire/docs/real-time/media/default-mode.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/real-time/media/default-mode.png#lightbox

If you're app host is using the Azure SignalR emulator, you'll also need to install the 📦
Microsoft.Azure.SignalR.Management NuGet package.

.NET CLI

Azure SignalR Serverless mode doesn't require a hub server to be running. The Azure
SignalR Service is responsible for maintaining client connections. Additionally, in this
mode, you cannot use traditional SignalR Hubs, such as Hub, Hub<T>, or
IHubContext<THub>. Instead, configure an upstream endpoint which is usually an Azure
Function SignalR trigger. Consider the following diagram that illustrates the architecture
of Azure SignalR Service in Serverless mode:

For more information on Serverless mode, see Azure SignalR Service: Serverless mode.

In a project that's intended to communicate with the Azure SignalR Service, register the
appropriate services by calling AddSignalR and then registering the ServiceManager
using the signalr connection string and add a /negotiate endpoint:

C#

.NET CLI

dotnet add package Microsoft.Azure.SignalR.Management



var builder = WebApplication.CreateBuilder(args);

builder.Services.AddSingleton(sp =>
{
 return new ServiceManagerBuilder()
 .WithOptions(options =>
 {
 options.ConnectionString =
builder.Configuration.GetConnectionString("signalr");
 })
 .BuildServiceManager();
});

https://www.nuget.org/packages/Microsoft.Azure.SignalR.Management
https://www.nuget.org/packages/Microsoft.Azure.SignalR.Management
https://www.nuget.org/packages/Microsoft.Azure.SignalR.Management
https://learn.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.signalr.hub
https://learn.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.signalr.hub-1
https://learn.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.signalr.ihubcontext-1
https://learn.microsoft.com/en-us/azure/azure-signalr/concept-upstream
https://learn.microsoft.com/en-us/azure/azure-signalr/concept-upstream
https://learn.microsoft.com/en-us/azure/azure-signalr/concept-service-mode#serverless-mode
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.signalrdependencyinjectionextensions.addsignalr
https://learn.microsoft.com/en-us/dotnet/aspire/docs/real-time/media/serverless-mode.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/real-time/media/serverless-mode.png#lightbox

The preceding code configures the Azure SignalR Service using the
ServiceManagerBuilder class, but doesn't call AddSignalR or MapHub . These two
extensions aren't required with Serverless mode. The connection string is read from the
configuration key ConnectionStrings:signalr . When using the emulator, only the HTTP
endpoint is available. Within the app, you can use the ServiceManager instance to create
a ServiceHubContext . The ServiceHubContext is used to broadcast messages and
manage connections to clients.

The /negotiate endpoint is required to establish a connection between the connecting
client and the Azure SignalR Service. The ServiceHubContext is created using the
ServiceManager.CreateHubContextAsync method, which takes the hub name as a
parameter. The NegotiateAsync method is called to negotiate the connection with the
Azure SignalR Service, which returns an access token and the URL for the client to
connect to.

For more information, see Use Azure SignalR Management SDK.

var app = builder.Build();

app.MapPost("/negotiate", async (string? userId, ServiceManager sm,
CancellationToken token) =>
{
 // The creation of the ServiceHubContext is expensive, so it's
recommended to
 // only create it once per named context / per app run if possible.
 var context = await sm.CreateHubContextAsync("messages", token);

 var negotiateResponse = await context.NegotiateAsync(new
NegotiationOptions
 {
 UserId = userId
 }, token);

 // The JSON serializer options need to be set to ignore null values,
otherwise the
 // response will contain null values for the properties that are not
set.
 // The .NET SignalR client will not be able to parse the response if the
null values are present.
 // For more information, see
https://github.com/dotnet/aspnetcore/issues/60935.
 return Results.Json(negotiateResponse, new
JsonSerializerOptions(JsonSerializerDefaults.Web)
 {
 DefaultIgnoreCondition = JsonIgnoreCondition.WhenWritingNull
 });
});

app.Run();

https://learn.microsoft.com/en-us/azure/azure-signalr/signalr-howto-use-management-sdk

Azure SignalR Service overview
Scale ASP.NET Core SignalR applications with Azure SignalR Service
.NET Aspire Azure integrations overview
.NET Aspire integrations
.NET Aspire GitHub repo

See also

https://learn.microsoft.com/en-us/azure/azure-signalr/signalr-overview
https://learn.microsoft.com/en-us/azure/azure-signalr/signalr-concept-scale-aspnet-core
https://github.com/dotnet/aspire
https://github.com/dotnet/aspire

.NET Aspire Azure Service Bus
integration
Article • 02/25/2025

Includes: Hosting integration and Client integration

Azure Service Bus is a fully managed enterprise message broker with message queues
and publish-subscribe topics. The .NET Aspire Azure Service Bus integration enables you
to connect to Azure Service Bus instances from .NET applications.

The .NET Aspire Azure Service Bus hosting integration models the various Service Bus
resources as the following types:

AzureServiceBusResource: Represents an Azure Service Bus resource.
AzureServiceBusEmulatorResource: Represents an Azure Service Bus emulator
resource.

To access these types and APIs for expressing them, add the 📦
Aspire.Hosting.Azure.ServiceBus NuGet package in the app host project.

.NET CLI

For more information, see dotnet add package or Manage package dependencies in
.NET applications.

In your app host project, call AddAzureServiceBus to add and return an Azure Service
Bus resource builder.

C#

Hosting integration

.NET CLI

dotnet add package Aspire.Hosting.Azure.ServiceBus

Add Azure Service Bus resource

var builder = DistributedApplication.CreateBuilder(args);

https://azure.microsoft.com/services/service-bus/
https://azure.microsoft.com/services/service-bus/
https://azure.microsoft.com/services/service-bus/
https://azure.microsoft.com/services/service-bus/
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azure.azureservicebusresource
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azure.azureservicebusemulatorresource
https://www.nuget.org/packages/Aspire.Hosting.Azure.ServiceBus
https://www.nuget.org/packages/Aspire.Hosting.Azure.ServiceBus
https://www.nuget.org/packages/Aspire.Hosting.Azure.ServiceBus
https://learn.microsoft.com/en-us/dotnet/core/tools/dotnet-add-package
https://learn.microsoft.com/en-us/dotnet/core/tools/dependencies
https://learn.microsoft.com/en-us/dotnet/core/tools/dependencies
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azureservicebusextensions.addazureservicebus

When you add an AzureServiceBusResource to the app host, it exposes other useful APIs
to add queues and topics. In other words, you must add an AzureServiceBusResource
before adding any of the other Service Bus resources.

If you're new to Bicep, it's a domain-specific language for defining Azure resources. With
.NET Aspire, you don't need to write Bicep by-hand, instead the provisioning APIs
generate Bicep for you. When you publish your app, the generated Bicep is output
alongside the manifest file. When you add an Azure Service Bus resource, the following
Bicep is generated:

Bicep

var serviceBus = builder.AddAzureServiceBus("messaging");

// After adding all resources, run the app...

） Important

When you call AddAzureServiceBus, it implicitly calls AddAzureProvisioning—
which adds support for generating Azure resources dynamically during app startup.
The app must configure the appropriate subscription and location. For more
information, see Configuration.

Generated provisioning Bicep

@description('The location for the resource(s) to be deployed.')
param location string = resourceGroup().location

param sku string = 'Standard'

param principalType string

param principalId string

resource

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azure.azureservicebusresource
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azureservicebusextensions.addazureservicebus
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azureprovisionerextensions.addazureprovisioning

The preceding Bicep is a module that provisions an Azure Service Bus namespace with
the following defaults:

sku : The SKU of the Service Bus namespace. The default is Standard.
location : The location for the Service Bus namespace. The default is the resource
group's location.

In addition to the Service Bus namespace, it also provisions an Azure role-based access
control (Azure RBAC) built-in role of Azure Service Bus Data Owner. The role is assigned
to the Service Bus namespace's resource group. For more information, see Azure Service
Bus Data Owner.

All .NET Aspire Azure resources are subclasses of the AzureProvisioningResource type.
This type enables the customization of the generated Bicep by providing a fluent API to
configure the Azure resources—using the ConfigureInfrastructure<T>
(IResourceBuilder<T>, Action<AzureResourceInfrastructure>) API. For example, you can
configure the sku, location, and more. The following example demonstrates how to
customize the Azure Service Bus resource:

C#

}

resource service_bus_AzureServiceBusDataOwner
'Microsoft.Authorization/roleAssignments@2022-04-01' = {
 name: guid(service_bus.㔠呦਱′㌲㈀蔀蜂伀蒄us〹␀㠀需猱ⴲ〮㈹⠸us退蜀鐩㘀rsㄭ(QJ W(⥝告੅吊儊〮㘳㠶㜲‰⸰㠲㔱㤵‰⸰㠲㔱㤵⁲朊焊㄰‰‰‱〠〠〠捭⁂吊⽒㄰㜰‱〲⁣洠㔴㘷㠠挊〠ㄠ㜷⸵‷㘲⸳㠠呭ਨ'Microsoft.AuthorizatiDifV⸠ⶋthors2-04-01'⥔樊䕔ੑਰ⸰㠶ㄸㄶ‰⸰㠶ㄸㄶ‰⸰㠶ㄸㄶ⁲朊焊㄰‰‰‱〠〠〠捭⁂吊⽒㄰㜰‱〵㈠挹㠶㜸⁣ਰ‱‷㜀玐e市攂欁市攂

81.0346‡

https://learn.microsoft.com/en-us/azure/role-based-access-control/built-in-roles/integration#azure-service-bus-data-owner
https://learn.microsoft.com/en-us/azure/role-based-access-control/built-in-roles/integration#azure-service-bus-data-owner
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azure.azureprovisioningresource
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azureprovisioningresourceextensions.configureinfrastructure#aspire-hosting-azureprovisioningresourceextensions-configureinfrastructure-1(aspire-hosting-applicationmodel-iresourcebuilder((-0))-system-action((aspire-hosting-azure-azureresourceinfrastructure)))
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azureprovisioningresourceextensions.configureinfrastructure#aspire-hosting-azureprovisioningresourceextensions-configureinfrastructure-1(aspire-hosting-applicationmodel-iresourcebuilder((-0))-system-action((aspire-hosting-azure-azureresourceinfrastructure)))

The preceding code:

Chains a call to the ConfigureInfrastructure API:
The infra parameter is an instance of the AzureResourceInfrastructure type.
The provisionable resources are retrieved by calling the
GetProvisionableResources() method.
The single ServiceBusNamespace is retrieved.
The ServiceBusNamespace.Sku created with a ServiceBusSkuTier.Premium
A tag is added to the Service Bus namespace with a key of ExampleKey and a
value of Example value .

There are many more configuration options available to customize the Azure Service Bus
resource. For more information, see Azure.Provisioning.ServiceBus. For more
information, see Azure.Provisioning customization.

You might have an existing Azure Service Bus namespace that you want to connect to.
Instead of representing a new Azure Service Bus resource, you can add a connection
string to the app host. To add a connection to an existing Azure Service Bus namespace,
call the AddConnectionString method:

C#

 .Single();

 serviceBusNamespace.Sku = new ServiceBusSku
 {
 Tier = ServiceBusSkuTier.Premium
 };
 serviceBusNamespace.Tags.Add("ExampleKey", "Example value");
 });

Connect to an existing Azure Service Bus namespace

var builder = DistributedApplication.CreateBuilder(args);

var serviceBus = builder.AddConnectionString("messaging");

builder.AddProject<Projects.WebApplication>("web")
 .WithReference(serviceBus);

// After adding all resources, run the app...

７ Note

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azureprovisioningresourceextensions.configureinfrastructure
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azure.azureresourceinfrastructure
https://learn.microsoft.com/en-us/dotnet/api/azure.provisioning.infrastructure.getprovisionableresources#azure-provisioning-infrastructure-getprovisionableresources
https://learn.microsoft.com/en-us/dotnet/api/azure.provisioning.servicebus.servicebusnamespace
https://learn.microsoft.com/en-us/dotnet/api/azure.provisioning.servicebus.servicebusnamespace.sku#azure-provisioning-servicebus-servicebusnamespace-sku
https://learn.microsoft.com/en-us/dotnet/api/azure.provisioning.servicebus.servicebusskutier#azure-provisioning-servicebus-servicebusskutier-premium
https://learn.microsoft.com/en-us/dotnet/api/azure.provisioning.servicebus
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.parameterresourcebuilderextensions.addconnectionstring

The connection string is configured in the app host's configuration, typically under User
Secrets, under the ConnectionStrings section. The app host injects this connection
string as an environment variable into all dependent resources, for example:

JSON

The dependent resource can access the injected connection string by calling the
GetConnectionString method, and passing the connection name as the parameter, in
this case "messaging" . The GetConnectionString API is shorthand for
IConfiguration.GetSection("ConnectionStrings")[name] .

To add an Azure Service Bus queue, call the AddServiceBusQueue method on the
IResourceBuilder<AzureServiceBusResource> :

C#

When you call AddServiceBusQueue(IResourceBuilder<AzureServiceBusResource>,
String, String), it configures your Service Bus resources to have a queue named queue .
The queue is created in the Service Bus namespace that's represented by the
AzureServiceBusResource that you added earlier. For more information, see Queues,
topics, and subscriptions in Azure Service Bus.

Connection strings are used to represent a wide range of connection information,
including database connections, message brokers, endpoint URIs, and other
services. In .NET Aspire nomenclature, the term "connection string" is used to
represent any kind of connection information.

{
 "ConnectionStrings": {
 "messaging":
"Endpoint=sb://{namespace}.servicebus.windows.net/;SharedAccessKeyName=
{key_name};SharedAccessKey={key_value};"
 }
}

Add Azure Service Bus queue

var builder = DistributedApplication.CreateBuilder(args);

var serviceBus = builder.AddAzureServiceBus("messaging");
serviceBus.AddServiceBusQueue("queue");

// After adding all resources, run the app...

https://learn.microsoft.com/en-us/aspnet/core/security/app-secrets
https://learn.microsoft.com/en-us/aspnet/core/security/app-secrets
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.configurationextensions.getconnectionstring
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azureservicebusextensions.addservicebusqueue
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azureservicebusextensions.addservicebusqueue#aspire-hosting-azureservicebusextensions-addservicebusqueue(aspire-hosting-applicationmodel-iresourcebuilder((aspire-hosting-azure-azureservicebusresource))-system-string-system-string)
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azureservicebusextensions.addservicebusqueue#aspire-hosting-azureservicebusextensions-addservicebusqueue(aspire-hosting-applicationmodel-iresourcebuilder((aspire-hosting-azure-azureservicebusresource))-system-string-system-string)
https://learn.microsoft.com/en-us/azure/service-bus-messaging/service-bus-queues-topics-subscriptions
https://learn.microsoft.com/en-us/azure/service-bus-messaging/service-bus-queues-topics-subscriptions

To add an Azure Service Bus topic, call the AddServiceBusTopic method on the
IResourceBuilder<AzureServiceBusResource> :

C#

When you call AddServiceBusTopic(IResourceBuilder<AzureServiceBusResource>, String,
String), it configures your Service Bus resources to have a topic named topic . The topic
is created in the Service Bus namespace that's represented by the
AzureServiceBusResource that you added earlier.

To add a subscription for the topic, call the AddServiceBusSubscription method on the
IResourceBuilder<AzureServiceBusTopicResource> and configure it using the
WithProperties method:

C#

Add Azure Service Bus topic and subscription

var builder = DistributedApplication.CreateBuilder(args);

var serviceBus = builder.AddAzureServiceBus("messaging");
serviceBus.AddServiceBusTopic("topic");

// After adding all resources, run the app...

using Aspire.Hosting.Azure;

var builder = DistributedApplication.CreateBuilder(args);

var serviceBus = builder.AddAzureServiceBus("messaging");
var topic = serviceBus.AddServiceBusTopic("topic");
topic.AddServiceBusSubscription("sub1")
 .WithProperties(subscription =>
 {
 subscription.MaxDeliveryCount = 10;
 subscription.Rules.Add(
 new AzureServiceBusRule("app-prop-filter-1")
 {
 CorrelationFilter = new()
 {
 ContentType = "application/text",
 CorrelationId = "id1",
 Subject = "subject1",
 MessageId = "msgid1",
 ReplyTo = "someQueue",
 ReplyToSessionId = "sessionId",
 SessionId = "session1",
 SendTo = "xyz"
 }

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azureservicebusextensions.addservicebustopic
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azureservicebusextensions.addservicebustopic#aspire-hosting-azureservicebusextensions-addservicebustopic(aspire-hosting-applicationmodel-iresourcebuilder((aspire-hosting-azure-azureservicebusresource))-system-string-system-string)
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azureservicebusextensions.addservicebustopic#aspire-hosting-azureservicebusextensions-addservicebustopic(aspire-hosting-applicationmodel-iresourcebuilder((aspire-hosting-azure-azureservicebusresource))-system-string-system-string)
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azureservicebusextensions.addservicebussubscription
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azureservicebusextensions.withproperties

The preceding code not only adds a topic and creates and configures a subscription
named sub1 for the topic. The subscription has a maximum delivery count of 10 and a
rule named app-prop-filter-1 . The rule is a correlation filter that filters messages based
on the ContentType , CorrelationId , Subject , MessageId , ReplyTo , ReplyToSessionId ,
SessionId , and SendTo properties.

For more information, see Queues, topics, and subscriptions in Azure Service Bus.

To add an Azure Service Bus emulator resource, chain a call on an
<IResourceBuilder<AzureServiceBusResource>> to the RunAsEmulator API:

C#

When you call RunAsEmulator , it configures your Service Bus resources to run locally
using an emulator. The emulator in this case is the Azure Service Bus Emulator. The
Azure Service Bus Emulator provides a free local environment for testing your Azure
Service Bus apps and it's a perfect companion to the .NET Aspire Azure hosting
integration. The emulator isn't installed, instead, it's accessible to .NET Aspire as a
container. When you add a container to the app host, as shown in the preceding
example with the mcr.microsoft.com/azure-messaging/servicebus-emulator image (and
the companion mcr.microsoft.com/azure-sql-edge image), it creates and starts the
container when the app host starts. For more information, see Container resource
lifecycle.

There are various configurations available for container resources, for example, you can
configure the container's ports or providing a wholistic JSON configuration which
overrides everything.

 });
 });

// After adding all resources, run the app...

Add Azure Service Bus emulator resource

var builder = DistributedApplication.CreateBuilder(args);

var serviceBus = builder.AddAzureServiceBus("messaging")
 .RunAsEmulator();

// After adding all resources, run the app...

Configure Service Bus emulator container

https://learn.microsoft.com/en-us/azure/service-bus-messaging/service-bus-queues-topics-subscriptions
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azureservicebusextensions.runasemulator
https://learn.microsoft.com/en-us/azure/service-bus-messaging/overview-emulator

By default, the Service Bus emulator container when configured by .NET Aspire, exposes
the following endpoints:

Endpoint Image Container
port

Host
port

emulator mcr.microsoft.com/azure-messaging/servicebus-

emulator

5672 dynamic

tcp mcr.microsoft.com/azure-sql-edge 1433 dynamic

The port that it's listening on is dynamic by default. When the container starts, the port
is mapped to a random port on the host machine. To configure the endpoint port, chain
calls on the container resource builder provided by the RunAsEmulator method and then
the WithHostPort(IResourceBuilder<AzureServiceBusEmulatorResource>,
Nullable<Int32>) as shown in the following example:

C#

The preceding code configures the Service Bus emulator container's existing emulator
endpoint to listen on port 7777 . The Service Bus emulator container's port is mapped to
the host port as shown in the following table:

Endpoint name Port mapping (container:host)

emulator 5672:7777

Configure Service Bus emulator container host port

ﾉ Expand table

var builder = DistributedApplication.CreateBuilder(args);

var serviceBus = builder.AddAzureServiceBus("messaging").RunAsEmulator(
 emulator =>
 {
 emulator.WithHostPort(7777);
 });

// After adding all resources, run the app...

ﾉ Expand table

Configure Service Bus emulator container JSON configuration

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azureservicebusextensions.withhostport#aspire-hosting-azureservicebusextensions-withhostport(aspire-hosting-applicationmodel-iresourcebuilder((aspire-hosting-azure-azureservicebusemulatorresource))-system-nullable((system-int32)))
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azureservicebusextensions.withhostport#aspire-hosting-azureservicebusextensions-withhostport(aspire-hosting-applicationmodel-iresourcebuilder((aspire-hosting-azure-azureservicebusemulatorresource))-system-nullable((system-int32)))

The Service Bus emulator automatically generates a configration similar to this
config.json file from the configured resources. You can override this generated file
entirely, or update the JSON configuration with a JsonNode representation of the
configuration.

To provide a custom JSON configuration file, call the
WithConfigurationFile(IResourceBuilder<AzureServiceBusEmulatorResource>, String)
method:

C#

The preceding code configures the Service Bus emulator container to use a custom
JSON configuration file located at ./messaging/custom-config.json . To instead override
specific properties in the default configuration, call the
WithConfiguration(IResourceBuilder<AzureServiceBusEmulatorResource>,
Action<JsonNode>) method:

C#

var builder = DistributedApplication.CreateBuilder(args);

var serviceBus = builder.AddAzureServiceBus("messaging").RunAsEmulator(
 emulator =>
 {
 emulator.WithConfigurationFile(
 path: "./messaging/custom-config.json");
 });

var builder = DistributedApplication.CreateBuilder(args);

var serviceBus = builder.AddAzureServiceBus("messaging").RunAsEmulator(
 emulator =>
 {
 emulator.WithConfiguration(
 (JsonNode configuration) =>
 {
 var userConfig =
configuration["UserConfig"];
 var ns = userConfig["Namespaces"][0];
 var firstQueue = ns["Queues"][0];
 var properties =
firstQueue["Properties"];

 properties["MaxDeliveryCount"] = 5;

properties["RequiresDuplicateDetection"] = true;
 properties["DefaultMessageTimeToLive"]
= "PT2H";
 });

https://github.com/Azure/azure-service-bus-emulator-installer/blob/main/ServiceBus-Emulator/Config/Config.json
https://github.com/Azure/azure-service-bus-emulator-installer/blob/main/ServiceBus-Emulator/Config/Config.json
https://learn.microsoft.com/en-us/dotnet/api/system.text.json.nodes.jsonnode
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azureservicebusextensions.withconfigurationfile#aspire-hosting-azureservicebusextensions-withconfigurationfile(aspire-hosting-applicationmodel-iresourcebuilder((aspire-hosting-azure-azureservicebusemulatorresource))-system-string)
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azureservicebusextensions.withconfiguration#aspire-hosting-azureservicebusextensions-withconfiguration(aspire-hosting-applicationmodel-iresourcebuilder((aspire-hosting-azure-azureservicebusemulatorresource))-system-action((system-text-json-nodes-jsonnode)))
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azureservicebusextensions.withconfiguration#aspire-hosting-azureservicebusextensions-withconfiguration(aspire-hosting-applicationmodel-iresourcebuilder((aspire-hosting-azure-azureservicebusemulatorresource))-system-action((system-text-json-nodes-jsonnode)))

The preceding code retrieves the UserConfig node from the default configuration. It
then updates the first queue's properties to set the MaxDeliveryCount to 5 ,
RequiresDuplicateDetection to true , and DefaultMessageTimeToLive to 2 hours .

The Azure Service Bus hosting integration automatically adds a health check for the
Service Bus resource. The health check verifies that the Service Bus is running and that a
connection can be established to it.

The hosting integration relies on the 📦 AspNetCore.HealthChecks.AzureServiceBus
NuGet package.

To get started with the .NET Aspire Azure Service Bus client integration, install the 📦
Aspire.Azure.Messaging.ServiceBus NuGet package in the client-consuming project,
that is, the project for the application that uses the Service Bus client. The Service Bus
client integration registers a ServiceBusClient instance that you can use to interact with
Service Bus.

.NET CLI

In the Program.cs file of your client-consuming project, call the
AddAzureServiceBusClient extension method on any IHostApplicationBuilder to register
a ServiceBusClient for use via the dependency injection container. The method takes a
connection name parameter.

C#

 });

// After adding all resources, run the app...

Hosting integration health checks

Client integration

.NET CLI

dotnet add package Aspire.Azure.Messaging.ServiceBus

Add Service Bus client

https://www.nuget.org/packages/AspNetCore.HealthChecks.AzureServiceBus
https://www.nuget.org/packages/AspNetCore.HealthChecks.AzureServiceBus
https://www.nuget.org/packages/Aspire.Azure.Messaging.ServiceBus
https://www.nuget.org/packages/Aspire.Azure.Messaging.ServiceBus
https://www.nuget.org/packages/Aspire.Azure.Messaging.ServiceBus
https://learn.microsoft.com/en-us/dotnet/api/azure.messaging.servicebus.servicebusclient
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.aspireservicebusextensions.addazureservicebusclient
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.ihostapplicationbuilder
https://learn.microsoft.com/en-us/dotnet/api/azure.messaging.servicebus.servicebusclient

You can then retrieve the ServiceBusClient instance using dependency injection. For
example, to retrieve the connection from an example service:

C#

For more information on dependency injection, see .NET dependency injection.

There might be situations where you want to register multiple ServiceBusClient
instances with different connection names. To register keyed Service Bus clients, call the
AddKeyedAzureServiceBusClient method:

C#

Then you can retrieve the ServiceBusClient instances using dependency injection. For
example, to retrieve the connection from an example service:

builder.AddAzureServiceBusClient(connectionName: "messaging");

 Tip

The connectionName parameter must match the name used when adding the
Service Bus resource in the app host project. In other words, when you call
AddAzureServiceBus and provide a name of messaging that same name should be
used when calling AddAzureServiceBusClient . For more information, see Add Azure
Service Bus resource.

public class ExampleService(ServiceBusClient client)
{
 // Use client...
}

Add keyed Service Bus client

builder.AddKeyedAzureServiceBusClient(name: "mainBus");
builder.AddKeyedAzureServiceBusClient(name: "loggingBus");

） Important

When using keyed services, it's expected that your Service Bus resource configured
two named buses, one for the mainBus and one for the loggingBus .

https://learn.microsoft.com/en-us/dotnet/api/azure.messaging.servicebus.servicebusclient
https://learn.microsoft.com/en-us/dotnet/core/extensions/dependency-injection
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.aspireservicebusextensions.addkeyedazureservicebusclient

C#

For more information on keyed services, see .NET dependency injection: Keyed services.

The .NET Aspire Azure Service Bus integration provides multiple options to configure the
connection based on the requirements and conventions of your project.

When using a connection string from the ConnectionStrings configuration section, you
can provide the name of the connection string when calling the
AddAzureServiceBusClient method:

C#

Then the connection string is retrieved from the ConnectionStrings configuration
section:

JSON

For more information on how to format this connection string, see the ConnectionString
documentation.

public class ExampleService(
 [FromKeyedServices("mainBus")] ServiceBusClient mainBusClient,
 [FromKeyedServices("loggingBus")] ServiceBusClient loggingBusClient)
{
 // Use clients...
}

Configuration

Use a connection string

builder.AddAzureServiceBusClient("messaging");

{
 "ConnectionStrings": {
 "messaging":
"Endpoint=sb://{namespace}.servicebus.windows.net/;SharedAccessKeyName=
{keyName};SharedAccessKey={key};"
 }
}

Use configuration providers

https://learn.microsoft.com/en-us/dotnet/core/extensions/dependency-injection#keyed-services
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.aspireservicebusextensions.addazureservicebusclient

The .NET Aspire Azure Service Bus integration supports
Microsoft.Extensions.Configuration. It loads the AzureMessagingServiceBusSettings from
configuration by using the Aspire:Azure:Messaging:ServiceBus key. The following
snippet is an example of a appsettings.json file that configures some of the options:

JSON

For the complete Service Bus client integration JSON schema, see
Aspire.Azure.Messaging.ServiceBus/ConfigurationSchema.json .

Also you can pass the Action<AzureMessagingServiceBusSettings> configureSettings
delegate to set up some or all the options inline, for example to disable tracing from
code:

C#

You can also set up the Azure.Messaging.ServiceBus.ServiceBusClientOptions using the
optional Action<ServiceBusClientOptions> configureClientOptions parameter of the
AddAzureServiceBusClient method. For example to set the
ServiceBusClientOptions.Identifier user-agent header suffix for all requests issues by this
client:

C#

{
 "Aspire": {
 "Azure": {
 "Messaging": {
 "ServiceBus": {
 "ConnectionString":
"Endpoint=sb://{namespace}.servicebus.windows.net/;SharedAccessKeyName=
{keyName};SharedAccessKey={key};",
 "DisableTracing": false
 }
 }
 }
 }
}

Use inline delegates

builder.AddAzureServiceBusClient(
 "messaging",
 static settings => settings.DisableTracing = true);

https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration
https://learn.microsoft.com/en-us/dotnet/api/aspire.azure.messaging.servicebus.azuremessagingservicebussettings
https://github.com/dotnet/aspire/blob/v9.1.0/src/Components/Aspire.Azure.Messaging.ServiceBus/ConfigurationSchema.json
https://github.com/dotnet/aspire/blob/v9.1.0/src/Components/Aspire.Azure.Messaging.ServiceBus/ConfigurationSchema.json
https://learn.microsoft.com/en-us/dotnet/api/azure.messaging.servicebus.servicebusclientoptions
https://learn.microsoft.com/en-us/dotnet/api/azure.messaging.servicebus.servicebusclientoptions.identifier#azure-messaging-servicebus-servicebusclientoptions-identifier

By default, .NET Aspire integrations enable health checks for all services. For more
information, see .NET Aspire integrations overview.

The .NET Aspire Azure Service Bus integration:

Adds the health check when AzureMessagingServiceBusSettings.DisableTracing is
false , which attempts to connect to the Service Bus.
Integrates with the /health HTTP endpoint, which specifies all registered health
checks must pass for app to be considered ready to accept traffic.

.NET Aspire integrations automatically set up Logging, Tracing, and Metrics
configurations, which are sometimes known as the pillars of observability. For more
information about integration observability and telemetry, see .NET Aspire integrations
overview. Depending on the backing service, some integrations may only support some
of these features. For example, some integrations support logging and tracing, but not
metrics. Telemetry features can also be disabled using the techniques presented in the
Configuration section.

The .NET Aspire Azure Service Bus integration uses the following log categories:

Azure.Core

Azure.Identity

Azure-Messaging-ServiceBus

In addition to getting Azure Service Bus request diagnostics for failed requests, you can
configure latency thresholds to determine which successful Azure Service Bus request
diagnostics will be logged. The default values are 100 ms for point operations and 500
ms for non point operations.

C#

builder.AddAzureServiceBusClient(
 "messaging",
 configureClientOptions:
 clientOptions => clientOptions.Identifier = "myapp");

Client integration health checks

Observability and telemetry

Logging

https://learn.microsoft.com/en-us/dotnet/api/aspire.azure.messaging.servicebus.azuremessagingservicebussettings.disabletracing#aspire-azure-messaging-servicebus-azuremessagingservicebussettings-disabletracing

The .NET Aspire Azure Service Bus integration will emit the following tracing activities
using OpenTelemetry:

Message

ServiceBusSender.Send

ServiceBusSender.Schedule

ServiceBusSender.Cancel

ServiceBusReceiver.Receive

ServiceBusReceiver.ReceiveDeferred

ServiceBusReceiver.Peek

ServiceBusReceiver.Abandon

ServiceBusReceiver.Complete

ServiceBusReceiver.DeadLetter

ServiceBusReceiver.Defer

ServiceBusReceiver.RenewMessageLock

ServiceBusSessionReceiver.RenewSessionLock

ServiceBusSessionReceiver.GetSessionState

ServiceBusSessionReceiver.SetSessionState

ServiceBusProcessor.ProcessMessage

ServiceBusSessionProcessor.ProcessSessionMessage

ServiceBusRuleManager.CreateRule

ServiceBusRuleManager.DeleteRule

ServiceBusRuleManager.GetRules

builder.AddAzureServiceBusClient(
 "messaging",
 configureClientOptions:
 clientOptions => {
 clientOptions.ServiceBusClientTelemetryOptions = new()
 {
 ServiceBusThresholdOptions = new()
 {
 PointOperationLatencyThreshold =
TimeSpan.FromMilliseconds(50),
 NonPointOperationLatencyThreshold =
TimeSpan.FromMilliseconds(300)
 }
 };
 });

Tracing

Azure Service Bus tracing is currently in preview, so you must set the experimental
switch to ensure traces are emitted.

C#

For more information, see Azure Service Bus: Distributed tracing and correlation through
Service Bus messaging.

The .NET Aspire Azure Service Bus integration currently doesn't support metrics by
default due to limitations with the Azure SDK.

Azure Service Bus
.NET Aspire integrations overview
.NET Aspire Azure integrations overview
.NET Aspire GitHub repo

AppContext.SetSwitch("Azure.Experimental.EnableActivitySource", true);

Metrics

See also

https://learn.microsoft.com/en-us/azure/service-bus-messaging/service-bus-end-to-end-tracing
https://learn.microsoft.com/en-us/azure/service-bus-messaging/service-bus-end-to-end-tracing
https://azure.microsoft.com/services/service-bus
https://azure.microsoft.com/services/service-bus
https://github.com/dotnet/aspire
https://github.com/dotnet/aspire

.NET Aspire Azure Blob Storage
integration
Article • 12/11/2024

Includes: Hosting integration and Client integration

Azure Blob Storage is a service for storing large amounts of unstructured data. The
.NET Aspire Azure Blob Storage integration enables you to connect to existing Azure
Blob Storage instances or create new instances from .NET applications.

The .NET Aspire Azure Storage hosting integration models the various storage resources
as the following types:

AzureStorageResource: Represents an Azure Storage resource.
AzureStorageEmulatorResource: Represents an Azure Storage emulator resource
(Azurite).
AzureBlobStorageResource: Represents an Azure Blob storage resource.
AzureQueueStorageResource: Represents an Azure Queue storage resource.
AzureTableStorageResource: Represents an Azure Table storage resource.

To access these types and APIs for expressing them, add the 📦
Aspire.Hosting.Azure.Storage NuGet package in the app host project.

.NET CLI

For more information, see dotnet add package or Manage package dependencies in
.NET applications.

In your app host project, call AddAzureStorage to add and return an Azure Storage
resource builder.

Hosting integration

.NET CLI

dotnet add package Aspire.Hosting.Azure.Storage

Add Azure Storage resource

https://azure.microsoft.com/services/storage/blobs/
https://azure.microsoft.com/services/storage/blobs/
https://learn.microsoft.com/en-us/azure/storage/
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azure.azurestorageresource
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azure.azurestorageemulatorresource
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azure.azureblobstorageresource
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azure.azurequeuestorageresource
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azure.azuretablestorageresource
https://www.nuget.org/packages/Aspire.Hosting.Azure.Storage
https://www.nuget.org/packages/Aspire.Hosting.Azure.Storage
https://www.nuget.org/packages/Aspire.Hosting.Azure.Storage
https://learn.microsoft.com/en-us/dotnet/core/tools/dotnet-add-package
https://learn.microsoft.com/en-us/dotnet/core/tools/dependencies
https://learn.microsoft.com/en-us/dotnet/core/tools/dependencies
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azurestorageextensions.addazurestorage

C#

When you add an AzureStorageResource to the app host, it exposes other useful APIs to
add Azure Blob, Queue, and Table storage resources. In other words, you must add an
AzureStorageResource before adding any of the other storage resources.

If you're new to Bicep, it's a domain-specific language for defining Azure resources. With
.NET Aspire, you don't need to write Bicep by-hand, instead the provisioning APIs
generate Bicep for you. When you publish your app, the generated Bicep is output
alongside the manifest file. When you add an Azure Storage resource, the following
Bicep is generated:

Bicep

var builder = DistributedApplication.CreateBuilder(args);

var storage = builder.AddAzureStorage("storage");

// An Azure Storage resource is required to add any of the following:
//
// - Azure Blob storage resource.
// - Azure Queue storage resource.
// - Azure Table storage resource.

// After adding all resources, run the app...

） Important

When you call AddAzureStorage, it implicitly calls AddAzureProvisioning—which
adds support for generating Azure resources dynamically during app startup. The
app must configure the appropriate subscription and location. For more
information, see Local provisioning: Configuration.

Generated provisioning Bicep

@description('The location for the resource(s) to be deployed.')
param location string = resourceGroup().location

param principalType string

param principalId string

resource storage 'Microsoft.Storage/storageAccounts@2024-01-01' = {
 name: take('storage${uniqueString(resourceGroup().id)}', 24)
 kind: 'StorageV2'
 location: location

https://learn.microsoft.com/en-us/azure/azure-resource-manager/bicep/overview
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azurestorageextensions.addazurestorage
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azureprovisionerextensions.addazureprovisioning

 sku: {
 name: 'Standard_GRS'
 }
 properties: {
 accessTier: 'Hot'
 allowSharedKeyAccess: false
 minimumTlsVersion: 'TLS1_2'
 networkAcls: {
 defaultAction: 'Allow'
 }
 }
 tags: {
 'aspire-resource-name': 'storage'
 }
}

resource blobs 'Microsoft.Storage/storageAccounts/blobServices@2024-01-01' =
{
 name: 'default'
 parent: storage
}

resource storage_StorageBlobDataContributor
'Microsoft.Authorization/roleAssignments@2022-04-01' = {
 name: guid(storage.id, principalId,
subscriptionResourceId('Microsoft.Authorization/roleDefinitions', 'ba92f5b4-
2d11-453d-a403-e96b0029c9fe'))
 properties: {
 principalId: principalId
 roleDefinitionId:
subscriptionResourceId('Microsoft.Authorization/roleDefinitions', 'ba92f5b4-
2d11-453d-a403-e96b0029c9fe')
 principalType: principalType
 }
 scope: storage
}

resource storage_StorageTableDataContributor
'Microsoft.Authorization/roleAssignments@2022-04-01' = {
 name: guid(storage.id, principalId,
subscriptionResourceId('Microsoft.Authorization/roleDefinitions', '0a9a7e1f-
b9d0-4cc4-a60d-0319b160aaa3'))
 properties: {
 principalId: principalId
 roleDefinitionId:
subscriptionResourceId('Microsoft.Authorization/roleDefinitions', '0a9a7e1f-
b9d0-4cc4-a60d-0319b160aaa3')
 principalType: principalType
 }
 scope: storage
}

resource storage_StorageQueueDataContributor
'Microsoft.Authorization/roleAssignments@2022-04-01' = {
 name: guid(storage.id, principalId,

The preceding Bicep is a module that provisions an Azure Storage account with the
following defaults:

kind : The kind of storage account. The default is StorageV2 .
sku : The SKU of the storage account. The default is Standard_GRS .
properties : The properties of the storage account:

accessTier : The access tier of the storage account. The default is Hot .
allowSharedKeyAccess : A boolean value that indicates whether the storage
account permits requests to be authorized with the account access key. The
default is false .
minimumTlsVersion : The minimum supported TLS version for the storage
account. The default is TLS1_2 .
networkAcls : The network ACLs for the storage account. The default is {
defaultAction: 'Allow' } .

In addition to the storage account, it also provisions a blob container.

The following role assignments are added to the storage account to grant your
application access. See the built-in Azure role-based access control (Azure RBAC) roles
for more information:

Role / ID Description

Storage Blob Data Contributor
ba92f5b4-2d11-453d-a403-

e96b0029c9fe

Read, write, and delete Azure Storage containers and blobs.

subscriptionResourceId('Microsoft.Authorization/roleDefinitions', '974c5e8b-
45b9-4653-ba55-5f855dd0fb88'))
 properties: {
 principalId: principalId
 roleDefinitionId:
subscriptionResourceId('Microsoft.Authorization/roleDefinitions', '974c5e8b-
45b9-4653-ba55-5f855dd0fb88')
 principalType: principalType
 }
 scope: storage
}

output blobEndpoint string = storage.properties.primaryEndpoints.blob

output queueEndpoint string = storage.properties.primaryEndpoints.queue

output tableEndpoint string = storage.properties.primaryEndpoints.table

ﾉ Expand table

https://learn.microsoft.com/en-us/azure/role-based-access-control/built-in-roles#storage

Role / ID Description

Storage Table Data Contributor
0a9a7e1f-b9d0-4cc4-a60d-

0319b160aaa3

Read, write, and delete Azure Storage tables and entities.

Storage Queue Data Contributor
974c5e8b-45b9-4653-ba55-

5f855dd0fb88

Read, write, and delete Azure Storage queues and queue
messages.

The generated Bicep is a starting point and is influenced by changes to the provisioning
infrastructure in C#. Customizations to the Bicep file directly will be overwritten, so make
changes through the C# provisioning APIs to ensure they are reflected in the generated
files.

All .NET Aspire Azure resources are subclasses of the AzureProvisioningResource type.
This type enables the customization of the generated Bicep by providing a fluent API to
configure the Azure resources—using the ConfigureInfrastructure<T>
(IResourceBuilder<T>, Action<AzureResourceInfrastructure>) API. For example, you can
configure the kind , sku , properties , and more. The following example demonstrates
how to customize the Azure Storage resource:

C#

The preceding code:

Chains a call to the ConfigureInfrastructure API:
The infra parameter is an instance of the AzureResourceInfrastructure type.
The provisionable resources are retrieved by calling the
GetProvisionableResources() method.

Customize provisioning infrastructure

builder.AddAzureStorage("storage")
 .ConfigureInfrastructure(infra =>
 {
 var storageAccount = infra.GetProvisionableResources()
 .OfType<StorageAccount>()
 .Single();

 storageAccount.AccessTier = StorageAccountAccessTier.Cool;
 storageAccount.Sku = new StorageSku { Name =
StorageSkuName.PremiumZrs };
 storageAccount.Tags.Add("ExampleKey", "Example value");
 });

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azure.azureprovisioningresource
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azureprovisioningresourceextensions.configureinfrastructure#aspire-hosting-azureprovisioningresourceextensions-configureinfrastructure-1(aspire-hosting-applicationmodel-iresourcebuilder((-0))-system-action((aspire-hosting-azure-azureresourceinfrastructure)))
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azureprovisioningresourceextensions.configureinfrastructure#aspire-hosting-azureprovisioningresourceextensions-configureinfrastructure-1(aspire-hosting-applicationmodel-iresourcebuilder((-0))-system-action((aspire-hosting-azure-azureresourceinfrastructure)))
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azureprovisioningresourceextensions.configureinfrastructure
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azure.azureresourceinfrastructure
https://learn.microsoft.com/en-us/dotnet/api/azure.provisioning.infrastructure.getprovisionableresources#azure-provisioning-infrastructure-getprovisionableresources

The single StorageAccount is retrieved.
The StorageAccount.AccessTier is assigned to StorageAccountAccessTier.Cool.
The StorageAccount.Sku is assigned to a new StorageSku with a Name of
PremiumZrs.
A tag is added to the storage account with a key of ExampleKey and a value of
Example value .

There are many more configuration options available to customize the Azure Storage
resource. For more information, see Azure.Provisioning.Storage.

You might have an existing Azure Storage account that you want to connect to. Instead
of representing a new Azure Storage resource, you can add a connection string to the
app host. To add a connection to an existing Azure Storage account, call the
AddConnectionString method:

C#

The connection string is configured in the app host's configuration, typically under User
Secrets, under the ConnectionStrings section. The app host injects this connection
string as an environment variable into all dependent resources, for example:

JSON

Connect to an existing Azure Storage account

var builder = DistributedApplication.CreateBuilder(args);

var blobs = builder.AddConnectionString("blobs");

builder.AddProject<Projects.WebApplication>("web")
 .WithReference(blobs);

// After adding all resources, run the app...

７ Note

Connection strings are used to represent a wide range of connection information,
including database connections, message brokers, endpoint URIs, and other
services. In .NET Aspire nomenclature, the term "connection string" is used to
represent any kind of connection information.

{
 "ConnectionStrings": {

https://learn.microsoft.com/en-us/dotnet/api/azure.provisioning.storage.storageaccount
https://learn.microsoft.com/en-us/dotnet/api/azure.provisioning.storage.storageaccount.accesstier#azure-provisioning-storage-storageaccount-accesstier
https://learn.microsoft.com/en-us/dotnet/api/azure.provisioning.storage.storageaccountaccesstier#azure-provisioning-storage-storageaccountaccesstier-cool
https://learn.microsoft.com/en-us/dotnet/api/azure.provisioning.storage.storageaccount.sku#azure-provisioning-storage-storageaccount-sku
https://learn.microsoft.com/en-us/dotnet/api/azure.provisioning.storage.storagesku
https://learn.microsoft.com/en-us/dotnet/api/azure.provisioning.storage.storageskuname#azure-provisioning-storage-storageskuname-premiumzrs
https://learn.microsoft.com/en-us/dotnet/api/azure.provisioning.storage
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.parameterresourcebuilderextensions.addconnectionstring
https://learn.microsoft.com/en-us/aspnet/core/security/app-secrets
https://learn.microsoft.com/en-us/aspnet/core/security/app-secrets

The dependent resource can access the injected connection string by calling the
GetConnectionString method, and passing the connection name as the parameter, in
this case "blobs" . The GetConnectionString API is shorthand for
IConfiguration.GetSection("ConnectionStrings")[name] .

To add an Azure Storage emulator resource, chain a call on an
IResourceBuilder<AzureStorageResource> to the RunAsEmulator API:

C#

When you call RunAsEmulator , it configures your storage resources to run locally using
an emulator. The emulator in this case is Azurite. The Azurite open-source emulator
provides a free local environment for testing your Azure Blob, Queue Storage, and Table
Storage apps and it's a perfect companion to the .NET Aspire Azure hosting integration.
Azurite isn't installed, instead, it's accessible to .NET Aspire as a container. When you
add a container to the app host, as shown in the preceding example with the
mcr.microsoft.com/azure-storage/azurite image, it creates and starts the container
when the app host starts. For more information, see Container resource lifecycle.

There are various configurations available to container resources, for example, you can
configure the container's ports, environment variables, it's lifetime, and more.

By default, the Azurite container when configured by .NET Aspire, exposes the following
endpoints:

 "blobs": "https://{account_name}.blob.core.windows.net/"
 }
}

Add Azure Storage emulator resource

var builder = DistributedApplication.CreateBuilder(args);

var storage = builder.AddAzureStorage("storage")
 .RunAsEmulator();

// After adding all resources, run the app...

Configure Azurite container

Configure Azurite container ports

https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.configurationextensions.getconnectionstring
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azurestorageextensions.runasemulator
https://learn.microsoft.com/en-us/azure/storage/common/storage-use-azurite

Endpoint Container port Host port

blob 10000 dynamic

queue 10001 dynamic

table 10002 dynamic

The port that they're listening on is dynamic by default. When the container starts, the
ports are mapped to a random port on the host machine. To configure the endpoint
ports, chain calls on the container resource builder provided by the RunAsEmulator
method as shown in the following example:

C#

The preceding code configures the Azurite container's existing blob , queue , and table
endpoints to listen on ports 27000 , 27001 , and 27002 , respectively. The Azurite
container's ports are mapped to the host ports as shown in the following table:

Endpoint name Port mapping (container:host)

blob 10000:27000

queue 10001:27001

table 10002:27002

ﾉ Expand table

var builder = DistributedApplication.CreateBuilder(args);

var storage = builder.AddAzureStorage("storage").RunAsEmulator(
 azurite =>
 {
 azurite.WithBlobPort(27000)
 .WithQueuePort(27001)
 .WithTablePort(27002);
 });

// After adding all resources, run the app...

ﾉ Expand table

Configure Azurite container with persistent lifetime

To configure the Azurite container with a persistent lifetime, call the WithLifetime
method on the Azurite container resource and pass ContainerLifetime.Persistent:

C#

For more information, see Container resource lifetime.

To add a data volume to the Azure Storage emulator resource, call the WithDataVolume
method on the Azure Storage emulator resource:

C#

The data volume is used to persist the Azurite data outside the lifecycle of its container.
The data volume is mounted at the /data path in the Azurite container and when a
name parameter isn't provided, the name is formatted as .azurite/{resource name} . For
more information on data volumes and details on why they're preferred over bind
mounts, see Docker docs: Volumes .

To add a data bind mount to the Azure Storage emulator resource, call the
WithDataBindMount method:

C#

var builder = DistributedApplication.CreateBuilder(args);

var storage = builder.AddAzureStorage("storage").RunAsEmulator(
 azurite =>
 {
 azurite.WithLifetime(ContainerLifetime.Persistent);
 });

// After adding all resources, run the app...

Configure Azurite container with data volume

var builder = DistributedApplication.CreateBuilder(args);

var storage = builder.AddAzureStorage("storage").RunAsEmulator(
 azurite =>
 {
 azurite.WithDataVolume();
 });

// After adding all resources, run the app...

Configure Azurite container with data bind mount

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.containerresourcebuilderextensions.withlifetime
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.containerlifetime#aspire-hosting-applicationmodel-containerlifetime-persistent
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azurestorageextensions.withdatavolume
https://docs.docker.com/engine/storage/volumes
https://docs.docker.com/engine/storage/volumes
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azurestorageextensions.withdatabindmount

Data bind mounts rely on the host machine's filesystem to persist the Azurite data
across container restarts. The data bind mount is mounted at the ../Azurite/Data path
on the host machine relative to the app host directory
(IDistributedApplicationBuilder.AppHostDirectory) in the Azurite container. For more
information on data bind mounts, see Docker docs: Bind mounts .

When the .NET Aspire app host runs, the storage resources can be accessed by external
tools, such as the Azure Storage Explorer . If your storage resource is running locally
using Azurite, it will automatically be picked up by the Azure Storage Explorer.

To connect to the storage resource from Azure Storage Explorer, follow these steps:

1. Run the .NET Aspire app host.

2. Open the Azure Storage Explorer.

var builder = DistributedApplication.CreateBuilder(args);

var storage = builder.AddAzureStorage("storage").RunAsEmulator(
 azurite =>
 {
 azurite.WithDataBindMount("../Azurite/Data");
 });

// After adding all resources, run the app...

） Important

Data bind mounts have limited functionality compared to volumes , which
offer better performance, portability, and security, making them more suitable for
production environments. However, bind mounts allow direct access and
modification of files on the host system, ideal for development and testing where
real-time changes are needed.

Connect to storage resources

７ Note

The Azure Storage Explorer discovers Azurite storage resources assuming the
default ports are used. If you've configured the Azurite container to use different
ports, you'll need to configure the Azure Storage Explorer to connect to the correct
ports.

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.idistributedapplicationbuilder.apphostdirectory#aspire-hosting-idistributedapplicationbuilder-apphostdirectory
https://docs.docker.com/engine/storage/bind-mounts
https://docs.docker.com/engine/storage/bind-mounts
https://azure.microsoft.com/features/storage-explorer/
https://azure.microsoft.com/features/storage-explorer/
https://docs.docker.com/engine/storage/bind-mounts/
https://docs.docker.com/engine/storage/bind-mounts/
https://docs.docker.com/engine/storage/volumes/
https://docs.docker.com/engine/storage/volumes/

3. View the Explorer pane.

4. Select the Refresh all link to refresh the list of storage accounts.

5. Expand the Emulator & Attached node.

6. Expand the Storage Accounts node.

7. You should see a storage account with your resource's name as a prefix:

You're free to explore the storage account and its contents using the Azure Storage
Explorer. For more information on using the Azure Storage Explorer, see Get started with
Storage Explorer.

In your app host project, register the Azure Blob Storage integration by chaining a call
to AddBlobs on the IResourceBuilder<IAzureStorageResource> instance returned by
AddAzureStorage. The following example demonstrates how to add an Azure Blob
Storage resource named storage and a blob container named blobs :

C#



Add Azure Blob Storage resource

var builder = DistributedApplication.CreateBuilder(args);

var blobs = builder.AddAzureStorage("storage")
 .RunAsEmulator()
 .AddBlobs("blobs");

https://learn.microsoft.com/en-us/azure/storage/storage-explorer/vs-azure-tools-storage-manage-with-storage-explorer
https://learn.microsoft.com/en-us/azure/storage/storage-explorer/vs-azure-tools-storage-manage-with-storage-explorer
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azurestorageextensions.addblobs
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azurestorageextensions.addazurestorage
https://learn.microsoft.com/en-us/dotnet/aspire/docs/storage/media/azure-storage-explorer.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/storage/media/azure-storage-explorer.png#lightbox

The preceding code:

Adds an Azure Storage resource named storage .
Chains a call to RunAsEmulator to configure the storage resource to run locally
using an emulator. The emulator in this case is Azurite.
Adds a blob container named blobs to the storage resource.
Adds the blobs resource to the ExampleProject and waits for it to be ready before
starting the project.

The Azure Storage hosting integration automatically adds a health check for the storage
resource. It's added only when running as an emulator, and verifies the Azurite container
is running and that a connection can be established to it. The hosting integration relies
on the 📦 AspNetCore.HealthChecks.Azure.Storage.Blobs NuGet package.

To get started with the .NET Aspire Azure Blob Storage client integration, install the 📦
Aspire.Azure.Storage.Blobs NuGet package in the client-consuming project, that is,
the project for the application that uses the Azure Blob Storage client. The Azure Blob
Storage client integration registers a BlobServiceClient instance that you can use to
interact with Azure Blob Storage.

.NET CLI

In the Program.cs file of your client-consuming project, call the AddAzureBlobClient
extension method on any IHostApplicationBuilder to register a BlobServiceClient for

builder.AddProject<Projects.ExampleProject>()
 .WithReference(blobs)
 .WaitFor(blobs);

// After adding all resources, run the app...

Hosting integration health checks

Client integration

.NET CLI

dotnet add package Aspire.Azure.Storage.Blobs

Add Azure Blob Storage client

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azurestorageextensions.runasemulator
https://learn.microsoft.com/en-us/azure/storage/common/storage-use-azurite
https://www.nuget.org/packages/AspNetCore.HealthChecks.Azure.Storage.Blobs
https://www.nuget.org/packages/AspNetCore.HealthChecks.Azure.Storage.Blobs
https://www.nuget.org/packages/Aspire.Azure.Storage.Blobs
https://www.nuget.org/packages/Aspire.Azure.Storage.Blobs
https://www.nuget.org/packages/Aspire.Azure.Storage.Blobs
https://learn.microsoft.com/en-us/dotnet/api/azure.storage.blobs.blobserviceclient
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.aspireblobstorageextensions.addazureblobclient
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.ihostapplicationbuilder

use via the dependency injection container. The method takes a connection name
parameter.

C#

You can then retrieve the BlobServiceClient instance using dependency injection. For
example, to retrieve the client from a service:

C#

The .NET Aspire Azure Blob Storage integration provides multiple options to configure
the BlobServiceClient based on the requirements and conventions of your project.

When using a connection string from the ConnectionStrings configuration section, you
can provide the name of the connection string when calling AddAzureBlobClient:

C#

Then the connection string is retrieved from the ConnectionStrings configuration
section, and two connection formats are supported:

The recommended approach is to use a ServiceUri , which works with the
AzureStorageBlobsSettings.Credential property to establish a connection. If no
credential is configured, the Azure.Identity.DefaultAzureCredential is used.

JSON

builder.AddAzureBlobClient("blobs");

public class ExampleService(BlobServiceClient client)
{
 // Use client...
}

Configuration

Use a connection string

builder.AddAzureBlobClient("blobs");

Service URI

https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.aspireblobstorageextensions.addazureblobclient
https://learn.microsoft.com/en-us/dotnet/api/aspire.azure.storage.blobs.azurestorageblobssettings.credential#aspire-azure-storage-blobs-azurestorageblobssettings-credential
https://learn.microsoft.com/en-us/dotnet/api/azure.identity.defaultazurecredential

Alternatively, an Azure Storage connection string can be used.

JSON

For more information, see Configure Azure Storage connection strings.

The .NET Aspire Azure Blob Storage integration supports
Microsoft.Extensions.Configuration. It loads the AzureStorageBlobsSettings and
BlobClientOptions from configuration by using the Aspire:Azure:Storage:Blobs key. The
following snippet is an example of a appsettings.json file that configures some of the
options:

JSON

{
 "ConnectionStrings": {
 "blobs": "https://{account_name}.blob.core.windows.net/"
 }
}

Connection string

{
 "ConnectionStrings": {
 "blobs": "AccountName=myaccount;AccountKey=myaccountkey"
 }
}

Use configuration providers

{
 "Aspire": {
 "Azure": {
 "Storage": {
 "Blobs": {
 "DisableHealthChecks": true,
 "DisableTracing": false,
 "ClientOptions": {
 "Diagnostics": {
 "ApplicationId": "myapp"
 }
 }
 }
 }
 }

https://learn.microsoft.com/en-us/azure/storage/common/storage-configure-connection-string
https://learn.microsoft.com/en-us/azure/storage/common/storage-configure-connection-string
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration
https://learn.microsoft.com/en-us/dotnet/api/aspire.azure.storage.blobs.azurestorageblobssettings
https://learn.microsoft.com/en-us/dotnet/api/azure.storage.blobs.blobclientoptions

For the complete Azure Blob Storage client integration JSON schema, see
Aspire.Azure.Storage.Blobs/ConfigurationSchema.json .

You can also pass the Action<AzureStorageBlobsSettings> configureSettings delegate
to set up some or all the options inline, for example to configure health checks:

C#

You can also set up the BlobClientOptions using the
Action<IAzureClientBuilder<BlobServiceClient, BlobClientOptions>>

configureClientBuilder delegate, the second parameter of the AddAzureBlobClient
method. For example, to set the first part of user-agent headers for all requests issues
by this client:

C#

By default, .NET Aspire integrations enable health checks for all services. For more
information, see .NET Aspire integrations overview.

The .NET Aspire Azure Blob Storage integration:

Adds the health check when AzureStorageBlobsSettings.DisableHealthChecks is
false , which attempts to connect to the Azure Blob Storage.
Integrates with the /health HTTP endpoint, which specifies all registered health
checks must pass for app to be considered ready to accept traffic.

 }
}

Use inline delegates

builder.AddAzureBlobClient(
 "blobs",
 settings => settings.DisableHealthChecks = true);

builder.AddAzureBlobClient(
 "blobs",
 configureClientBuilder: clientBuilder =>
 clientBuilder.ConfigureOptions(
 options => options.Diagnostics.ApplicationId = "myapp"));

Client integration health checks

https://github.com/dotnet/aspire/blob/v9.1.0/src/Components/Aspire.Azure.Storage.Blobs/ConfigurationSchema.json
https://github.com/dotnet/aspire/blob/v9.1.0/src/Components/Aspire.Azure.Storage.Blobs/ConfigurationSchema.json
https://learn.microsoft.com/en-us/dotnet/api/azure.storage.blobs.blobclientoptions
https://learn.microsoft.com/en-us/dotnet/api/aspire.azure.storage.blobs.azurestorageblobssettings.disablehealthchecks#aspire-azure-storage-blobs-azurestorageblobssettings-disablehealthchecks

.NET Aspire integrations automatically set up Logging, Tracing, and Metrics
configurations, which are sometimes known as the pillars of observability. For more
information about integration observability and telemetry, see .NET Aspire integrations
overview. Depending on the backing service, some integrations may only support some
of these features. For example, some integrations support logging and tracing, but not
metrics. Telemetry features can also be disabled using the techniques presented in the
Configuration section.

The .NET Aspire Azure Blob Storage integration uses the following log categories:

Azure.Core

Azure.Identity

The .NET Aspire Azure Blob Storage integration emits the following tracing activities
using OpenTelemetry:

Azure.Storage.Blobs.BlobContainerClient

The .NET Aspire Azure Blob Storage integration currently doesn't support metrics by
default due to limitations with the Azure SDK.

Azure Blob Storage docs
.NET Aspire integrations
.NET Aspire GitHub repo

Observability and telemetry

Logging

Tracing

Metrics

See also

https://learn.microsoft.com/en-us/azure/storage/blobs/
https://github.com/dotnet/aspire
https://github.com/dotnet/aspire

.NET Aspire Azure Queue Storage
integration
Article • 12/11/2024

Includes: Hosting integration and Client integration

Azure Queue Storage is a service for storing large numbers of messages that can be
accessed from anywhere in the world via authenticated calls. The .NET Aspire Azure
Queue Storage integration enables you to connect to existing Azure Queue Storage
instances or create new instances from .NET applications.

The .NET Aspire Azure Storage hosting integration models the various storage resources
as the following types:

AzureStorageResource: Represents an Azure Storage resource.
AzureStorageEmulatorResource: Represents an Azure Storage emulator resource
(Azurite).
AzureBlobStorageResource: Represents an Azure Blob storage resource.
AzureQueueStorageResource: Represents an Azure Queue storage resource.
AzureTableStorageResource: Represents an Azure Table storage resource.

To access these types and APIs for expressing them, add the 📦
Aspire.Hosting.Azure.Storage NuGet package in the app host project.

.NET CLI

For more information, see dotnet add package or Manage package dependencies in
.NET applications.

In your app host project, call AddAzureStorage to add and return an Azure Storage
resource builder.

Hosting integration

.NET CLI

dotnet add package Aspire.Hosting.Azure.Storage

Add Azure Storage resource

https://azure.microsoft.com/services/storage/queues/
https://azure.microsoft.com/services/storage/queues/
https://learn.microsoft.com/en-us/azure/storage/
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azure.azurestorageresource
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azure.azurestorageemulatorresource
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azure.azureblobstorageresource
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azure.azurequeuestorageresource
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azure.azuretablestorageresource
https://www.nuget.org/packages/Aspire.Hosting.Azure.Storage
https://www.nuget.org/packages/Aspire.Hosting.Azure.Storage
https://www.nuget.org/packages/Aspire.Hosting.Azure.Storage
https://learn.microsoft.com/en-us/dotnet/core/tools/dotnet-add-package
https://learn.microsoft.com/en-us/dotnet/core/tools/dependencies
https://learn.microsoft.com/en-us/dotnet/core/tools/dependencies
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azurestorageextensions.addazurestorage

C#

When you add an AzureStorageResource to the app host, it exposes other useful APIs to
add Azure Blob, Queue, and Table storage resources. In other words, you must add an
AzureStorageResource before adding any of the other storage resources.

If you're new to Bicep, it's a domain-specific language for defining Azure resources. With
.NET Aspire, you don't need to write Bicep by-hand, instead the provisioning APIs
generate Bicep for you. When you publish your app, the generated Bicep is output
alongside the manifest file. When you add an Azure Storage resource, the following
Bicep is generated:

Bicep

var builder = DistributedApplication.CreateBuilder(args);

var storage = builder.AddAzureStorage("storage");

// An Azure Storage resource is required to add any of the following:
//
// - Azure Blob storage resource.
// - Azure Queue storage resource.
// - Azure Table storage resource.

// After adding all resources, run the app...

） Important

When you call AddAzureStorage, it implicitly calls AddAzureProvisioning—which
adds support for generating Azure resources dynamically during app startup. The
app must configure the appropriate subscription and location. For more
information, see Local provisioning: Configuration.

Generated provisioning Bicep

@description('The location for the resource(s) to be deployed.')
param location string = resourceGroup().location

param principalType string

param principalId string

resource storage 'Microsoft.Storage/storageAccounts@2024-01-01' = {
 name: take('storage${uniqueString(resourceGroup().id)}', 24)
 kind: 'StorageV2'
 location: location

https://learn.microsoft.com/en-us/azure/azure-resource-manager/bicep/overview
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azurestorageextensions.addazurestorage
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azureprovisionerextensions.addazureprovisioning

 sku: {
 name: 'Standard_GRS'
 }
 properties: {
 accessTier: 'Hot'
 allowSharedKeyAccess: false
 minimumTlsVersion: 'TLS1_2'
 networkAcls: {
 defaultAction: 'Allow'
 }
 }
 tags: {
 'aspire-resource-name': 'storage'
 }
}

resource blobs 'Microsoft.Storage/storageAccounts/blobServices@2024-01-01' =
{
 name: 'default'
 parent: storage
}

resource storage_StorageBlobDataContributor
'Microsoft.Authorization/roleAssignments@2022-04-01' = {
 name: guid(storage.id, principalId,
subscriptionResourceId('Microsoft.Authorization/roleDefinitions', 'ba92f5b4-
2d11-453d-a403-e96b0029c9fe'))
 properties: {
 principalId: principalId
 roleDefinitionId:
subscriptionResourceId('Microsoft.Authorization/roleDefinitions', 'ba92f5b4-
2d11-453d-a403-e96b0029c9fe')
 principalType: principalType
 }
 scope: storage
}

resource storage_StorageTableDataContributor
'Microsoft.Authorization/roleAssignments@2022-04-01' = {
 name: guid(storage.id, principalId,
subscriptionResourceId('Microsoft.Authorization/roleDefinitions', '0a9a7e1f-
b9d0-4cc4-a60d-0319b160aaa3'))
 properties: {
 principalId: principalId
 roleDefinitionId:
subscriptionResourceId('Microsoft.Authorization/roleDefinitions', '0a9a7e1f-
b9d0-4cc4-a60d-0319b160aaa3')
 principalType: principalType
 }
 scope: storage
}

resource storage_StorageQueueDataContributor
'Microsoft.Authorization/roleAssignments@2022-04-01' = {
 name: guid(storage.id, principalId,

The preceding Bicep is a module that provisions an Azure Storage account with the
following defaults:

kind : The kind of storage account. The default is StorageV2 .
sku : The SKU of the storage account. The default is Standard_GRS .
properties : The properties of the storage account:

accessTier : The access tier of the storage account. The default is Hot .
allowSharedKeyAccess : A boolean value that indicates whether the storage
account permits requests to be authorized with the account access key. The
default is false .
minimumTlsVersion : The minimum supported TLS version for the storage
account. The default is TLS1_2 .
networkAcls : The network ACLs for the storage account. The default is {
defaultAction: 'Allow' } .

In addition to the storage account, it also provisions a blob container.

The following role assignments are added to the storage account to grant your
application access. See the built-in Azure role-based access control (Azure RBAC) roles
for more information:

Role / ID Description

Storage Blob Data Contributor
ba92f5b4-2d11-453d-a403-

e96b0029c9fe

Read, write, and delete Azure Storage containers and blobs.

subscriptionResourceId('Microsoft.Authorization/roleDefinitions', '974c5e8b-
45b9-4653-ba55-5f855dd0fb88'))
 properties: {
 principalId: principalId
 roleDefinitionId:
subscriptionResourceId('Microsoft.Authorization/roleDefinitions', '974c5e8b-
45b9-4653-ba55-5f855dd0fb88')
 principalType: principalType
 }
 scope: storage
}

output blobEndpoint string = storage.properties.primaryEndpoints.blob

output queueEndpoint string = storage.properties.primaryEndpoints.queue

output tableEndpoint string = storage.properties.primaryEndpoints.table

ﾉ Expand table

https://learn.microsoft.com/en-us/azure/role-based-access-control/built-in-roles#storage

Role / ID Description

Storage Table Data Contributor
0a9a7e1f-b9d0-4cc4-a60d-

0319b160aaa3

Read, write, and delete Azure Storage tables and entities.

Storage Queue Data Contributor
974c5e8b-45b9-4653-ba55-

5f855dd0fb88

Read, write, and delete Azure Storage queues and queue
messages.

The generated Bicep is a starting point and is influenced by changes to the provisioning
infrastructure in C#. Customizations to the Bicep file directly will be overwritten, so make
changes through the C# provisioning APIs to ensure they are reflected in the generated
files.

All .NET Aspire Azure resources are subclasses of the AzureProvisioningResource type.
This type enables the customization of the generated Bicep by providing a fluent API to
configure the Azure resources—using the ConfigureInfrastructure<T>
(IResourceBuilder<T>, Action<AzureResourceInfrastructure>) API. For example, you can
configure the kind , sku , properties , and more. The following example demonstrates
how to customize the Azure Storage resource:

C#

The preceding code:

Chains a call to the ConfigureInfrastructure API:
The infra parameter is an instance of the AzureResourceInfrastructure type.
The provisionable resources are retrieved by calling the
GetProvisionableResources() method.

Customize provisioning infrastructure

builder.AddAzureStorage("storage")
 .ConfigureInfrastructure(infra =>
 {
 var storageAccount = infra.GetProvisionableResources()
 .OfType<StorageAccount>()
 .Single();

 storageAccount.AccessTier = StorageAccountAccessTier.Cool;
 storageAccount.Sku = new StorageSku { Name =
StorageSkuName.PremiumZrs };
 storageAccount.Tags.Add("ExampleKey", "Example value");
 });

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azure.azureprovisioningresource
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azureprovisioningresourceextensions.configureinfrastructure#aspire-hosting-azureprovisioningresourceextensions-configureinfrastructure-1(aspire-hosting-applicationmodel-iresourcebuilder((-0))-system-action((aspire-hosting-azure-azureresourceinfrastructure)))
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azureprovisioningresourceextensions.configureinfrastructure#aspire-hosting-azureprovisioningresourceextensions-configureinfrastructure-1(aspire-hosting-applicationmodel-iresourcebuilder((-0))-system-action((aspire-hosting-azure-azureresourceinfrastructure)))
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azureprovisioningresourceextensions.configureinfrastructure
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azure.azureresourceinfrastructure
https://learn.microsoft.com/en-us/dotnet/api/azure.provisioning.infrastructure.getprovisionableresources#azure-provisioning-infrastructure-getprovisionableresources

The single StorageAccount is retrieved.
The StorageAccount.AccessTier is assigned to StorageAccountAccessTier.Cool.
The StorageAccount.Sku is assigned to a new StorageSku with a Name of
PremiumZrs.
A tag is added to the storage account with a key of ExampleKey and a value of
Example value .

There are many more configuration options available to customize the Azure Storage
resource. For more information, see Azure.Provisioning.Storage.

You might have an existing Azure Storage account that you want to connect to. Instead
of representing a new Azure Storage resource, you can add a connection string to the
app host. To add a connection to an existing Azure Storage account, call the
AddConnectionString method:

C#

The connection string is configured in the app host's configuration, typically under User
Secrets, under the ConnectionStrings section. The app host injects this connection
string as an environment variable into all dependent resources, for example:

JSON

Connect to an existing Azure Storage account

var builder = DistributedApplication.CreateBuilder(args);

var blobs = builder.AddConnectionString("blobs");

builder.AddProject<Projects.WebApplication>("web")
 .WithReference(blobs);

// After adding all resources, run the app...

７ Note

Connection strings are used to represent a wide range of connection information,
including database connections, message brokers, endpoint URIs, and other
services. In .NET Aspire nomenclature, the term "connection string" is used to
represent any kind of connection information.

{
 "ConnectionStrings": {

https://learn.microsoft.com/en-us/dotnet/api/azure.provisioning.storage.storageaccount
https://learn.microsoft.com/en-us/dotnet/api/azure.provisioning.storage.storageaccount.accesstier#azure-provisioning-storage-storageaccount-accesstier
https://learn.microsoft.com/en-us/dotnet/api/azure.provisioning.storage.storageaccountaccesstier#azure-provisioning-storage-storageaccountaccesstier-cool
https://learn.microsoft.com/en-us/dotnet/api/azure.provisioning.storage.storageaccount.sku#azure-provisioning-storage-storageaccount-sku
https://learn.microsoft.com/en-us/dotnet/api/azure.provisioning.storage.storagesku
https://learn.microsoft.com/en-us/dotnet/api/azure.provisioning.storage.storageskuname#azure-provisioning-storage-storageskuname-premiumzrs
https://learn.microsoft.com/en-us/dotnet/api/azure.provisioning.storage
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.parameterresourcebuilderextensions.addconnectionstring
https://learn.microsoft.com/en-us/aspnet/core/security/app-secrets
https://learn.microsoft.com/en-us/aspnet/core/security/app-secrets

The dependent resource can access the injected connection string by calling the
GetConnectionString method, and passing the connection name as the parameter, in
this case "blobs" . The GetConnectionString API is shorthand for
IConfiguration.GetSection("ConnectionStrings")[name] .

To add an Azure Storage emulator resource, chain a call on an
IResourceBuilder<AzureStorageResource> to the RunAsEmulator API:

C#

When you call RunAsEmulator , it configures your storage resources to run locally using
an emulator. The emulator in this case is Azurite. The Azurite open-source emulator
provides a free local environment for testing your Azure Blob, Queue Storage, and Table
Storage apps and it's a perfect companion to the .NET Aspire Azure hosting integration.
Azurite isn't installed, instead, it's accessible to .NET Aspire as a container. When you
add a container to the app host, as shown in the preceding example with the
mcr.microsoft.com/azure-storage/azurite image, it creates and starts the container
when the app host starts. For more information, see Container resource lifecycle.

There are various configurations available to container resources, for example, you can
configure the container's ports, environment variables, it's lifetime, and more.

By default, the Azurite container when configured by .NET Aspire, exposes the following
endpoints:

 "blobs": "https://{account_name}.blob.core.windows.net/"
 }
}

Add Azure Storage emulator resource

var builder = DistributedApplication.CreateBuilder(args);

var storage = builder.AddAzureStorage("storage")
 .RunAsEmulator();

// After adding all resources, run the app...

Configure Azurite container

Configure Azurite container ports

https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.configurationextensions.getconnectionstring
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azurestorageextensions.runasemulator
https://learn.microsoft.com/en-us/azure/storage/common/storage-use-azurite

Endpoint Container port Host port

blob 10000 dynamic

queue 10001 dynamic

table 10002 dynamic

The port that they're listening on is dynamic by default. When the container starts, the
ports are mapped to a random port on the host machine. To configure the endpoint
ports, chain calls on the container resource builder provided by the RunAsEmulator
method as shown in the following example:

C#

The preceding code configures the Azurite container's existing blob , queue , and table
endpoints to listen on ports 27000 , 27001 , and 27002 , respectively. The Azurite
container's ports are mapped to the host ports as shown in the following table:

Endpoint name Port mapping (container:host)

blob 10000:27000

queue 10001:27001

table 10002:27002

ﾉ Expand table

var builder = DistributedApplication.CreateBuilder(args);

var storage = builder.AddAzureStorage("storage").RunAsEmulator(
 azurite =>
 {
 azurite.WithBlobPort(27000)
 .WithQueuePort(27001)
 .WithTablePort(27002);
 });

// After adding all resources, run the app...

ﾉ Expand table

Configure Azurite container with persistent lifetime

To configure the Azurite container with a persistent lifetime, call the WithLifetime
method on the Azurite container resource and pass ContainerLifetime.Persistent:

C#

For more information, see Container resource lifetime.

To add a data volume to the Azure Storage emulator resource, call the WithDataVolume
method on the Azure Storage emulator resource:

C#

The data volume is used to persist the Azurite data outside the lifecycle of its container.
The data volume is mounted at the /data path in the Azurite container and when a
name parameter isn't provided, the name is formatted as .azurite/{resource name} . For
more information on data volumes and details on why they're preferred over bind
mounts, see Docker docs: Volumes .

To add a data bind mount to the Azure Storage emulator resource, call the
WithDataBindMount method:

C#

var builder = DistributedApplication.CreateBuilder(args);

var storage = builder.AddAzureStorage("storage").RunAsEmulator(
 azurite =>
 {
 azurite.WithLifetime(ContainerLifetime.Persistent);
 });

// After adding all resources, run the app...

Configure Azurite container with data volume

var builder = DistributedApplication.CreateBuilder(args);

var storage = builder.AddAzureStorage("storage").RunAsEmulator(
 azurite =>
 {
 azurite.WithDataVolume();
 });

// After adding all resources, run the app...

Configure Azurite container with data bind mount

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.containerresourcebuilderextensions.withlifetime
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.containerlifetime#aspire-hosting-applicationmodel-containerlifetime-persistent
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azurestorageextensions.withdatavolume
https://docs.docker.com/engine/storage/volumes
https://docs.docker.com/engine/storage/volumes
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azurestorageextensions.withdatabindmount

Data bind mounts rely on the host machine's filesystem to persist the Azurite data
across container restarts. The data bind mount is mounted at the ../Azurite/Data path
on the host machine relative to the app host directory
(IDistributedApplicationBuilder.AppHostDirectory) in the Azurite container. For more
information on data bind mounts, see Docker docs: Bind mounts .

When the .NET Aspire app host runs, the storage resources can be accessed by external
tools, such as the Azure Storage Explorer . If your storage resource is running locally
using Azurite, it will automatically be picked up by the Azure Storage Explorer.

To connect to the storage resource from Azure Storage Explorer, follow these steps:

1. Run the .NET Aspire app host.

2. Open the Azure Storage Explorer.

var builder = DistributedApplication.CreateBuilder(args);

var storage = builder.AddAzureStorage("storage").RunAsEmulator(
 azurite =>
 {
 azurite.WithDataBindMount("../Azurite/Data");
 });

// After adding all resources, run the app...

） Important

Data bind mounts have limited functionality compared to volumes , which
offer better performance, portability, and security, making them more suitable for
production environments. However, bind mounts allow direct access and
modification of files on the host system, ideal for development and testing where
real-time changes are needed.

Connect to storage resources

７ Note

The Azure Storage Explorer discovers Azurite storage resources assuming the
default ports are used. If you've configured the Azurite container to use different
ports, you'll need to configure the Azure Storage Explorer to connect to the correct
ports.

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.idistributedapplicationbuilder.apphostdirectory#aspire-hosting-idistributedapplicationbuilder-apphostdirectory
https://docs.docker.com/engine/storage/bind-mounts
https://docs.docker.com/engine/storage/bind-mounts
https://azure.microsoft.com/features/storage-explorer/
https://azure.microsoft.com/features/storage-explorer/
https://docs.docker.com/engine/storage/bind-mounts/
https://docs.docker.com/engine/storage/bind-mounts/
https://docs.docker.com/engine/storage/volumes/
https://docs.docker.com/engine/storage/volumes/

3. View the Explorer pane.

4. Select the Refresh all link to refresh the list of storage accounts.

5. Expand the Emulator & Attached node.

6. Expand the Storage Accounts node.

7. You should see a storage account with your resource's name as a prefix:

You're free to explore the storage account and its contents using the Azure Storage
Explorer. For more information on using the Azure Storage Explorer, see Get started with
Storage Explorer.

In your app host project, register the Azure Queue Storage integration by chaining a call
to AddQueues on the IResourceBuilder<IAzureStorageResource> instance returned by
AddAzureStorage. The following example demonstrates how to add an Azure Queue
Storage resource named storage and a queue resource named queues :

C#



Add Azure Queue Storage resource

var builder = DistributedApplication.CreateBuilder(args);

var queues = builder.AddAzureStorage("storage")
 .AddQueues("queues");

builder.AddProject<Projects.ExampleProject>()

https://learn.microsoft.com/en-us/azure/storage/storage-explorer/vs-azure-tools-storage-manage-with-storage-explorer
https://learn.microsoft.com/en-us/azure/storage/storage-explorer/vs-azure-tools-storage-manage-with-storage-explorer
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azurestorageextensions.addqueues
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azurestorageextensions.addazurestorage
https://learn.microsoft.com/en-us/dotnet/aspire/docs/storage/media/azure-storage-explorer.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/storage/media/azure-storage-explorer.png#lightbox

The preceding code:

Adds an Azure Storage resource named storage .
Adds a queue named queues to the storage resource.
Adds the storage resource to the

https://www.nuget.org/packages/AspNetCore.HealthChecks.Azure.Storage.Blobs
https://www.nuget.org/packages/AspNetCore.HealthChecks.Azure.Storage.Blobs
https://www.nuget.org/packages/Aspire.Azure.Storage.Queues
https://www.nuget.org/packages/Aspire.Azure.Storage.Queues
https://learn.microsoft.com/en-us/dotnet/api/azure.storage.queues.queueserviceclient
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.aspirequeuestorageextensions.addazurequeueclient
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.ihostapplicationbuilder

You can then retrieve the QueueServiceClient instance using dependency injection. For
example, to retrieve the client from a service:

C#

The .NET Aspire Azure Queue Storage integration provides multiple options to configure
the QueueServiceClient based on the requirements and conventions of your project.

When using a connection string from the ConnectionStrings configuration section, you
can provide the name of the connection string when calling AddAzureQueueClient:

C#

Then the connection string is retrieved from the ConnectionStrings configuration
section, and two connection formats are supported:

The recommended approach is to use a ServiceUri , which works with the
AzureStorageQueuesSettings.Credential property to establish a connection. If no
credential is configured, the Azure.Identity.DefaultAzureCredential is used.

JSON

builder.AddAzureQueueClient("queue");

public class ExampleService(QueueServiceClient client)
{
 // Use client...
}

Configuration

Use a connection string

builder.AddAzureQueueClient("queue");

Service URI

{
 "ConnectionStrings": {
 "queue": "https://{account_name}.queue.core.windows.net/"

https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.aspirequeuestorageextensions.addazurequeueclient
https://learn.microsoft.com/en-us/dotnet/api/aspire.azure.storage.queues.azurestoragequeuessettings.credential#aspire-azure-storage-queues-azurestoragequeuessettings-credential
https://learn.microsoft.com/en-us/dotnet/api/azure.identity.defaultazurecredential

Alternatively, an Azure Storage connection string can be used.

JSON

For more information, see Configure Azure Storage connection strings.

The .NET Aspire Azure Queue Storage integration supports
Microsoft.Extensions.Configuration. It loads the AzureStorageQueuesSettings and
QueueClientOptions from configuration by using the Aspire:Azure:Storage:Queues key.
The following snippet is an example of a appsettings.json file that configures some of the
options:

JSON

 }
}

Connection string

{
 "ConnectionStrings": {
 "queue": "AccountName=myaccount;AccountKey=myaccountkey"
 }
}

Use configuration providers

{
 "Aspire": {
 "Azure": {
 "Storage": {
 "Queues": {
 "DisableHealthChecks": true,
 "DisableTracing": false,
 "ClientOptions": {
 "Diagnostics": {
 "ApplicationId": "myapp"
 }
 }
 }
 }
 }
 }
}

https://learn.microsoft.com/en-us/azure/storage/common/storage-configure-connection-string
https://learn.microsoft.com/en-us/azure/storage/common/storage-configure-connection-string
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration
https://learn.microsoft.com/en-us/dotnet/api/aspire.azure.storage.queues.azurestoragequeuessettings
https://learn.microsoft.com/en-us/dotnet/api/azure.storage.queues.queueclientoptions

For the complete Azure Storage Queues client integration JSON schema, see
Aspire.Azure.Data.Queues/ConfigurationSchema.json .

You can also pass the Action<AzureStorageQueuesSettings> configureSettings delegate
to set up some or all the options inline, for example to configure health checks:

C#

You can also set up the QueueClientOptions using
Action<IAzureClientBuilder<QueueServiceClient, QueueClientOptions>>

configureClientBuilder delegate, the second parameter of the AddAzureQueueClient
method. For example, to set the first part of user-agent headers for all requests issues
by this client:

C#

By default, .NET Aspire integrations enable health checks for all services. For more
information, see .NET Aspire integrations overview.

The .NET Aspire Azure Queue Storage integration:

Adds the health check when AzureStorageQueuesSettings.DisableHealthChecks is
false , which attempts to connect to the Azure Queue Storage.
Integrates with the /health HTTP endpoint, which specifies all registered health
checks must pass for app to be considered ready to accept traffic.

Use inline delegates

builder.AddAzureQueueClient(
 "queue",
 settings => settings.DisableHealthChecks = true);

builder.AddAzureQueueClient(
 "queue",
 configureClientBuilder: clientBuilder =>
 clientBuilder.ConfigureOptions(
 options => options.Diagnostics.ApplicationId = "myapp"));

Client integration health checks

Observability and telemetry

https://github.com/dotnet/aspire/blob/v9.1.0/src/Components/Aspire.Azure.Data.Queues/ConfigurationSchema.json
https://github.com/dotnet/aspire/blob/v9.1.0/src/Components/Aspire.Azure.Data.Queues/ConfigurationSchema.json
https://learn.microsoft.com/en-us/dotnet/api/azure.storage.queues.queueclientoptions
https://learn.microsoft.com/en-us/dotnet/api/aspire.azure.storage.queues.azurestoragequeuessettings.disablehealthchecks#aspire-azure-storage-queues-azurestoragequeuessettings-disablehealthchecks

.NET Aspire integrations automatically set up Logging, Tracing, and Metrics
configurations, which are sometimes known as the pillars of observability. For more
information about integration observability and telemetry, see .NET Aspire integrations
overview. Depending on the backing service, some integrations may only support some
of these features. For example, some integrations support logging and tracing, but not
metrics. Telemetry features can also be disabled using the techniques presented in the
Configuration section.

The .NET Aspire Azure Queue Storage integration uses the following log categories:

Azure.Core

Azure.Identity

The .NET Aspire Azure Queue Storage integration emits the following tracing activities
using OpenTelemetry:

Azure.Storage.Queues.QueueClient

The .NET Aspire Azure Queue Storage integration currently doesn't support metrics by
default due to limitations with the Azure SDK.

Azure Queue Storage docs
.NET Aspire integrations
.NET Aspire GitHub repo

Logging

Tracing

Metrics

See also

https://learn.microsoft.com/en-us/azure/storage/queues/
https://github.com/dotnet/aspire
https://github.com/dotnet/aspire

.NET Aspire Azure Data Tables
integration
Article • 12/11/2024

Includes: Hosting integration and Client integration

Azure Table Storage is a service for storing structured NoSQL data. The .NET Aspire
Azure Data Tables integration enables you to connect to existing Azure Table Storage
instances or create new instances from .NET applications.

The .NET Aspire Azure Storage hosting integration models the various storage resources
as the following types:

AzureStorageResource: Represents an Azure Storage resource.
AzureStorageEmulatorResource: Represents an Azure Storage emulator resource
(Azurite).
AzureBlobStorageResource: Represents an Azure Blob storage resource.
AzureQueueStorageResource: Represents an Azure Queue storage resource.
AzureTableStorageResource: Represents an Azure Table storage resource.

To access these types and APIs for expressing them, add the 📦
Aspire.Hosting.Azure.Storage NuGet package in the app host project.

.NET CLI

For more information, see dotnet add package or Manage package dependencies in
.NET applications.

In your app host project, call AddAzureStorage to add and return an Azure Storage
resource builder.

Hosting integration

.NET CLI

dotnet add package Aspire.Hosting.Azure.Storage

Add Azure Storage resource

https://azure.microsoft.com/services/storage/tables/
https://azure.microsoft.com/services/storage/tables/
https://learn.microsoft.com/en-us/azure/storage/
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azure.azurestorageresource
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azure.azurestorageemulatorresource
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azure.azureblobstorageresource
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azure.azurequeuestorageresource
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azure.azuretablestorageresource
https://www.nuget.org/packages/Aspire.Hosting.Azure.Storage
https://www.nuget.org/packages/Aspire.Hosting.Azure.Storage
https://www.nuget.org/packages/Aspire.Hosting.Azure.Storage
https://learn.microsoft.com/en-us/dotnet/core/tools/dotnet-add-package
https://learn.microsoft.com/en-us/dotnet/core/tools/dependencies
https://learn.microsoft.com/en-us/dotnet/core/tools/dependencies
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azurestorageextensions.addazurestorage

C#

When you add an AzureStorageResource to the app host, it exposes other useful APIs to
add Azure Blob, Queue, and Table storage resources. In other words, you must add an
AzureStorageResource before adding any of the other storage resources.

If you're new to Bicep, it's a domain-specific language for defining Azure resources. With
.NET Aspire, you don't need to write Bicep by-hand, instead the provisioning APIs
generate Bicep for you. When you publish your app, the generated Bicep is output
alongside the manifest file. When you add an Azure Storage resource, the following
Bicep is generated:

Bicep

var builder = DistributedApplication.CreateBuilder(args);

var storage = builder.AddAzureStorage("storage");

// An Azure Storage resource is required to add any of the following:
//
// - Azure Blob storage resource.
// - Azure Queue storage resource.
// - Azure Table storage resource.

// After adding all resources, run the app...

） Important

When you call

https://learn.microsoft.com/en-us/azure/azure-resource-manager/bicep/overview
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azurestorageextensions.addazurestorage
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azureprovisionerextensions.addazureprovisioning

 sku: {
 name: 'Standard_GRS'
 }
 properties: {
 accessTier: 'Hot'
 allowSharedKeyAccess: false
 minimumTlsVersion: 'TLS1_2'
 networkAcls: {
 defaultAction: 'Allow'
 }
 }
 tags: {
 'aspire-resource-name': 'storage'
 }
}

resource blobs 'Microsoft.Storage/storageAccounts/blobServices@2024-01-01' =
{
 name: 'default'
 parent: storage
}

resource storage_StorageBlobDataContributor
'Microsoft.Authorization/roleAssignments@2022-04-01' = {
 name: guid(storage.id, principalId,
subscriptionResourceId('Microsoft.Authorization/roleDefinitions', 'ba92f5b4-
2d11-453d-a403-e96b0029c9fe'))
 properties: {
 principalId: principalId
 roleDefinitionId:
subscriptionResourceId('Microsoft.Authorization/roleDefinitions', 'ba92f5b4-
2d11-453d-a403-e96b0029c9fe')
 principalType: principalType
 }
 scope: storage
}

resource storage_StorageTableDataContributor
'Microsoft.Authorization/roleAssignments@2022-04-01' = {
 name: guid(storage.id, principalId,
subscriptionResourceId('Microsoft.Authorization/roleDefinitions', '0a9a7e1f-
b9d0-4cc4-a60d-0319b160aaa3'))
 properties: {
 principalId: principalId
 roleDefinitionId:
subscriptionResourceId('Microsoft.Authorization/roleDefinitions', '0a9a7e1f-
b9d0-4cc4-a60d-0319b160aaa3')
 principalType: principalType
 }
 scope: storage
}

resource storage_StorageQueueDataContributor
'Microsoft.Authorization/roleAssignments@2022-04-01' = {
 name: guid(storage.id, principalId,

The preceding Bicep is a module that provisions an Azure Storage account with the
following defaults:

kind : The kind of storage account. The default is StorageV2 .
sku : The SKU of the storage account. The default is Standard_GRS .
properties : The properties of the storage account:

accessTier : The access tier of the storage account. The default is Hot .
allowSharedKeyAccess : A boolean value that indicates whether the storage
account permits requests to be authorized with the account access key. The
default is false .
minimumTlsVersion : The minimum supported TLS version for the storage
account. The default is TLS1_2 .
networkAcls : The network ACLs for the storage account. The default is {
defaultAction: 'Allow' } .

In addition to the storage account, it also provisions a blob container.

The following role assignments are added to the storage account to grant your
application access. See the built-in Azure role-based access control (Azure RBAC) roles
for more information:

Role / ID Description

Storage Blob Data Contributor
ba92f5b4-2d11-453d-a403-

e96b0029c9fe

Read, write, and delete Azure Storage containers and blobs.

subscriptionResourceId('Microsoft.Authorization/roleDefinitions', '974c5e8b-
45b9-4653-ba55-5f855dd0fb88'))
 properties: {
 principalId: principalId
 roleDefinitionId:
subscriptionResourceId('Microsoft.Authorization/roleDefinitions', '974c5e8b-
45b9-4653-ba55-5f855dd0fb88')
 principalType: principalType
 }
 scope: storage
}

output blobEndpoint string = storage.properties.primaryEndpoints.blob

output queueEndpoint string = storage.properties.primaryEndpoints.queue

output tableEndpoint string = storage.properties.primaryEndpoints.table

ﾉ Expand table

https://learn.microsoft.com/en-us/azure/role-based-access-control/built-in-roles#storage

Role / ID Description

Storage Table Data Contributor
0a9a7e1f-b9d0-4cc4-a60d-

0319b160aaa3

Read, write, and delete Azure Storage tables and entities.

Storage Queue Data Contributor
974c5e8b-45b9-4653-ba55-

5f855dd0fb88

Read, write, and delete Azure Storage queues and queue
messages.

The generated Bicep is a starting point and is influenced by changes to the provisioning
infrastructure in C#. Customizations to the Bicep file directly will be overwritten, so make
changes through the C# provisioning APIs to ensure they are reflected in the generated
files.

All .NET Aspire Azure resources are subclasses of the AzureProvisioningResource type.
This type enables the customization of the generated Bicep by providing a fluent API to
configure the Azure resources—using the ConfigureInfrastructure<T>
(IResourceBuilder<T>, Action<AzureResourceInfrastructure>) API. For example, you can
configure the kind , sku , properties , and more. The following example demonstrates
how to customize the Azure Storage resource:

C#

The preceding code:

Chains a call to the ConfigureInfrastructure API:
The infra parameter is an instance of the AzureResourceInfrastructure type.
The provisionable resources are retrieved by calling the
GetProvisionableResources() method.

Customize provisioning infrastructure

builder.AddAzureStorage("storage")
 .ConfigureInfrastructure(infra =>
 {
 var storageAccount = infra.GetProvisionableResources()
 .OfType<StorageAccount>()
 .Single();

 storageAccount.AccessTier = StorageAccountAccessTier.Cool;
 storageAccount.Sku = new StorageSku { Name =
StorageSkuName.PremiumZrs };
 storageAccount.Tags.Add("ExampleKey", "Example value");
 });

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azure.azureprovisioningresource
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azureprovisioningresourceextensions.configureinfrastructure#aspire-hosting-azureprovisioningresourceextensions-configureinfrastructure-1(aspire-hosting-applicationmodel-iresourcebuilder((-0))-system-action((aspire-hosting-azure-azureresourceinfrastructure)))
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azureprovisioningresourceextensions.configureinfrastructure#aspire-hosting-azureprovisioningresourceextensions-configureinfrastructure-1(aspire-hosting-applicationmodel-iresourcebuilder((-0))-system-action((aspire-hosting-azure-azureresourceinfrastructure)))
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azureprovisioningresourceextensions.configureinfrastructure
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azure.azureresourceinfrastructure
https://learn.microsoft.com/en-us/dotnet/api/azure.provisioning.infrastructure.getprovisionableresources#azure-provisioning-infrastructure-getprovisionableresources

The single StorageAccount is retrieved.
The StorageAccount.AccessTier is assigned to StorageAccountAccessTier.Cool.
The StorageAccount.Sku is assigned to a new StorageSku with a Name of
PremiumZrs.
A tag is added to the storage account with a key of ExampleKey and a value of
Example value .

There are many more configuration options available to customize the Azure Storage
resource. For more information, see Azure.Provisioning.Storage.

You might have an existing Azure Storage account that you want to connect to. Instead
of representing a new Azure Storage resource, you can add a connection string to the
app host. To add a connection to an existing Azure Storage account, call the
AddConnectionString method:

C#

The connection string is configured in the app host's configuration, typically under User
Secrets, under the ConnectionStrings section. The app host injects this connection
string as an environment variable into all dependent resources, for example:

JSON

Connect to an existing Azure Storage account

var builder = DistributedApplication.CreateBuilder(args);

var blobs = builder.AddConnectionString("blobs");

builder.AddProject<Projects.WebApplication>("web")
 .WithReference(blobs);

// After adding all resources, run the app...

７ Note

Connection strings are used to represent a wide range of connection information,
including database connections, message brokers, endpoint URIs, and other
services. In .NET Aspire nomenclature, the term "connection string" is used to
represent any kind of connection information.

{
 "ConnectionStrings": {

https://learn.microsoft.com/en-us/dotnet/api/azure.provisioning.storage.storageaccount
https://learn.microsoft.com/en-us/dotnet/api/azure.provisioning.storage.storageaccount.accesstier#azure-provisioning-storage-storageaccount-accesstier
https://learn.microsoft.com/en-us/dotnet/api/azure.provisioning.storage.storageaccountaccesstier#azure-provisioning-storage-storageaccountaccesstier-cool
https://learn.microsoft.com/en-us/dotnet/api/azure.provisioning.storage.storageaccount.sku#azure-provisioning-storage-storageaccount-sku
https://learn.microsoft.com/en-us/dotnet/api/azure.provisioning.storage.storagesku
https://learn.microsoft.com/en-us/dotnet/api/azure.provisioning.storage.storageskuname#azure-provisioning-storage-storageskuname-premiumzrs
https://learn.microsoft.com/en-us/dotnet/api/azure.provisioning.storage
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.parameterresourcebuilderextensions.addconnectionstring
https://learn.microsoft.com/en-us/aspnet/core/security/app-secrets
https://learn.microsoft.com/en-us/aspnet/core/security/app-secrets

The dependent resource can access the injected connection string by calling the
GetConnectionString method, and passing the connection name as the parameter, in
this case "blobs" . The GetConnectionString API is shorthand for
IConfiguration.GetSection("ConnectionStrings")[name] .

To add an Azure Storage emulator resource, chain a call on an
IResourceBuilder<AzureStorageResource> to the RunAsEmulator API:

C#

When you call RunAsEmulator , it configures your storage resources to run locally using
an emulator. The emulator in this case is Azurite. The Azurite open-source emulator
provides a free local environment for testing your Azure Blob, Queue Storage, and Table
Storage apps and it's a perfect companion to the .NET Aspire Azure hosting integration.
Azurite isn't installed, instead, it's accessible to .NET Aspire as a container. When you
add a container to the app host, as shown in the preceding example with the
mcr.microsoft.com/azure-storage/azurite image, it creates and starts the container
when the app host starts. For more information, see Container resource lifecycle.

There are various configurations available to container resources, for example, you can
configure the container's ports, environment variables, it's lifetime, and more.

By default, the Azurite container when configured by .NET Aspire, exposes the following
endpoints:

 "blobs": "https://{account_name}.blob.core.windows.net/"
 }
}

Add Azure Storage emulator resource

var builder = DistributedApplication.CreateBuilder(args);

var storage = builder.AddAzureStorage("storage")
 .RunAsEmulator();

// After adding all resources, run the app...

Configure Azurite container

Configure Azurite container ports

https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.configurationextensions.getconnectionstring
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azurestorageextensions.runasemulator
https://learn.microsoft.com/en-us/azure/storage/common/storage-use-azurite

Endpoint Container port Host port

blob 10000 dynamic

queue 10001 dynamic

table 10002 dynamic

The port that they're listening on is dynamic by default. When the container starts, the
ports are mapped to a random port on the host machine. To configure the endpoint
ports, chain calls on the container resource builder provided by the RunAsEmulator
method as shown in the following example:

C#

The preceding code configures the Azurite container's existing blob , queue , and table
endpoints to listen on ports 27000 , 27001 , and 27002 , respectively. The Azurite
container's ports are mapped to the host ports as shown in the following table:

Endpoint name Port mapping (container:host)

blob 10000:27000

queue 10001:27001

table 10002:27002

ﾉ Expand table

var builder = DistributedApplication.CreateBuilder(args);

var storage = builder.AddAzureStorage("storage").RunAsEmulator(
 azurite =>
 {
 azurite.WithBlobPort(27000)
 .WithQueuePort(27001)
 .WithTablePort(27002);
 });

// After adding all resources, run the app...

ﾉ Expand table

Configure Azurite container with persistent lifetime

To configure the Azurite container with a persistent lifetime, call the WithLifetime
method on the Azurite container resource and pass ContainerLifetime.Persistent:

C#

For more information, see Container resource lifetime.

To add a data volume to the Azure Storage emulator resource, call the WithDataVolume
method on the Azure Storage emulator resource:

C#

The data volume is used to persist the Azurite data outside the lifecycle of its container.
The data volume is mounted at the /data path in the Azurite container and when a
name parameter isn't provided, the name is formatted as .azurite/{resource name} . For
more information on data volumes and details on why they're preferred over bind
mounts, see Docker docs: Volumes .

To add a data bind mount to the Azure Storage emulator resource, call the
WithDataBindMount method:

C#

var builder = DistributedApplication.CreateBuilder(args);

var storage = builder.AddAzureStorage("storage").RunAsEmulator(
 azurite =>
 {
 azurite.WithLifetime(ContainerLifetime.Persistent);
 });

// After adding all resources, run the app...

Configure Azurite container with data volume

var builder = DistributedApplication.CreateBuilder(args);

var storage = builder.AddAzureStorage("storage").RunAsEmulator(
 azurite =>
 {
 azurite.WithDataVolume();
 });

// After adding all resources, run the app...

Configure Azurite container with data bind mount

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.containerresourcebuilderextensions.withlifetime
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.containerlifetime#aspire-hosting-applicationmodel-containerlifetime-persistent
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azurestorageextensions.withdatavolume
https://docs.docker.com/engine/storage/volumes
https://docs.docker.com/engine/storage/volumes
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azurestorageextensions.withdatabindmount

Data bind mounts rely on the host machine's filesystem to persist the Azurite data
across container restarts. The data bind mount is mounted at the ../Azurite/Data path
on the host machine relative to the app host directory
(IDistributedApplicationBuilder.AppHostDirectory) in the Azurite container. For more
information on data bind mounts, see Docker docs: Bind mounts .

When the .NET Aspire app host runs, the storage resources can be accessed by external
tools, such as the Azure Storage Explorer . If your storage resource is running locally
using Azurite, it will automatically be picked up by the Azure Storage Explorer.

To connect to the storage resource from Azure Storage Explorer, follow these steps:

1. Run the .NET Aspire app host.

2. Open the Azure Storage Explorer.

var builder = DistributedApplication.CreateBuilder(args);

var storage = builder.AddAzureStorage("storage").RunAsEmulator(
 azurite =>
 {
 azurite.WithDataBindMount("../Azurite/Data");
 });

// After adding all resources, run the app...

） Important

Data bind mounts have limited functionality compared to volumes , which
offer better performance, portability, and security, making them more suitable for
production environments. However, bind mounts allow direct access and
modification of files on the host system, ideal for development and testing where
real-time changes are needed.

Connect to storage resources

７ Note

The Azure Storage Explorer discovers Azurite storage resources assuming the
default ports are used. If you've configured the Azurite container to use different
ports, you'll need to configure the Azure Storage Explorer to connect to the correct
ports.

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.idistributedapplicationbuilder.apphostdirectory#aspire-hosting-idistributedapplicationbuilder-apphostdirectory
https://docs.docker.com/engine/storage/bind-mounts
https://docs.docker.com/engine/storage/bind-mounts
https://azure.microsoft.com/features/storage-explorer/
https://azure.microsoft.com/features/storage-explorer/
https://docs.docker.com/engine/storage/bind-mounts/
https://docs.docker.com/engine/storage/bind-mounts/
https://docs.docker.com/engine/storage/volumes/
https://docs.docker.com/engine/storage/volumes/

3. View the Explorer pane.

4. Select the Refresh all link to refresh the list of storage accounts.

5. Expand the Emulator & Attached node.

6. Expand the Storage Accounts node.

7. You should see a storage account with your resource's name as a prefix:

You're free to explore the storage account and its contents using the Azure Storage
Explorer. For more information on using the Azure Storage Explorer, see Get started with
Storage Explorer.

In your app host project, register the Azure Table Storage integration by chaining a call
to AddTables on the IResourceBuilder<IAzureStorageResource> instance returned by
AddAzureStorage. The following example demonstrates how to add an Azure Table
Storage resource named storage and a table resource named tables :

C#



Add Azure Table Storage resource

var builder = DistributedApplication.CreateBuilder(args);

var tables = builder.AddAzureStorage("storage")
 .AddTables("tables");

builder.AddProject<Projects.ExampleProject>()

https://learn.microsoft.com/en-us/azure/storage/storage-explorer/vs-azure-tools-storage-manage-with-storage-explorer
https://learn.microsoft.com/en-us/azure/storage/storage-explorer/vs-azure-tools-storage-manage-with-storage-explorer
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azurestorageextensions.addtables
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azurestorageextensions.addazurestorage
https://learn.microsoft.com/en-us/dotnet/aspire/docs/storage/media/azure-storage-explorer.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/storage/media/azure-storage-explorer.png#lightbox

The preceding code:

Adds an Azure Storage resource named storage .
Adds a table storage resource named tables to the storage resource.
Adds the storage resource to the ExampleProject and waits for it to be ready
before starting the project.

The Azure Storage hosting integration automatically adds a health check for the storage
resource. It's added only when running as an emulator, and verifies the Azurite container
is running and that a connection can be established to it. The hosting integration relies
on the 📦 AspNetCore.HealthChecks.Azure.Storage.Blobs NuGet package.

To get started with the .NET Aspire Azure Data Tables client integration, install the 📦
Aspire.Azure.Data.Tables NuGet package in the client-consuming project, that is, the
project for the application that uses the Azure Data Tables client. The Azure Data Tables
client integration registers a TableServiceClient instance that you can use to interact with
Azure Table Storage.

.NET CLI

In the Program.cs file of your client-consuming project, call the AddAzureTableClient
extension method on any IHostApplicationBuilder to register a TableServiceClient for
use via the dependency injection container. The method takes a connection name
parameter.

 .WithReference(tables)
 .WaitFor(tables);

// After adding all resources, run the app...

Hosting integration health checks

Client integration

.NET CLI

dotnet add package Aspire.Azure.Data.Tables

Add Azure Table Storage client

https://www.nuget.org/packages/AspNetCore.HealthChecks.Azure.Storage.Blobs
https://www.nuget.org/packages/AspNetCore.HealthChecks.Azure.Storage.Blobs
https://www.nuget.org/packages/Aspire.Azure.Data.Tables
https://www.nuget.org/packages/Aspire.Azure.Data.Tables
https://www.nuget.org/packages/Aspire.Azure.Data.Tables
https://learn.microsoft.com/en-us/dotnet/api/azure.data.tables.tableserviceclient
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.aspiretablesextensions.addazuretableclient
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.ihostapplicationbuilder

C#

You can then retrieve the TableServiceClient instance using dependency injection. For
example, to retrieve the client from a service:

C#

The .NET Aspire Azure Table Storage integration provides multiple options to configure
the TableServiceClient based on the requirements and conventions of your project.

The .NET Aspire Azure Table Storage integration supports
Microsoft.Extensions.Configuration. It loads the AzureDataTablesSettings and
TableClientOptions from configuration by using the Aspire:Azure:Data:Tables key. The
following snippet is an example of a appsettings.json file that configures some of the
options:

JSON

builder.AddAzureTableClient("tables");

public class ExampleService(TableServiceClient client)
{
 // Use client...
}

Configuration

Use configuration providers

{
 "Aspire": {
 "Azure": {
 "Data": {
 "Tables": {
 "ServiceUri": "YOUR_URI",
 "DisableHealthChecks": true,
 "DisableTracing": false,
 "ClientOptions": {
 "EnableTenantDiscovery": true
 }
 }
 }
 }
 }
}

https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration
https://learn.microsoft.com/en-us/dotnet/api/aspire.azure.data.tables.azuredatatablessettings
https://learn.microsoft.com/en-us/dotnet/api/azure.data.tables.tableclientoptions

For the complete Azure Data Tables client integration JSON schema, see
Aspire.Azure.Data.Tables/ConfigurationSchema.json .

You can also pass the Action<AzureDataTablesSettings> configureSettings delegate to
set up some or all the options inline, for example to configure the ServiceUri :

C#

You can also set up the TableClientOptions using
Action<IAzureClientBuilder<TableServiceClient, TableClientOptions>>

configureClientBuilder delegate, the second parameter of the AddAzureTableClient
method. For example, to set the TableServiceClient ID to identify the client:

C#

By default, .NET Aspire integrations enable health checks for all services. For more
information, see .NET Aspire integrations overview.

The .NET Aspire Azure Data Tables integration:

Adds the health check when AzureDataTablesSettings.DisableHealthChecks is
false , which attempts to connect to the Azure Table Storage.
Integrates with the /health HTTP endpoint, which specifies all registered health
checks must pass for app to be considered ready to accept traffic.

Use inline delegates

builder.AddAzureTableClient(
 "tables",
 settings => settings.DisableHealthChecks = true);

builder.AddAzureTableClient(
 "tables",
 configureClientBuilder: clientBuilder =>
 clientBuilder.ConfigureOptions(
 options => options.EnableTenantDiscovery = true));

Client integration health checks

Observability and telemetry

https://github.com/dotnet/aspire/blob/v9.1.0/src/Components/Aspire.Azure.Data.Tables/ConfigurationSchema.json
https://github.com/dotnet/aspire/blob/v9.1.0/src/Components/Aspire.Azure.Data.Tables/ConfigurationSchema.json
https://learn.microsoft.com/en-us/dotnet/api/azure.data.tables.tableclientoptions
https://learn.microsoft.com/en-us/dotnet/api/aspire.azure.data.tables.azuredatatablessettings.disablehealthchecks#aspire-azure-data-tables-azuredatatablessettings-disablehealthchecks

.NET Aspire integrations automatically set up Logging, Tracing, and Metrics
configurations, which are sometimes known as the pillars of observability. For more
information about integration observability and telemetry, see .NET Aspire integrations
overview. Depending on the backing service, some integrations may only support some
of these features. For example, some integrations support logging and tracing, but not
metrics. Telemetry features can also be disabled using the techniques presented in the
Configuration section.

The .NET Aspire Azure Data Tables integration uses the following log categories:

Azure.Core

Azure.Identity

The .NET Aspire Azure Data Tables integration emits the following tracing activities using
OpenTelemetry:

Azure.Data.Tables.TableServiceClient

The .NET Aspire Azure Data Tables integration currently doesn't support metrics by
default due to limitations with the Azure SDK.

Azure Table Storage docs
.NET Aspire integrations
.NET Aspire GitHub repo

Logging

Tracing

Metrics

See also

https://learn.microsoft.com/en-us/azure/storage/tables/
https://github.com/dotnet/aspire
https://github.com/dotnet/aspire

.NET Aspire Azure Web PubSub
integration
Article • 03/18/2025

Includes:

https://learn.microsoft.com/en-us/azure/azure-web-pubsub/
https://azure.microsoft.com/products/web-pubsub
https://azure.microsoft.com/products/web-pubsub
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.azurewebpubsubresource
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.azurewebpubsubhubresource
https://www.nuget.org/packages/Aspire.Hosting.Azure.WebPubSub
https://www.nuget.org/packages/Aspire.Hosting.Azure.WebPubSub
https://learn.microsoft.com/en-us/dotnet/core/tools/dotnet-add-package
https://learn.microsoft.com/en-us/dotnet/core/tools/dependencies
https://learn.microsoft.com/en-us/dotnet/core/tools/dependencies
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azurewebpubsubextensions.addazurewebpubsub

C#

The preceding code adds an Azure Web PubSub resource named web-pubsub to the app
host project. The WithReference method passes the connection information to the
ExampleProject project.

To add an Azure Web PubSub hub resource to your app host project, chain a call to the
AddHub(IResourceBuilder<AzureWebPubSubResource>, String) method providing a
name:

C#

The preceding code adds an Azure Web PubSub hub resource named messages , which
enables the addition of event handlers. To add an event handler, call the
AddEventHandler:

var builder = DistributedApplication.CreateBuilder(args);

var webPubSub = builder.AddAzureWebPubSub("web-pubsub");

builder.AddProject<Projects.ExampleProject>()
 .WithReference(webPubSub);

// After adding all resources, run the app...

） Important

When you call AddAzureWebPubSub , it implicitly calls
AddAzureProvisioning(IDistributedApplicationBuilder)—which adds support for
generating Azure resources dynamically during app startup. The app must
configure the appropriate subscription and location. For more information, see
Local provisioning: Configuration.

Add an Azure Web PubSub hub resource

var builder = DistributedApplication.CreateBuilder(args);

var worker = builder.AddProject<Projects.WorkerService>("worker")
 .WithExternalHttpEndpoints();

var webPubSub = builder.AddAzureWebPubSub("web-pubsub");
var messagesHub = webPubSub.AddHub("messages");

// After adding all resources, run the app...

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.resourcebuilderextensions.withreference
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azurewebpubsubextensions.addhub#aspire-hosting-azurewebpubsubextensions-addhub(aspire-hosting-applicationmodel-iresourcebuilder((aspire-hosting-applicationmodel-azurewebpubsubresource))-system-string)
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azurewebpubsubextensions.addeventhandler
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azureprovisionerextensions.addazureprovisioning#aspire-hosting-azureprovisionerextensions-addazureprovisioning(aspire-hosting-idistributedapplicationbuilder)

C#

The preceding code adds a worker service project named worker with an external HTTP
endpoint. The hub named messages resource is added to the web-pubsub resource, and
an event handler is added to the messagesHub resource. The event handler URL is set to
the worker service's external HTTP endpoint. For more information, see Azure Web
PubSub event handlers.

When you publish your app, .NET Aspire provisioning APIs generate Bicep alongside the
manifest file. Bicep is a domain-specific language for defining Azure resources. For more
information, see Bicep Overview.

When you add an Azure Web PubSub resource, the following Bicep is generated:

Bicep

var builder = DistributedApplication.CreateBuilder(args);

var worker = builder.AddProject<Projects.WorkerService>("worker")
 .WithExternalHttpEndpoints();

var webPubSub = builder.AddAzureWebPubSub("web-pubsub");
var messagesHub = webPubSub.AddHub("messages");

messagesHub.AddEventHandler(
 $"{worker.GetEndpoint("https")}/eventhandler/",
 systemEvents: ["connected"]);

// After adding all resources, run the app...

Generated provisioning Bicep

@description('The location for the resource(s) to be deployed.')
param location string = resourceGroup().location

param sku string = 'Free_F1'

param capacity int = 1

param principalType string

param principalId string

param messages_url_0 string

resource web_pubsub 'Microsoft.SignalRService/webPubSub@2024-03-01' = {
 name: take('webpubsub-${uniqueString(resourceGroup().id)}', 63)
 location: location
 sku: {

https://learn.microsoft.com/en-us/azure/azure-web-pubsub/howto-develop-eventhandler
https://learn.microsoft.com/en-us/azure/azure-web-pubsub/howto-develop-eventhandler
https://learn.microsoft.com/en-us/azure/azure-resource-manager/bicep/overview

The preceding Bicep is a module that provisions an Azure Web PubSub resource with
the following defaults:

location : The location of the resource group.
sku : The SKU of the Web PubSub resource, defaults to Free_F1 .
principalId : The principal ID of the Web PubSub resource.
principalType : The principal type of the Web PubSub resource.
messages_url_0 : The URL of the event handler for the messages hub.
messages : The name of the hub resource.

 name: sku
 capacity: capacity
 }
 tags: {
 'aspire-resource-name': 'web-pubsub'
 }
}

resource web_pubsub_WebPubSubServiceOwner
'Microsoft.Authorization/roleAssignments@2022-04-01' = {
 name: guid(web_pubsub.id, principalId,
subscriptionResourceId('Microsoft.Authorization/roleDefinitions', '12cf5a90-
567b-43ae-8102-96cf46c7d9b4'))
 properties: {
 principalId: principalId
 roleDefinitionId:
subscriptionResourceId('Microsoft.Authorization/roleDefinitions', '12cf5a90-
567b-43ae-8102-96cf46c7d9b4')
 principalType: principalType
 }
 scope: web_pubsub
}

resource messages 'Microsoft.SignalRService/webPubSub/hubs@2024-03-01' = {
 name: 'messages'
 properties: {
 eventHandlers: [
 {
 urlTemplate: messages_url_0
 userEventPattern: '*'
 systemEvents: [
 'connected'
]
 }
]
 }
 parent: web_pubsub
}

output endpoint string = 'https://${web_pubsub.properties.hostName}'

web_pubsub : The name of the Web PubSub resource.
web_pubsub_WebPubSubServiceOwner : The role assignment for the Web PubSub
resource owner. For more information, see Azure Web PubSub Service Owner.
endpoint : The endpoint of the Web PubSub resource.

The generated Bicep is a starting point and is influenced by changes to the provisioning
infrastructure in C#. Customizations to the Bicep file directly will be overwritten, so make
changes through the C# provisioning APIs to ensure they are reflected in the generated
files.

All .NET Aspire Azure resources are subclasses of the AzureProvisioningResource type.
This type enables the customization of the generated Bicep by providing a fluent API to
configure the Azure resources—using the ConfigureInfrastructure<T>
(IResourceBuilder<T>, Action<AzureResourceInfrastructure>) API. For example, you can
configure the kind , consistencyPolicy , locations , and more. The following example
demonstrates how to customize the Azure Cosmos DB resource:

C#

The preceding code:

Chains a call to the ConfigureInfrastructure API:
The infra parameter is an instance of the AzureResourceInfrastructure type.
The provisionable resources are retrieved by calling the
GetProvisionableResources() method.
The single WebPubSubService resource is retrieved.
The WebPubSubService.Sku object has its name and capacity properties set to
Standard_S1 and 5 , respectively.
A tag is added to the Web PubSub resource with a key of ExampleKey and a
value of Example value .

Customize provisioning infrastructure

builder.AddAzureWebPubSub("web-pubsub")
 .ConfigureInfrastructure(infra =>
 {
 var webPubSubService = infra.GetProvisionableResources()
 .OfType<WebPubSubService>()
 .Single();

 webPubSubService.Sku.Name = "Standard_S1";
 webPubSubService.Sku.Capacity = 5;
 webPubSubService.Tags.Add("ExampleKey", "Example value");
 });

https://learn.microsoft.com/en-us/azure/role-based-access-control/built-in-roles/web-and-mobile#web-pubsub-service-owner
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azure.azureprovisioningresource
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azureprovisioningresourceextensions.configureinfrastructure#aspire-hosting-azureprovisioningresourceextensions-configureinfrastructure-1(aspire-hosting-applicationmodel-iresourcebuilder((-0))-system-action((aspire-hosting-azure-azureresourceinfrastructure)))
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azureprovisioningresourceextensions.configureinfrastructure#aspire-hosting-azureprovisioningresourceextensions-configureinfrastructure-1(aspire-hosting-applicationmodel-iresourcebuilder((-0))-system-action((aspire-hosting-azure-azureresourceinfrastructure)))
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azureprovisioningresourceextensions.configureinfrastructure
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azure.azureresourceinfrastructure
https://learn.microsoft.com/en-us/dotnet/api/azure.provisioning.infrastructure.getprovisionableresources#azure-provisioning-infrastructure-getprovisionableresources
https://learn.microsoft.com/en-us/dotnet/api/azure.provisioning.webpubsub.webpubsubservice
https://learn.microsoft.com/en-us/dotnet/api/azure.provisioning.webpubsub.webpubsubservice.sku#azure-provisioning-webpubsub-webpubsubservice-sku

There are many more configuration options available to customize the Web PubSub
resource. For more information, see Azure.Provisioning.WebPubSub. For more
information, see Azure.Provisioning customization.

You might have an existing Azure Web PubSub service that you want to connect to. You
can chain a call to annotate that your AzureWebPubSubResource is an existing resource:

C#

For more information on treating Azure Web PubSub resources as existing resources,
see Use existing Azure resources.

Alternatively, instead of representing an Azure Web PubSub resource, you can add a
connection string to the app host. Which is a weakly-typed approach that's based solely
on a string value. To add a connection to an existing Azure Web PubSub service, call
the AddConnectionString method:

C#

Connect to an existing Azure Web PubSub instance

var builder = DistributedApplication.CreateBuilder(args);

var existingPubSubName = builder.AddParameter("existingPubSubName");
var existingPubSubResourceGroup =
builder.AddParameter("existingPubSubResourceGroup");

var webPubSub = builder.AddAzureWebPubSub("web-pubsub")
 .AsExisting(existingPubSubName,
existingPubSubResourceGroup);

builder.AddProject<Projects.ExampleProject>()
 .WithReference(webPubSub);

// After adding all resources, run the app...

var builder = DistributedApplication.CreateBuilder(args);

var webPubSub = builder.ExecutionContext.IsPublishMode
 ? builder.AddAzureWebPubSub("web-pubsub")
 : builder.AddConnectionString("web-pubsub");

builder.AddProject<Projects.ExampleProject>()
 .WithReference(webPubSub);

// After adding all resources, run the app...

https://learn.microsoft.com/en-us/dotnet/api/azure.provisioning.webpubsub
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.azurewebpubsubresource
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.parameterresourcebuilderextensions.addconnectionstring

The connection string is configured in the app host's configuration, typically under User
Secrets, under the ConnectionStrings section:

JSON

For more information, see Add existing Azure resources with connection strings.

The .NET Aspire Azure Web PubSub client integration is used to connect to an Azure
Web PubSub service using the WebPubSubServiceClient. To get started with the .NET
Aspire Azure Web PubSub service client integration, install the 📦
Aspire.Azure.Messaging.WebPubSub NuGet package in the application.

.NET CLI

The following Web PubSub client types are supported by the library:

７ Note

Connection strings are used to represent a wide range of connection information,
including database connections, message brokers, endpoint URIs, and other
services. In .NET Aspire nomenclature, the term "connection string" is used to
represent any kind of connection information.

{
 "ConnectionStrings": {
 "web-pubsub": "https://{account_name}.webpubsub.azure.com"
 }
}

Client integration

.NET CLI

dotnet add package Aspire.Azure.Messaging.WebPubSub

Supported Web PubSub client types

ﾉ Expand table

https://learn.microsoft.com/en-us/dotnet/api/azure.messaging.webpubsub.webpubsubserviceclient
https://www.nuget.org/packages/Aspire.Azure.Messaging.WebPubSub
https://www.nuget.org/packages/Aspire.Azure.Messaging.WebPubSub
https://www.nuget.org/packages/Aspire.Azure.Messaging.WebPubSub

Azure client type Azure options class .NET Aspire settings class

WebPubSubServiceClient WebPubSubServiceClientOptions AzureMessagingWebPubSubSettings

In the Program.cs file of your client-consuming project, call the
AddAzureWebPubSubServiceClient extension method to register a
WebPubSubServiceClient for use via the dependency injection container. The method
takes a connection name parameter:

C#

After adding the WebPubSubServiceClient , you can retrieve the client instance using
dependency injection. For example, to retrieve your data source object from an example
service define it as a constructor parameter and ensure the ExampleService class is
registered with the dependency injection container:

C#

For more information, see:

Azure.Messaging.WebPubSub documentation for examples on using the
WebPubSubServiceClient .
Dependency injection in .NET for details on dependency injection.

Add Web PubSub client

builder.AddAzureWebPubSubServiceClient(
 connectionName: "web-pubsub");

 Tip

The connectionName parameter must match the name used when adding the Web
PubSub resource in the app host project. For more information, see Add an Azure
Web PubSub resource.

public class ExampleService(WebPubSubServiceClient client)
{
 // Use client...
}

Add keyed Web PubSub client

https://learn.microsoft.com/en-us/dotnet/api/azure.messaging.webpubsub.webpubsubserviceclient
https://learn.microsoft.com/en-us/dotnet/api/azure.messaging.webpubsub.webpubsubserviceclientoptions
https://learn.microsoft.com/en-us/dotnet/api/aspire.azure.messaging.webpubsub.azuremessagingwebpubsubsettings
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.aspirewebpubsubextensions.addazurewebpubsubserviceclient
https://learn.microsoft.com/en-us/azure/azure-web-pubsub/howto-create-serviceclient-with-net-and-azure-identity
https://learn.microsoft.com/en-us/dotnet/core/extensions/dependency-injection

There might be situations where you want to register multiple WebPubSubServiceClient
instances with different connection names. To register keyed Web PubSub clients, call
the AddKeyedAzureWebPubSubServiceClient method:

C#

Then you can retrieve the client instances using dependency injection. For example, to
retrieve the clients from a service:

C#

For more information, see Keyed services in .NET.

The .NET Aspire Azure Web PubSub library provides multiple options to configure the
Azure Web PubSub connection based on the requirements and conventions of your
project. Either an Endpoint or a ConnectionString must be supplied.

When using a connection string from the ConnectionStrings configuration section, you
can provide the name of the connection string when calling
AddAzureWebPubSubServiceClient :

C#

builder.AddKeyedAzureWebPubSubServiceClient(name: "messages");
builder.AddKeyedAzureWebPubSubServiceClient(name: "commands");

） Important

When using keyed services, it's expected that your Web PubSub resource
configured two named hubs, one for the messages and one for the commands .

public class ExampleService(
 [KeyedService("messages")] WebPubSubServiceClient messagesClient,
 [KeyedService("commands")] WebPubSubServiceClient commandsClient)
{
 // Use clients...
}

Configuration

Use a connection string

https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.aspirewebpubsubextensions.addkeyedazurewebpubsubserviceclient
https://learn.microsoft.com/en-us/dotnet/core/extensions/dependency-injection#keyed-services

The connection information is retrieved from the ConnectionStrings configuration
section. Two connection formats are supported:

Service endpoint (recommended): Uses the service endpoint with
DefaultAzureCredential .

JSON

Connection string: Includes an access key.

JSON

The library supports Microsoft.Extensions.Configuration. It loads settings from
configuration using the Aspire:Azure:Messaging:WebPubSub key:

JSON

builder.AddAzureWebPubSubServiceClient(
 "web-pubsub",
 settings => settings.HubName = "your_hub_name");

{
 "ConnectionStrings": {
 "web-pubsub": "https://{account_name}.webpubsub.azure.com"
 }
}

{
 "ConnectionStrings": {
 "web-pubsub":
"Endpoint=https://{account_name}.webpubsub.azure.com;AccessKey=
{account_key}"
 }
}

Use configuration providers

{
 "Aspire": {
 "Azure": {
 "Messaging": {
 "WebPubSub": {
 "DisableHealthChecks": true,
 "HubName": "your_hub_name"
 }
 }

https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration

For the complete Azure OpenAI client integration JSON schema, see
Aspire.Azure.Messaging.WebPubSub/ConfigurationSchema.json .

You can configure settings inline:

C#

.NET Aspire integrations automatically set up Logging, Tracing, and Metrics
configurations, which are sometimes known as the pillars of observability. For more
information about integration observability and telemetry, see .NET Aspire integrations
overview. Depending on the backing service, some integrations may only support some
of these features. For example, some integrations support logging and tracing, but not
metrics. Telemetry features can also be disabled using the techniques presented in the
Configuration section.

The .NET Aspire Azure Web PubSub integration uses the following log categories:

Azure

Azure.Core

Azure.Identity

https://github.com/dotnet/aspire/blob/main/src/Components/Aspire.Azure.Messaging.WebPubSub/ConfigurationSchema.json
https://github.com/dotnet/aspire/blob/main/src/Components/Aspire.Azure.Messaging.WebPubSub/ConfigurationSchema.json

The .NET Aspire Azure Web PubSub integration currently doesn't support metrics by
default due to limitations with the Azure SDK for .NET. If that changes in the future, this
section will be updated to reflect those changes.

Azure Web PubSub
.NET Aspire integrations
.NET Aspire GitHub repo

Metrics

See also

https://learn.microsoft.com/en-us/azure/azure-web-pubsub/
https://github.com/dotnet/aspire
https://github.com/dotnet/aspire

.NET Aspire Dapr integration
Article • 01/23/2025

Distributed Application Runtime (Dapr) offers developer APIs that serve as a conduit
for interacting with other services and dependencies and abstract the application from
the specifics of those services and dependencies. Dapr and .NET Aspire can work
together to improve your local development experience. By using Dapr with .NET Aspire,
you can focus on writing and implementing .NET-based distributed applications instead
of local on-boarding.

In this guide, you'll learn how to take advantage of Dapr's abstraction and .NET Aspire's
opinionated configuration of cloud technologies to build simple, portable, resilient, and
secured microservices at scale.

At first sight Dapr and .NET Aspire may look like they have overlapping functionality,
and they do. However, they take different approaches. .NET Aspire is opinionated on
how to build distributed applications on a cloud platform and focuses on improving the
local development experience. Dapr is a runtime that abstracts away the common
complexities of the underlying cloud platform both during development and in
production. It relies on sidecars to provide abstractions for things like configuration,
secret management, and messaging. The underlying technology can be easily switched
out through configuration files, while your code does not need to change.

Aspect .NET Aspire Dapr

Purpose Designed to make it easier to
develop cloud-native solutions
on local development computers.

Designed to make it easier to develop and run
distributed apps with common APIs that can
be easily swapped.

APIs Developers must call resource
APIs using their specific SDKs

Developers call APIs in the Dapr sidecar, which
forwards the call to the correct API. It's easy to
swap resource APIs without changing code in
your microservices.

Languages You write microservices in .NET
languages, Go, Python, Javascript,
and others.

You can call Dapr sidecar functions in any
language that supports HTTP/gRPC interfaces.

Comparing .NET Aspire and Dapr

ﾉ Expand table

https://docs.dapr.io/
https://docs.dapr.io/

Aspect .NET Aspire Dapr

Security
policies

Doesn't include security policies
but can securely configure
connections between inter-
dependent resources.

Includes customizable security policies that
control which microservices have access to
other services or resources.

Deployment There are deployment tools for
Azure and Kubernetes.

Doesn't include deployment tools. Apps are
usually deployed with Continuous
Integration/Continuous Development (CI/CD)
systems.

Dashboard Provides a comprehensive view
of the resources and their
telemetry and supports listening
on any OTEL supported resource.

Limited to Dapr resources only.

.NET Aspire makes setting up and debugging Dapr applications easier by providing a
straightforward API to configure Dapr sidecars, and by exposing the sidecars as
resources in the dashboard.

Dapr provides many built-in components , and when you use Dapr with .NET Aspire
you can easily explore and configure these components. Don't confuse these
components with .NET Aspire integrations. For example, consider the following:

Dapr—State stores : Call AddDaprStateStore to add a configured state store to
your .NET Aspire project.
Dapr—Pub Sub : Call AddDaprPubSub to add a configured pub sub to your .NET
Aspire project.
Dapr—Components: Call AddDaprComponent to add a configured integration to
your .NET Aspire project.

This integration requires Dapr version 1.13 or later. To install Dapr, see Install the Dapr
CLI . After installing the Dapr CLI, run the dapr init , as described in Initialize Dapr in
your local environment .

Explore Dapr components with .NET Aspire

Install Dapr

） Important

https://docs.dapr.io/concepts/components-concept
https://docs.dapr.io/concepts/components-concept
https://docs.dapr.io/concepts/components-concept/#state-stores
https://docs.dapr.io/concepts/components-concept/#state-stores
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.idistributedapplicationbuilderextensions.adddaprstatestore
https://docs.dapr.io/concepts/components-concept/#pubsub-brokers
https://docs.dapr.io/concepts/components-concept/#pubsub-brokers
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.idistributedapplicationbuilderextensions.adddaprpubsub
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.idistributedapplicationbuilderextensions.adddaprcomponent
https://docs.dapr.io/getting-started/install-dapr-cli/
https://docs.dapr.io/getting-started/install-dapr-cli/
https://docs.dapr.io/getting-started/install-dapr-cli/
https://docs.dapr.io/getting-started/install-dapr-selfhost/
https://docs.dapr.io/getting-started/install-dapr-selfhost/
https://docs.dapr.io/getting-started/install-dapr-selfhost/

In your .NET Aspire solution, to integrate Dapr and access its types and APIs, add the 📦
Aspire.Hosting.Dapr NuGet package in the app host project.

.NET CLI

For more information, see dotnet add package or Manage package dependencies in
.NET applications.

Dapr uses the sidecar pattern . The Dapr sidecar runs alongside your app as a
lightweight, portable, and stateless HTTP server that listens for incoming HTTP requests
from your app.

To add a sidecar to a .NET Aspire resource, call the WithDaprSidecar method on it. The
appId parameter is the unique identifier for the Dapr application, but it's optional. If you
don't provide an appId , the parent resource name is used instead.

C#

If you attempt to run the .NET Aspire solution without the Dapr CLI, you'll receive
the following error:

plaintext

Unable to locate the Dapr CLI.

Hosting integration

.NET CLI

dotnet add package Aspire.Hosting.Dapr

Add Dapr sidecar to .NET Aspire resources

using Aspire.Hosting.Dapr;

var builder = DistributedApplication.CreateBuilder(args);

var apiService = builder
 .AddProject<Projects.Dapr_ApiService>("apiservice")
 .WithDaprSidecar();

https://www.nuget.org/packages/Aspire.Hosting.Dapr
https://www.nuget.org/packages/Aspire.Hosting.Dapr
https://www.nuget.org/packages/Aspire.Hosting.Dapr
https://learn.microsoft.com/en-us/dotnet/core/tools/dotnet-add-package
https://learn.microsoft.com/en-us/dotnet/core/tools/dependencies
https://learn.microsoft.com/en-us/dotnet/core/tools/dependencies
https://docs.dapr.io/concepts/dapr-services/sidecar/
https://docs.dapr.io/concepts/dapr-services/sidecar/
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.idistributedapplicationresourcebuilderextensions.withdaprsidecar

The WithDaprSidecar method offers overloads to configure your Dapr sidecar options
like AppId and various ports. In the following example, the Dapr sidecar is configured
with specific ports for GRPC, HTTP, metrics, and a specific app ID.

C#

Putting everything together, consider the following example of a .NET Aspire app host
project that includes:

A backend API service that declares a Dapr sidecar with defaults.
A web frontend project that declares a Dapr sidecar with specific options, such as
explict ports.

C#

Configure Dapr sidecars

DaprSidecarOptions sidecarOptions = new()
{
 AppId = "FirstSidecar",
 DaprGrpcPort = 50001,
 DaprHttpPort = 3500,
 MetricsPort = 9090
};

builder.AddProject<Projects.Dapr_Web>("webfrontend")
 .WithExternalHttpEndpoints()
 .WithReference(apiService)
 .WithDaprSidecar(sidecarOptions);

Complete Dapr app host example

using Aspire.Hosting.Dapr;

var builder = DistributedApplication.CreateBuilder(args);

var apiService = builder
 .AddProject<Projects.Dapr_ApiService>("apiservice")
 .WithDaprSidecar();

DaprSidecarOptions sidecarOptions = new()
{
 AppId = "FirstSidecar",
 DaprGrpcPort = 50001,
 DaprHttpPort = 3500,
 MetricsPort = 9090
};

When you start the .NET Aspire solution, the dashboard shows the Dapr sidecar as a
resource, with its status and logs.

To use Dapr APIs from .NET Aspire resources, you can use the 📦 Dapr.AspNetCore/
NuGet package. The Dapr SDK provides a set of APIs to interact with Dapr sidecars.

.NET CLI

Once installed into an ASP.NET Core project, the SDK can be added to the service
builder.

builder.AddProject<Projects.Dapr_Web>("webfrontend")
 .WithExternalHttpEndpoints()
 .WithReference(apiService)
 .WithDaprSidecar(sidecarOptions);

builder.Build().Run();



Use Dapr sidecars in consuming .NET Aspire
projects

７ Note

Use the Dapr.AspNetCore library for the Dapr integration with ASP.NET (DI
integration, registration of subscriptions, etc.). Non-ASP.NET apps (such as console
apps) can just use the v Dapr.Client to make calls through the Dapr sidecar.

.NET CLI

dotnet add package Dapr.AspNetCore

Add Dapr client

https://www.nuget.org/packages/Dapr.AspNetCore/
https://www.nuget.org/packages/Dapr.AspNetCore/
https://learn.microsoft.com/en-us/dotnet/aspire/docs/frameworks/media/aspire-dashboard-dapr-sidecar-resources.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/frameworks/media/aspire-dashboard-dapr-sidecar-resources.png#lightbox
https://www.nuget.org/packages/Dapr.Client
https://www.nuget.org/packages/Dapr.Client

C#

An instance of DaprClient can now be injected into your services to interact with the
Dapr sidecar through the Dapr SDK:

C#

InvokeMethodAsync is the method that sends an HTTP request to the Dapr sidecar. It is a
generic method that takes:

An HTTP verb.
The Dapr app ID of the service to call.
The method name.
A cancellation token.

Depending on the HTTP verb, it can also take a request body and headers. The generic
type parameter is the type of the response body.

builder.Services.AddDaprClient();

Invoke Dapr methods

using Dapr.Client;

namespace Dapr.Web;

public class WeatherApiClient(DaprClient client)
{
 public async Task<WeatherForecast[]> GetWeatherAsync(
 int maxItems = 10, CancellationToken cancellationToken = default)
 {
 List<WeatherForecast>? forecasts =
 await client.InvokeMethodAsync<List<WeatherForecast>>(
 HttpMethod.Get,
 "apiservice",
 "weatherforecast",
 cancellationToken);

 return forecasts?.Take(maxItems)?.ToArray() ?? [];
 }
}

public record WeatherForecast(DateOnly Date, int TemperatureC, string?
Summary)
{
 public int TemperatureF => 32 + (int)(TemperatureC / 0.5556);
}

The full Program.cs file for the frontend project shows:

The Dapr client being added to the service builder.
The WeatherApiClient class that uses the Dapr client to call the backend service.

C#

For example, in a Blazor project, you can inject the WeatherApiClient class into a razor
page and use it to call the backend service:

C#

using Dapr.Web;
using Dapr.Web.Components;

var builder = WebApplication.CreateBuilder(args);

// Add service defaults & Aspire components.
builder.AddServiceDefaults();

// Add services to the container.
builder.Services.AddRazorComponents()
 .AddInteractiveServerComponents();

builder.Services.AddOutputCache();

builder.Services.AddDaprClient();

builder.Services.AddTransient<WeatherApiClient>();

var app = builder.Build();

if (!app.Environment.IsDevelopment())
{
 app.UseExceptionHandler("/Error", createScopeForErrors: true);
 app.UseHsts();
}

app.UseHttpsRedirection();

app.UseStaticFiles();
app.UseAntiforgery();

app.UseOutputCache();

app.MapRazorComponents<App>()
 .AddInteractiveServerRenderMode();

app.MapDefaultEndpoints();

app.Run();

@page "/weather"
@attribute [StreamRendering(true)]
@attribute [OutputCache(Duration = 5)]

@inject WeatherApiClient WeatherApi

<PageTitle>Weather</PageTitle>

<h1>Weather</h1>

<p>This component demonstrates showing data loaded from a backend API
service.</p>

@if (forecasts == null)
{
 <p>Loading...</p>
}
else
{
 <table class="table">
 <thead>
 <tr>
 <th>Date</th>
 <th>Temp. (C)</th>
 <th>Temp. (F)</th>
 <th>Summary</th>
 </tr>
 </thead>
 <tbody>
 @foreach (var forecast in forecasts)
 {
 <tr>
 <td>@forecast.Date.ToShortDateString()</td>
 <td>@forecast.TemperatureC</td>
 <td>@forecast.TemperatureF</td>
 <td>@forecast.Summary</td>
 </tr>
 }
 </tbody>
 </table>
}

@code {
 private WeatherForecast[]? forecasts;

 protected override async Task OnInitializedAsync()
 {
 forecasts = await WeatherApi.GetWeatherAsync();
 }
}

When the Dapr SDK is used, the Dapr sidecar is called over HTTP. The Dapr sidecar then
forwards the request to the target service. While the target service runs in a separate
process from the sidecar, the integration related to the service runs in the Dapr sidecar
and is responsible for service discovery and routing the request to the target service.

Dapr
Dapr documentation
Dapr GitHub repo
.NET Aspire Dapr sample app
.NET Aspire integrations
.NET Aspire GitHub repo

Next steps

https://dapr.io/
https://dapr.io/
https://docs.dapr.io/
https://docs.dapr.io/
https://github.com/dapr/dapr
https://github.com/dapr/dapr
https://github.com/CommunityToolkit/Aspire/tree/main/examples/dapr
https://github.com/CommunityToolkit/Aspire/tree/main/examples/dapr
https://github.com/dotnet/aspire
https://github.com/dotnet/aspire

.NET Aspire Elasticsearch integration
(Preview)
Article • 02/14/2025

Includes: Hosting integration and Client integration

Elasticsearch is a distributed, RESTful search and analytics engine, scalable data store,
and vector database capable of addressing a growing number of use cases. The .NET
Aspire Elasticsearch integration enables you to connect to existing Elasticsearch
instances, or create new instances from .NET with the docker.io/library/elasticsearch
container image .

The Elasticsearch hosting integration models an Elasticsearch instance as the
ElasticsearchResource type. To access this type and APIs that allow you to add it to your
📦 Aspire.Hosting.Elasticsearch NuGet package in the app host project.

.NET CLI

For more information, see dotnet add package or Manage package dependencies in
.NET applications.

In your app host project, call AddElasticsearch on the builder instance to add an
Elasticsearch resource:

C#

Hosting integration

.NET CLI

dotnet add package Aspire.Hosting.Elasticsearch

Add Elasticsearch resource

var builder = DistributedApplication.CreateBuilder(args);

var elasticsearch = builder.AddElasticsearch("elasticsearch");

builder.AddProject<Projects.ExampleProject>()
 .WithReference(elasticsearch);

https://www.elastic.co/elasticsearch
https://www.elastic.co/elasticsearch
https://hub.docker.com/_/elasticsearch
https://hub.docker.com/_/elasticsearch
https://hub.docker.com/_/elasticsearch
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.elasticsearchresource
https://www.nuget.org/packages/Aspire.Hosting.Elasticsearch
https://www.nuget.org/packages/Aspire.Hosting.Elasticsearch
https://learn.microsoft.com/en-us/dotnet/core/tools/dotnet-add-package
https://learn.microsoft.com/en-us/dotnet/core/tools/dependencies
https://learn.microsoft.com/en-us/dotnet/core/tools/dependencies
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.elasticsearchbuilderextensions.addelasticsearch

When .NET Aspire adds a container image to the app host, as shown in the preceding
example with the docker.io/library/elasticsearch image, it creates a new Elasticsearch
instance on your local machine. A reference to your Elasticsearch resource (the
elasticsearch variable) is added to the ExampleProject . The Elasticsearch resource
includes default credentials with a username of "elastic" and randomly generated
password using the CreateDefaultPasswordParameter method when a password wasn't
provided.

The WithReference method configures a connection in the ExampleProject named
"elasticsearch" . For more information, see Container resource lifecycle.

To add a data volume to the Elasticsearch resource, call the WithDataVolume method on
the Elasticsearch resource:

C#

The data volume is used to persist the Elasticsearch data outside the lifecycle of its
container. The data volume is mounted at the /usr/share/elasticsearch/data path in
the Elasticsearch container and when a name parameter isn't provided, the name is
generated at random. For more information on data volumes and details on why they're
preferred over bind mounts, see Docker docs: Volumes .

// After adding all resources, run the app...

 Tip

If you'd rather connect to an existing Elasticsearch instance, call
AddConnectionString instead. For more information, see Reference existing
resources.

Add Elasticsearch resource with data volume

var builder = DistributedApplication.CreateBuilder(args);

var elasticsearch = builder.AddElasticsearch("elasticsearch")
 .WithDataVolume(isReadOnly: false);

builder.AddProject<Projects.ExampleProject>()
 .WithReference(elasticsearch);

// After adding all resources, run the app...

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.parameterresourcebuilderextensions.createdefaultpasswordparameter
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.resourcebuilderextensions.withreference
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.elasticsearchbuilderextensions.withdatavolume
https://docs.docker.com/engine/storage/volumes
https://docs.docker.com/engine/storage/volumes
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.parameterresourcebuilderextensions.addconnectionstring

To add a data bind mount to the Elasticsearch resource, call the WithDataBindMount
method:

C#

Data bind mounts rely on the host machine's filesystem to persist the Elasticsearch data
across container restarts. The data bind mount is mounted at the C:\Elasticsearch\Data
on Windows (or /Elasticsearch/Data on Unix) path on the host machine in the
Elasticsearch container. For more information on data bind mounts, see Docker docs:
Bind mounts .

When you want to explicitly provide the password used by the container image, you can
provide these credentials as parameters. Consider the following alternative example:

C#

Add Elasticsearch resource with data bind mount

var builder = DistributedApplication.CreateBuilder(args);

var elasticsearch = builder.AddElasticsearch("elasticsearch")
 .WithDataBindMount(
 source: @"C:\Elasticsearch\Data",
 isReadOnly: false);

builder.AddProject<Projects.ExampleProject>()
 .WithReference(elasticsearch);

// After adding all resources, run the app...

） Important

Data bind mounts have limited functionality compared to volumes , which
offer better performance, portability, and security, making them more suitable for
production environments. However, bind mounts allow direct access and
modification of files on the host system, ideal for development and testing where
real-time changes are needed.

Add Elasticsearch resource with password parameter

var builder = DistributedApplication.CreateBuilder(args);

var password = builder.AddParameter("password", secret: true);
var elasticsearch = builder.AddElasticsearch("elasticsearch", password);

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.elasticsearchbuilderextensions.withdatabindmount
https://docs.docker.com/engine/storage/bind-mounts
https://docs.docker.com/engine/storage/bind-mounts
https://docs.docker.com/engine/storage/bind-mounts
https://docs.docker.com/engine/storage/bind-mounts/
https://docs.docker.com/engine/storage/bind-mounts/
https://docs.docker.com/engine/storage/volumes/
https://docs.docker.com/engine/storage/volumes/

For more information on providing parameters, see External parameters.

The Elasticsearch hosting integration automatically adds a health check for the
Elasticsearch resource. The health check verifies that the Elasticsearch instance is
running and that a connection can be established to it.

The hosting integration relies on the 📦 AspNetCore.HealthChecks.Elasticsearch
NuGet package.

To get started with the .NET Aspire Elasticsearch client integration, install the 📦
Aspire.Elastic.Clients.Elasticsearch NuGet package in the client-consuming project,
that is, the project for the application that uses the Elasticsearch client. The Elasticsearch
client integration registers an ElasticsearchClient instance that you can use to interact
with Elasticsearch.

.NET CLI

In the Program.cs file of your client-consuming project, call the AddElasticsearchClient
extension method on any IHostApplicationBuilder to register an ElasticsearchClient
for use via the dependency injection container. The method takes a connection name
parameter.

C#

builder.AddProject<Projects.ExampleProject>()
 .WithReference(elasticsearch);

// After adding all resources, run the app...

Hosting integration health checks

Client integration

.NET CLI

dotnet add package Aspire.Elastic.Clients.Elasticsearch

Add Elasticsearch client

builder.AddElasticsearchClient(connectionName: "elasticsearch");

https://www.nuget.org/packages/AspNetCore.HealthChecks.Elasticsearch
https://www.nuget.org/packages/AspNetCore.HealthChecks.Elasticsearch
https://www.nuget.org/packages/Aspire.Elastic.Clients.Elasticsearch
https://www.nuget.org/packages/Aspire.Elastic.Clients.Elasticsearch
https://www.nuget.org/packages/Aspire.Elastic.Clients.Elasticsearch
https://github.com/elastic/elasticsearch-net
https://github.com/elastic/elasticsearch-net
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.aspireelasticclientselasticsearchextensions.addelasticsearchclient
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.ihostapplicationbuilder

You can then retrieve the ElasticsearchClient instance using dependency injection. For
example, to retrieve the connection from an example service:

C#

There might be situations where you want to register multiple ElasticsearchClient
instances with different connection names. To register keyed Elasticsearch clients, call
the AddKeyedElasticsearchClient:

C#

Then you can retrieve the ElasticsearchClient instances using dependency injection.
For example, to retrieve the connection from an example service:

C#

For more information on keyed services, see .NET dependency injection: Keyed services.

 Tip

The connectionName parameter must match the name used when adding the
Elasticsearch resource in the app host project. For more information, see Add
Elasticsearch resource.

public class ExampleService(ElasticsearchClient client)
{
 // Use client...
}

Add keyed Elasticsearch client

builder.AddKeyedElasticsearchClient(name: "products");
builder.AddKeyedElasticsearchClient(name: "orders");

public class ExampleService(
 [FromKeyedServices("products")] ElasticsearchClient productsClient,
 [FromKeyedServices("orders")] ElasticsearchClient ordersClient)
{
 // Use clients...
}

Configuration

https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.aspireelasticclientselasticsearchextensions.addkeyedelasticsearchclient
https://learn.microsoft.com/en-us/dotnet/core/extensions/dependency-injection#keyed-services

The .NET Aspire Elasticsearch client integration provides multiple options to configure
the server connection based on the requirements and conventions of your project.

When using a connection string from the ConnectionStrings configuration section, you
can provide the name of the connection string when calling
builder.AddElasticsearchClient :

C#

Then the connection string will be retrieved from the ConnectionStrings configuration
section:

JSON

The .NET Aspire Elasticsearch Client integration supports
Microsoft.Extensions.Configuration. It loads the ElasticClientsElasticsearchSettings from
configuration by using the Aspire:Elastic:Clients:Elasticsearch key. Consider the
following example appsettings.json that configures some of the options:

JSON

Use a connection string

builder.AddElasticsearchClient("elasticsearch");

{
 "ConnectionStrings": {
 "elasticsearch": "http://elastic:password@localhost:27011"
 }
}

Use configuration providers

{
 "Aspire": {
 "Elastic": {
 "Clients": {
 "Elasticsearch": {
 "DisableHealthChecks": false,
 "DisableTracing": false,
 "HealthCheckTimeout": "00:00:03",
 "ApiKey": "<Valid ApiKey>",
 "Endpoint": "http://elastic:password@localhost:27011",
 "CloudId": "<Valid CloudId>"
 }

https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration
https://learn.microsoft.com/en-us/dotnet/api/aspire.elastic.clients.elasticsearch.elasticclientselasticsearchsettings

For the complete Elasticsearch client integration JSON schema, see
Aspire.Elastic.Clients.Elasticsearch/ConfigurationSchema.json .

Also you can pass the Action<ElasticClientsElasticsearchSettings> configureSettings
delegate to set up some or all the options inline, for example to set the API key from
code:

C#

When using Elastic Cloud , you can provide the CloudId and ApiKey in
Aspire:Elastic:Clients:Elasticsearch section when calling
builder.AddElasticsearchClient .

C#

Consider the following example appsettings.json that configures the options:

JSON

 }
 }
 }
}

Use inline delegates

builder.AddElasticsearchClient(
 "elasticsearch",
 static settings =>
 settings.Endpoint = new
Uri("http://elastic:password@localhost:27011"));

Use a CloudId and an ApiKey with configuration providers

builder.AddElasticsearchClient("elasticsearch");

{
 "Aspire": {
 "Elastic": {
 "Clients": {
 "Elasticsearch": {
 "ApiKey": "<Valid ApiKey>",
 "CloudId": "<Valid CloudId>"
 }
 }

https://github.com/dotnet/aspire/blob/v9.1.0/src/Components/Aspire.Elastic.Clients.Elasticsearch/ConfigurationSchema.json
https://github.com/dotnet/aspire/blob/v9.1.0/src/Components/Aspire.Elastic.Clients.Elasticsearch/ConfigurationSchema.json
https://www.elastic.co/cloud
https://www.elastic.co/cloud

C#

By default, .NET Aspire integrations enable health checks for all services. For more
information, see .NET Aspire integrations overview.

The .NET Aspire Elasticsearch integration uses the configured client to perform a
PingAsync . If the result is an HTTP 200 OK, the health check is considered healthy,
otherwise it's unhealthy. Likewise, if there's an exception, the health check is considered
unhealthy with the error propagating through the health check failure.

.NET Aspire integrations automatically set up Logging, Tracing, and Metrics
configurations, which are sometimes known as the pillars of observability. For more
information about integration observability and telemetry, see .NET Aspire integrations
overview. Depending on the backing service, some integrations may only support some
of these features. For example, some integrations support logging and tracing, but not
metrics. Telemetry features can also be disabled using the techniques presented in the
Configuration section.

The .NET Aspire Elasticsearch integration will emit the following tracing activities using
OpenTelemetry:

Elastic.Transport

 }
 }
}

Use a CloudId and an ApiKey with inline delegates

builder.AddElasticsearchClient(
 "elasticsearch",
 static settings =>
 {
 settings.ApiKey = "<Valid ApiKey>";
 settings.CloudId = "<Valid CloudId>";
 });

Client integration health checks

Observability and telemetry

Tracing

Elasticsearch .NET
.NET Aspire integrations
.NET Aspire GitHub repo

See also

https://github.com/elastic/elasticsearch-net
https://github.com/elastic/elasticsearch-net
https://github.com/dotnet/aspire
https://github.com/dotnet/aspire

Entity Framework Core overview
Article • 03/25/2025

In a cloud-native solution, such as those .NET Aspire is built to create, microservices
often need to store data in relational databases. .NET Aspire includes integrations that
you can use to ease that task, some of which use the Entity Framework Core (EF Core)
object-relational mapper (O/RM) approach to streamline the process.

Developers use O/RMs to work with databases using code objects instead of SQL
queries. EF Core automatically codes database interactions by generating SQL queries
based on Language-Integrated Query (LINQ) queries. EF Core supports various database
providers, including SQL Server, PostgreSQL, and MySQL, so it's easy to interact with
relational databases while following object-oriented principles.

The most commonly used .NET Aspire EF Core client integrations are:

Cosmos DB Entity Framework Core integration
MySQL Pomelo Entity Framework Core integration
Oracle Entity Framework Core integration
PostgreSQL Entity Framework Core integration
SQL Server Entity Framework Core integration

O/RMs create a model that matches the schema and relationships defined in the
database. Code against this model to query the data, create new records, or make other
changes. In EF Core the model consists of:

A set of entity classes, each of which represents a table in the database and its
columns.
A context class that represents the whole database.

An entity class might look like this:

C#

Overview of EF Core

using System.ComponentModel.DataAnnotations;

namespace SupportDeskProject.Data;

public sealed class SupportTicket
{
 public int Id { get; set; }
 [Required]

https://learn.microsoft.com/en-us/dotnet/api/system.data.entity.dbcontext
https://learn.microsoft.com/en-us/ef/core/modeling/
https://learn.microsoft.com/en-us/ef/core/modeling/

.NET Aspire is designed to help build observable, production-ready, cloud-native
solutions that consist of multiple microservices. It orchestrates multiple projects, each of
which may be a microservice written by a dedicated team, and connects them to each
other. It provides integrations that make it easy to connect to common services, such as
databases.

If you want to use EF Core in any of your microservices, .NET Aspire can help by:

Managing the database container, or a connection to an existing database,
centrally in the App Host project and passing its reference to any project that uses
it.

Providing EF Core-aware integrations that make it easy to create contexts in
microservice projects. There are EF Core integrations for SQL Server, MySQL,
PostgreSQL, Oracle, Cosmos DB, and other popular database systems.

To use EF Core in your microservice, you must:

Define the EF Core model with entity classes and context classes.
Create an instance of the data context, using the reference passed from the App
Host, and add it to the Dependency Injection (DI) container.
When you want to interact with the database, obtain the context from DI and use it
to execute LINQ queries against the database as normal for any EF Core code.

７ Note

EF Core also supports creating, modifying, and deleted records and complex
queries. For more information, see Querying Data and Saving Data

How .NET Aspire can help

） Important

In .NET Aspire, EF Core is implemented by client integrations, not hosting
integrations. The centralized management of the database in the App Host
doesn't involve EF Core, which runs in consuming microservice projects
instead. For more information, see Cosmos DB Hosting integration, MySQL
Pomelo Hosting integration, Oracle Hosting integration, PostgreSQL
Hosting integration, or SQL Server Hosting integration.

https://learn.microsoft.com/en-us/ef/core/querying/
https://learn.microsoft.com/en-us/ef/core/saving/

Both defining the EF Core model and querying the database are the same in .NET Aspire
projects as in any other EF Core app. However, creating the data context differs. In the
rest of this article, you'll learn how to create an configure EF Core contexts in .NET
Aspire project.

In EF Core, a context is a class used to interact with the database. Contexts inherit from
the DbContext class. They provide access to the database through properties of type
DbSet<T> , where each DbSet represents a table or collection of entities in the database.
The context also manages database connections, tracks changes to entities, and handles
operations like saving data and executing queries.

The .NET Aspire EF Core client integrations each include extension methods named
Add{DatabaseSystem}DbContext , where {DatabaseSystem} is the name identifying the
database product you're using. For example, consider the SQL Server EF Core client
integration, the method is named AddSqlServerDbContext and for the PostgreSQL client
integration, the method is named AddNpgsqlDbContext.

These .NET Aspire add context methods:

Check that a context of the same type isn't already registered in the dependency
injection (DI) container.
Use the connection name you pass to the method to get the connection string
from the application builder. This connection name must match the name used
when adding the corresponding resource to the app host project.
Apply the DbContext options, if you passed them.



Use .NET Aspire to create an EF Core context

https://learn.microsoft.com/en-us/ef/core/dbcontext-configuration/
https://learn.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.dbcontext
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.aspiresqlserverefcoresqlclientextensions.addsqlserverdbcontext
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.aspireefpostgresqlextensions.addnpgsqldbcontext
https://learn.microsoft.com/en-us/dotnet/aspire/docs/database/media/ef-core-aspire-architecture-large.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/database/media/ef-core-aspire-architecture-large.png#lightbox

Add the specified DbContext to the DI container with context pooling enabled.
Apply the recommended defaults, unless you've disabled them through the .NET
Aspire EF Core settings:

Enable tracing.
Enable health checks.
Enable connection resiliency.

Use these .NET Aspire add context methods when you want a simple way to create a
context and don't yet need advanced EF Core customization.

C#

You obtain the ExampleDbContext object from the DI container in the same way as for
any other service:

C#

Alternatively, you can add a context to the DI container using the standard EF Core
AddDbContextPool method, as commonly used in non-.NET Aspire projects:

C#

builder.AddSqlServerDbContext<ExampleDbContext>(connectionName: "database");

 Tip

For more information about SQL Server hosting and client integrations, see .NET
Aspire SQL Server Entity Framework Core integration.

public class ExampleService(ExampleDbContext context)
{
 // Use context...
}

Use EF Core to add and enrich context

builder.Services.AddDbContextPool<ExampleDbContext>(options =>
{
 var connectionString =
builder.Configuration.GetConnectionString("database")
 ?? throw new InvalidOperationException("Connection string 'database'
not found.");

https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.entityframeworkservicecollectionextensions.adddbcontextpool

You have more flexibility when you create the context in this way, for example:

You can reuse existing configuration code for the context without rewriting it for
.NET Aspire.
You can choose not to use EF Core context pooling, which may be necessary in
some circumstances. For more information, see Use EF Core context pooling in
.NET Aspire
You can use EF Core context factories or change the lifetime for the EF Core
services. For more information, see Use EF Core context factories in .NET Aspire
You can use dynamic connection strings. For more information, see Use EF Core
with dynamic connection strings in .NET Aspire
You can use EF Core interceptors that depend on DI services to modify database
operations. For more information, see Use EF Core interceptors in .NET Aspire

By default, a context configured this way doesn't include .NET Aspire features, such as
telemetry and health checks. To add those features, each .NET Aspire EF Core client
integration includes a method named Enrich\<DatabaseSystem\>DbContext . These enrich
context methods:

Apply an EF Core settings object, if you passed one.
Configure connection retry settings.
Apply the recommended defaults, unless you've disabled them through the .NET
Aspire EF Core settings:

Enable tracing.
Enable health checks.
Enable connection resiliency.

C#

 options.UseSqlServer(connectionString);
});

７ Note

You must add a context to the DI container before you call an enrich method.

builder.EnrichSqlServerDbContext<ExampleDbContext>(
 configureSettings: settings =>
 {
 settings.DisableRetry = false;
 settings.CommandTimeout = 30; // seconds
 });

https://learn.microsoft.com/en-us/ef/core/logging-events-diagnostics/interceptors

Obtain the context from the DI container using the same code as the previous example:

C#

EF Core interceptors allow developers to hook into and modify database operations at
various points during the execution of database queries and commands. You can use
them to log, modify, or suppress operations with your own code. Your interceptor must
implement one or more interface from the IInterceptor interface.

Interceptors that depend on DI services are not supported by the .NET Aspire Add\
<DatabaseSystem\>DbContext methods. Use the EF Core AddDbContextPool method and
call the AddInterceptors method in the options builder:

C#

public class ExampleService(ExampleDbContext context)
{
 // Use context...
}

Use EF Core interceptors with .NET Aspire

builder.Services.AddDbContextPool<ExampleDbContext>((serviceProvider,
options) =>
 {

options.UseSqlServer(builder.Configuration.GetConnectionString("database"));

options.AddInterceptors(serviceProvider.GetRequiredService<ExampleIntercepto
r>());
 });

builder.EnrichSqlServerDbContext<ExampleDbContext>(
 configureSettings: settings =>
 {
 settings.DisableRetry = false;
 settings.CommandTimeout = 30; // seconds
 });

７ Note

For more information about EF Core interceptors and their use, see Interceptors.

https://learn.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.diagnostics.iinterceptor
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.entityframeworkservicecollectionextensions.adddbcontextpool
https://learn.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.dbcontextoptionsbuilder.addinterceptors
https://learn.microsoft.com/en-us/ef/core/logging-events-diagnostics/interceptors

Most microservices always connect to the same database with the same credentials and
other settings, so they always use the same connection string unless there's a major
change in infrastructure. However, you may need to change the connection string for
each request. For example:

You might offer your service to multiple tenants and need to use a different
database depending on which customer made the request.
You might need to authenticate the request with a different database user account
depending on which customer made the request.

For these requirements, you can use code to formulate a dynamic connection string
and then use it to reach the database and run queries. However, this technique isn't
supported by the .NET Aspire Add\<DatabaseSystem\>DbContext methods. Instead you
must use the EF Core method to create the context and then enrich it:

C#

The above code replaces the place holder {DatabaseName} in the connection string with
the string ContosoDatabase , at run time, before it creates the context and enriches it.

Use EF Core with dynamic connection strings in .NET
Aspire

var connectionStringWithPlaceHolder =
builder.Configuration.GetConnectionString("database")
 ?? throw new InvalidOperationException("Connection string 'database' not
found.");

var connectionString = connectionStringWithPlaceHolder.Replace("
{DatabaseName}", "ContosoDatabase");

builder.Services.AddDbContext<ExampleDbContext>(options =>
 options.UseSqlServer(connectionString
 ?? throw new InvalidOperationException("Connection string 'database'
not found.")));

builder.EnrichSqlServerDbContext<ExampleDbContext>(
 configureSettings: settings =>
 {
 settings.DisableRetry = false;
 settings.CommandTimeout = 30; // seconds
 });

Use EF Core context factories in .NET Aspire

An EF Core context is an object designed to be used for a single unit of work. For
example, if you want to add a new customer to the database, you might need to add a
row in the Customers table and a row in the Addresses table. You should get the EF
Core context, add the new customer and address entities to it, call SaveChangesAsync,
and then dispose the context.

In many types of web application, such as ASP.NET applications, each HTTP request
closely corresponds to a single unit of work against the database. If your .NET Aspire
microservice is an ASP.NET application or a similar web application, you can use the
standard EF Core AddDbContextPool method described above to register a context that
is tied to the current HTTP request. Remember to call the .NET Aspire Enrich\
<DatabaseSystem\>DbContext method to gain health checks, tracing, and other features.
When you use this approach, the context lifetime is tied to the web request. You don't
have to call the Dispose method when the unit of work is complete.

Other application types, such as ASP.NET Core Blazor, don't necessarily align each
request with a unit of work, because they use dependency injection with a different
service scope. In such apps, you may need to perform multiple units of work, each with a
different context, within a single HTTP request and response. To implement this
approach, you can register a context factory, by calling the EF Core
AddPooledDbContextFactory method. This method also partners well with the .NET
Aspire Enrich\<DatabaseSystem\>DbContext methods:

C#

Notice that the above code adds and enriches a context factory in the DI container.
When you retreive this from the container, you must add a line of code to create a
context from it:

C#

builder.Services.AddPooledDbContextFactory<ExampleDbContext>(options =>

options.UseSqlServer(builder.Configuration.GetConnectionString("database")
 ?? throw new InvalidOperationException("Connection string 'database'
not found.")));

builder.EnrichSqlServerDbContext<ExampleDbContext>(
 configureSettings: settings =>
 {
 settings.DisableRetry = false;
 settings.CommandTimeout = 30; // seconds
 });

https://learn.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.dbcontext.savechangesasync
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.entityframeworkservicecollectionextensions.adddbcontextpool
https://learn.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.dbcontext.dispose
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.entityframeworkservicecollectionextensions.addpooleddbcontextfactory

Contexts created from factories in this way aren't disposed of automatically because
they aren't tied to an HTTP request lifetime. You must make sure your code disposes of
them. In this example, the using code block ensures the disposal.

In EF Core a context is relatively quick to create and dispose of so most applications can
set them up as needed without impacting their performance. However, the overhead is
not zero so, if your microservice intensively creates contexts, you may observe
suboptimal performance. In such situations, consider using a context pool.

Context pooling is a feature of EF Core. Contexts are created as normal but, when you
dispose of one, it isn't destroyed but reset and stored in a pool. The next time your code
creates a context, the stored one is returned to avoid the extra overhead of creating a
new one.

In a .NET Aspire consuming project, there are three ways to use context pooling:

Use the .NET Aspire Add\<DatabaseSystem\>DbContext methods to create the
context. These methods create a context pool automatically.

Call the EF Core AddDbContextPool method instead of the EF Core AddDbContext
method.

C#

Call the EF Core AddPooledDbContextFactory method instead of the EF Core
AddDbContextFactory method.

public class ExampleService(IDbContextFactory<ExampleDbContext>
contextFactory)
{
 using (var context = contextFactory.CreateDbContext())
 {
 // Use context...
 }
}

Use EF Core context pooling in .NET Aspire

builder.Services.AddDbContextPool<ExampleDbContext>(options =>

options.UseSqlServer(builder.Configuration.GetConnectionString("databas
e")
 ?? throw new InvalidOperationException("Connection string
'database' not found.")));

https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.entityframeworkservicecollectionextensions.adddbcontextpool
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.entityframeworkservicecollectionextensions.adddbcontext
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.entityframeworkservicecollectionextensions.addpooleddbcontextfactory
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.entityframeworkservicecollectionextensions.adddbcontextfactory

C#

Remember to enrich the context after using the last two methods, as described above.

Entity Framework Core documentation hub
Tutorial: Connect an ASP.NET Core app to SQL Server using .NET Aspire and Entity
Framework Core
Apply Entity Framework Core migrations in .NET Aspire
DbContext Lifetime, Configuration, and Initialization
Advanced Performance Topics
Entity Framework Interceptors

builder.Services.AddPooledDbContextFactory<ExampleDbContext>(options =>

options.UseSqlServer(builder.Configuration.GetConnectionString("databas
e")
 ?? throw new InvalidOperationException("Connection string
'database' not found.")));

） Important

Only the base context state is reset when it's returned to the pool. If you've
manually changed the state of the DbConnection or another service, you must also
manually reset it. Additionally, context pooling prevents you from using
OnConfiguring to configure the context. See DbContext pooling for more
information.

See also

https://learn.microsoft.com/en-us/ef/core
https://learn.microsoft.com/en-us/ef/core/dbcontext-configuration/
https://learn.microsoft.com/en-us/ef/core/performance/advanced-performance-topics
https://learn.microsoft.com/en-us/ef/core/logging-events-diagnostics/interceptors
https://learn.microsoft.com/en-us/ef/core/performance/advanced-performance-topics#dbcontext-pooling

Apply Entity Framework Core migrations
in .NET Aspire
Article • 03/10/2025

Since .NET Aspire projects use a containerized architecture, databases are ephemeral
and can be recreated at any time. Entity Framework Core (EF Core) uses a feature called
migrations to create and update database schemas. Since databases are recreated when
the app starts, you need to apply migrations to initialize the database schema each time
your app starts. This is accomplished by registering a migration service project in your
app that runs migrations during startup.

In this tutorial, you learn how to configure .NET Aspire projects to run EF Core
migrations during app startup.

To work with .NET Aspire, you need the following installed locally:

.NET 8.0 or .NET 9.0
An OCI compliant container runtime, such as:

Docker Desktop or Podman . For more information, see Container runtime.
An Integrated Developer Environment (IDE) or code editor, such as:

Visual Studio 2022 version 17.9 or higher (Optional)
Visual Studio Code (Optional)

C# Dev Kit: Extension (Optional)
JetBrains Rider with .NET Aspire plugin (Optional)

For more information, see .NET Aspire setup and tooling, and .NET Aspire SDK.

This tutorial uses a sample app that demonstrates how to apply EF Core migrations in
.NET Aspire. Use Visual Studio to clone the sample app from GitHub or use the
following command:

Bash

Prerequisites

Obtain the starter app

git clone https://github.com/MicrosoftDocs/aspire-docs-samples/

https://learn.microsoft.com/en-us/ef/core/managing-schemas/migrations
https://dotnet.microsoft.com/download/dotnet/8.0
https://dotnet.microsoft.com/download/dotnet/8.0
https://dotnet.microsoft.com/download/dotnet/9.0
https://dotnet.microsoft.com/download/dotnet/9.0
https://www.docker.com/products/docker-desktop
https://www.docker.com/products/docker-desktop
https://podman.io/
https://podman.io/
https://visualstudio.microsoft.com/vs/
https://visualstudio.microsoft.com/vs/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://marketplace.visualstudio.com/items?itemName=ms-dotnettools.csdevkit
https://marketplace.visualstudio.com/items?itemName=ms-dotnettools.csdevkit
https://blog.jetbrains.com/dotnet/2024/02/19/jetbrains-rider-and-the-net-aspire-plugin/
https://blog.jetbrains.com/dotnet/2024/02/19/jetbrains-rider-and-the-net-aspire-plugin/
https://github.com/MicrosoftDocs/aspire-docs-samples/
https://github.com/MicrosoftDocs/aspire-docs-samples/

The sample app is in the SupportTicketApi folder. Open the solution in Visual Studio or
VS Code and take a moment to review the sample app and make sure it runs before
proceeding. The sample app is a rudimentary support ticket API, and it contains the
following projects:

SupportTicketApi.Api: The ASP.NET Core project that hosts the API.

https://learn.microsoft.com/en-us/ef/core/managing-schemas/migrations/#install-the-tools
https://learn.microsoft.com/en-us/ef/core/managing-schemas/migrations/#install-the-tools

Runs EF Core migration command-line tool in the SupportTicketApi.Api
directory. dotnet ef is run in this location because the API service is where
the DB context is used.
Creates a migration named InitialCreate.
Creates the migration in the in the Migrations folder in the
SupportTicketApi.Data project.

4. Modify the model so that it includes a new property. Open
SupportTicketApi.Data\Models\SupportTicket.cs and add a new property to the
SupportTicket class:

C#

5. Create another new migration to capture the changes to the model:

.NET CLI

Now you've got some migrations to apply. Next, you'll create a migration service that
applies these migrations during app startup.

To run the migrations at startup, you need to create a service that applies the
migrations.

1. Add a new Worker Service project to the solution. If using Visual Studio, right-click
the solution in Solution Explorer and select Add > New Project. Select Worker
Service, name the project SupportTicketApi.MigrationService and target .NET 8.0. If
using the command line, use the following commands from the solution directory:

.NET CLI

public sealed class SupportTicket
{
 public int Id { get; set; }
 [Required]
 public string Title { get; set; } = string.Empty;
 [Required]
 public string Description { get; set; } = string.Empty;
 public bool Completed { get; set; }
}

dotnet ef migrations add AddCompleted --project
..\SupportTicketApi.Data\SupportTicketApi.Data.csproj

Create the migration service

2. Add the SupportTicketApi.Data and SupportTicketApi.ServiceDefaults project
references to the SupportTicketApi.MigrationService project using Visual Studio or
the command line:

.NET CLI

3. Add the 📦 Aspire.Microsoft.EntityFrameworkCore.SqlServer NuGet package
reference to the SupportTicketApi.MigrationService project using Visual Studio or
the command line:

.NET CLI

4. Add the highlighted lines to the Program.cs file in the
SupportTicketApi.MigrationService project:

C#

dotnet new worker -n SupportTicketApi.MigrationService -f "net8.0"
dotnet sln add SupportTicketApi.MigrationService

dotnet add SupportTicketApi.MigrationService reference
SupportTicketApi.Data
dotnet add SupportTicketApi.MigrationService reference
SupportTicketApi.ServiceDefaults

cd SupportTicketApi.MigrationService
dotnet add package Aspire.Microsoft.EntityFrameworkCore.SqlServer -v
"9.1.0"

using SupportTicketApi.Data.Contexts;
using SupportTicketApi.MigrationService;

var builder = Host.CreateApplicationBuilder(args);

builder.AddServiceDefaults();

builder.Services.AddHostedService<Worker>();

builder.Services.AddOpenTelemetry()
 .WithTracing(tracing =>
tracing.AddSource(Worker.ActivitySourceName));
builder.AddSqlServerDbContext<TicketContext>("sqldata");

var host = builder.Build();
host.Run();

https://www.nuget.org/packages/Aspire.Microsoft.EntityFrameworkCore.SqlServer
https://www.nuget.org/packages/Aspire.Microsoft.EntityFrameworkCore.SqlServer

In the preceding code:

The AddServiceDefaults extension method adds service defaults
functionality.
The AddOpenTelemetry extension method configures OpenTelemetry
functionality.
The AddSqlServerDbContext extension method adds the TicketContext
service to the service collection. This service is used to run migrations and
seed the database.

5. Replace the contents of the Worker.cs file in the SupportTicketApi.MigrationService
project with the following code:

C#

using System.Diagnostics;

using Microsoft.EntityFrameworkCore;
using Microsoft.EntityFrameworkCore.Infrastructure;
using Microsoft.EntityFrameworkCore.Storage;

using OpenTelemetry.Trace;

using SupportTicketApi.Data.Contexts;
using SupportTicketApi.Data.Models;

namespace SupportTicketApi.MigrationService;

public class Worker(
 IServiceProvider serviceProvider,
 IHostApplicationLifetime hostApplicationLifetime) :
BackgroundService
{
 public const string ActivitySourceName = "Migrations";
 private static readonly ActivitySource s_activitySource =
new(ActivitySourceName);

 protected override async Task ExecuteAsync(CancellationToken
cancellationToken)
 {
 using var activity = s_activitySource.StartActivity("Migrating
database", ActivityKind.Client);

 try
 {
 using var scope = serviceProvider.CreateScope();
 var dbContext =
scope.ServiceProvider.GetRequiredService<TicketContext>();

 await RunMigrationAsync(dbContext, cancellationToken);
 await SeedDataAsync(dbContext, cancellationToken);

In the preceding code:

The ExecuteAsync method is called when the worker starts. It in turn performs
the following steps:
a. Gets a reference to the TicketContext service from the service provider.
b. Calls RunMigrationAsync to apply any pending migrations.

 }
 catch (Exception ex)
 {
 activity?.RecordException(ex);
 throw;
 }

 hostApplicationLifetime.StopApplication();
 }

 private static async Task RunMigrationAsync(TicketContext
dbContext, CancellationToken cancellationToken)
 {
 var strategy = dbContext.Database.CreateExecutionStrategy();
 await strategy.ExecuteAsync(async () =>
 {
 // Run migration in a transaction to avoid partial
migration if it fails.
 await dbContext.Database.MigrateAsync(cancellationToken);
 });
 }

 private static async Task SeedDataAsync(TicketContext dbContext,
CancellationToken cancellationToken)
 {
 SupportTicket firstTicket = new()
 {
 Title = "Test Ticket",
 Description = "Default ticket, please ignore!",
 Completed = true
 };

 var strategy = dbContext.Database.CreateExecutionStrategy();
 await strategy.ExecuteAsync(async () =>
 {
 // Seed the database
 await using var transaction = await
dbContext.Database.BeginTransactionAsync(cancellationToken);
 await dbContext.Tickets.AddAsync(firstTicket,
cancellationToken);
 await dbContext.SaveChangesAsync(cancellationToken);
 await transaction.CommitAsync(cancellationToken);
 });
 }
}

c. Calls SeedDataAsync to seed the database with initial data.
d. Stops the worker with StopApplication .
The RunMigrationAsync and SeedDataAsync methods both encapsulate their
respective database operations using execution strategies to handle transient
errors that may occur when interacting with the database. To learn more
about execution strategies, see Connection Resiliency.

The migration service is created, but it needs to be added to the .NET Aspire app host so
that it runs when the app starts.

1. In the SupportTicketApi.AppHost project, open the Program.cs file.

2. Add the following highlighted code to the ConfigureServices method:

C#

This enlists the SupportTicketApi.MigrationService project as a service in the .NET
Aspire app host.

3. If the code cannot resolve the migration service project, add a reference to the
migration service project in the AppHost project:

.NET CLI

Add the migration service to the orchestrator

var builder = DistributedApplication.CreateBuilder(args);

var sql = builder.AddSqlServer("sql", port: 14329)
 .WithEndpoint(name: "sqlEndpoint", targetPort: 14330)
 .AddDatabase("sqldata");

builder.AddProject<Projects.SupportTicketApi_Api>("api")
 .WithReference(sql)
 .WaitFor(sql);

builder.AddProject<Projects.SupportTicketApi_MigrationService>
("migrations")
 .WithReference(sql)
 .WaitFor(sql);

builder.Build().Run();

dotnet add SupportTicketApi.AppHost reference
SupportTicketApi.MigrationService

https://learn.microsoft.com/en-us/ef/core/miscellaneous/connection-resiliency

Since the migration service seeds the database, you should remove the existing data
seeding code from the API project.

1. In the SupportTicketApi.Api project, open the Program.cs file.

2. Delete the highlighted lines.

C#

Now that the migration service is configured, run the app to test the migrations.

1. Run the app and observe the SupportTicketApi dashboard.

2. After a short wait, the migrations service state will display Finished.

） Important

If you are using Visual Studio, and you selected the Enlist in Aspire
orchestration option when creating the Worker Service project, similar code is
added automatically with the service name supportticketapi-
migrationservice . Replace that code with the preceding code.

Remove existing seeding code

if (app.Environment.IsDevelopment())
{
 app.UseSwagger();
 app.UseSwaggerUI();

 using (var scope = app.Services.CreateScope())
 {
 var context =
scope.ServiceProvider.GetRequiredService<TicketContext>();
 context.Database.EnsureCreated();

 if(!context.Tickets.Any())
 {
 context.Tickets.Add(new SupportTicket { Title = "Initial
Ticket", Description = "Test ticket, please ignore." });
 context.SaveChanges();
 }
 }
}

Test the migration service

3. Select the Console logs icon on the migration service to investigate the logs
showing the SQL commands that were executed.

You can find the completed sample app on GitHub .

The Aspire Shop sample app uses this approach to apply migrations. See the
AspireShop.CatalogDbManager project for the migration service implementation.



Get the code

More sample code

https://github.com/MicrosoftDocs/aspire-docs-samples/tree/solution/SupportTicketApi
https://github.com/MicrosoftDocs/aspire-docs-samples/tree/solution/SupportTicketApi
https://learn.microsoft.com/en-us/samples/dotnet/aspire-samples/aspire-shop/
https://learn.microsoft.com/en-us/dotnet/aspire/docs/database/media/ef-core-migrations/dashboard-post-migration.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/database/media/ef-core-migrations/dashboard-post-migration.png#lightbox

Seed data in a database using .NET
Aspire
Article • 08/12/2024

In this article, you learn how to configure .NET Aspire projects to seed data in a database
during app startup. .NET Aspire enables you to seed data using database scripts or
Entity Framework Core for common platforms such as SQL Server, PostgreSQL and
MySQL.

Seeding data pre-populates database tables with rows of data so they're ready for
testing via your app. You may want to seed data for the following scenarios:

Manually develop and test different features of your app against a meaningful set
of data, such as a product catalog or list of customers.
Run test suites to verify that features behave a specific way with a given set of
data.

Manually seeding data is tedious and time consuming, so you should automate the
process when possible. Use volumes to run database scripts for .NET Aspire projects
during startup. You can also seed your database using tools like Entity Framework Core,
which handles many underlying concerns for you.

By default, .NET Aspire database integrations rely on containerized databases, which
create the following challenges when trying to seed data:

.NET Aspire destroys and recreates containers every time the app restarts, which
means by default you have to re-seed your database every time the app restarts.
Depending on your selected database technology, the new container instance may
or may not create a default database, which means you might also have to create
the database itself.
Even if a default database exists, it most likely will not have the desired name or
schema for your specific app.

.NET Aspire enables you to resolve these challenges using volumes and a few
configurations to seed data effectively.

When to seed data

Understand containerized databases

Volumes are the recommended way to automatically seed containerized databases
when using SQL scripts. Volumes can store data for multiple containers at a time, offer
high performance and are easy to back up or migrate. With .NET Aspire, you configure a
volume for each resource container using the
ContainerResourceBuilderExtensions.WithBindMount method, which accepts three
parameters:

Source: The source path of the volume mount, which is the physical location on
your host.
Target: The target path in the container of the data you want to persist.

Consider the following volume configuration code from a Program.cs file in a sample
AppHost project:

C#

In this example, the .WithBindMount method parameters configure the following:

../DatabaseContainers.ApiService/data/postgres sets a path to the SQL script in
your local project that you want to run in the container to seed data.
/docker-entrypoint-initdb.d sets the path to an entry point in the container so
your script will be run during container startup.

The referenced SQL script located at ../DatabaseContainers.ApiService/data/postgres
creates and seeds a Todos table:

SQL

Seed data using volumes and SQL scripts

var todosDbName = "Todos";
var todosDb = builder.AddPostgres("postgres")
 .WithEnvironment("POSTGRES_DB", todosDbName)
 .WithBindMount(
 "../DatabaseContainers.ApiService/data/postgres",
 "/docker-entrypoint-initdb.d")
 .AddDatabase(todosDbName);

-- Postgres init script

-- Create the Todos table
CREATE TABLE IF NOT EXISTS Todos
(
 Id SERIAL PRIMARY KEY,
 Title text UNIQUE NOT NULL,
 IsComplete boolean NOT NULL DEFAULT false

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.containerresourcebuilderextensions.withbindmount

The script runs during startup every time a new container instance is created.

The following examples demonstrate how to seed data using SQL scripts and
configurations applied using the .WithBindMount method for different database
technologies:

The configuration code in the .AppHost Program.cs file mounts the required
database files and folders and configures an entrypoint so that they run during
startup.

C#

);

-- Insert some sample data into the Todos table
INSERT INTO Todos (Title, IsComplete)
VALUES
 ('Give the dog a bath', false),
 ('Wash the dishes', false),
 ('Do the groceries', false)
ON CONFLICT DO NOTHING;

Database seeding examples

７ Note

Visit the Database Container Sample App to view the full project and file
structure for each database option.

SQL Server

// SQL Server container is configured with an auto-generated password by
default
// but doesn't support any auto-creation of databases or running scripts
on startup so we have to do it manually.
var sqlserver = builder.AddSqlServer("sqlserver")
 // Mount the init scripts directory into the container.
 .WithBindMount("./sqlserverconfig", "/usr/config")
 // Mount the SQL scripts directory into the container so that the
init scripts run.
 .WithBindMount("../DatabaseContainers.ApiService/data/sqlserver",
"/docker-entrypoint-initdb.d")
 // Run the custom entrypoint script on startup.
 .WithEntrypoint("/usr/config/entrypoint.sh")
 // Configure the container to store data in a volume so that it
persists across instances.

https://github.com/dotnet/aspire-samples/blob/main/samples/DatabaseContainers/DatabaseContainers.AppHost/Program.cs
https://github.com/dotnet/aspire-samples/blob/main/samples/DatabaseContainers/DatabaseContainers.AppHost/Program.cs

The entrypoint.sh script lives in the mounted ./sqlserverconfig project folder and
runs when the container starts. The script launches SQL Server and checks that it's
running.

shell

The init.sql SQL script that lives in the mounted
../DatabaseContainers.ApiService/data/sqlserver project folder creates the
database and tables.

SQL

 .WithDataVolume()
 // Keep the container running between app host sessions.
 .WithLifetime(ContainerLifetime.Persistent);

#!/bin/bash

Adapted from: https://github.com/microsoft/mssql-
docker/blob/80e2a51d0eb1693f2de014fb26d4a414f5a5add5/linux/preview/examp
les/mssql-customize/entrypoint.sh

Start the script to create the DB and user
/usr/config/configure-db.sh &

Start SQL Server
/opt/mssql/bin/sqlservr

-- SQL Server init script

-- Create the AddressBook database
IF NOT EXISTS (SELECT * FROM sys.databases WHERE name = N'AddressBook')
BEGIN
 CREATE DATABASE AddressBook;
END;
GO

USE AddressBook;
GO

-- Create the Contacts table
IF OBJECT_ID(N'Contacts', N'U') IS NULL
BEGIN
 CREATE TABLE Contacts
 (
 Id INT PRIMARY KEY IDENTITY(1,1) ,
 FirstName VARCHAR(255) NOT NULL,
 LastName VARCHAR(255) NOT NULL,
 Email VARCHAR(255) NULL,
 Phone VARCHAR(255) NULL

You can also seed data in .NET Aspire projects using Entity Framework Core by explicitly
running migrations during startup. Entity Framework Core handles underlying database
connections and schema creation for you, which eliminates the need to use volumes or
run SQL scripts during container startup.

Add the following code to the Program.cs file of your API Service project.

C#

);
END;
GO

-- Ensure that either the Email or Phone column is populated
IF OBJECT_ID(N'chk_Contacts_Email_Phone', N'C') IS NULL
BEGIN
 ALTER TABLE Contacts
 ADD CONSTRAINT chk_Contacts_Email_Phone CHECK
 (
 Email IS NOT NULL OR Phone IS NOT NULL
);
END;
GO

-- Insert some sample data into the Contacts table
IF (SELECT COUNT(*) FROM Contacts) = 0
BEGIN
 INSERT INTO Contacts (FirstName, LastName, Email, Phone)
 VALUES
 ('John', 'Doe', 'john.doe@example.com', '555-123-4567'),
 ('Jane', 'Doe', 'jane.doe@example.com', '555-234-5678');
END;
GO

Seed data using Entity Framework Core

） Important

These types of configurations should only be done during development, so make
sure to add a conditional that checks your current environment context.

SQL Server

// Register DbContext class
builder.AddSqlServerDbContext<TicketContext>("sqldata");

Database seeding is useful in a variety of app development scenarios. Try combining
these techniques with the resource implementations demonstrated in the following
tutorials:

Tutorial: Connect an ASP.NET Core app to SQL Server using .NET Aspire and Entity
Framework Core
Tutorial: Connect an ASP.NET Core app to .NET Aspire storage integrations
.NET Aspire orchestration overview

var app = builder.Build();

app.MapDefaultEndpoints();

if (app.Environment.IsDevelopment())
{
 // Retrieve an instance of the DbContext class and manually run
migrations during startup
 using (var scope = app.Services.CreateScope())
 {
 var context =
scope.ServiceProvider.GetRequiredService<TicketContext>();
 context.Database.Migrate();
 }
}

Next steps

.NET Aspire Cosmos DB Entity
Framework Core integration
Article • 02/26/2025

Includes: Hosting integration and Client integration

Azure Cosmos DB is a fully managed NoSQL database service for modern app
development. The .NET Aspire Cosmos DB Entity Framework Core integration enables
you to connect to existing Cosmos DB instances or create new instances from .NET with
the Azure Cosmos DB emulator.

The .NET Aspire Azure Cosmos DB hosting integration models the various Cosmos DB
resources as the following types:

AzureCosmosDBResource: Represents an Azure Cosmos DB resource.
AzureCosmosDBEmulatorResource: Represents an Azure Cosmos DB emulator
resource.

To access these types and APIs for expressing them, add the 📦
Aspire.Hosting.Azure.CosmosDB NuGet package in the app host project.

.NET CLI

For more information, see dotnet add package or Manage package dependencies in
.NET applications.

In your app host project, call AddAzureCosmosDB to add and return an Azure Cosmos
DB resource builder.

C#

Hosting integration

.NET CLI

dotnet add package Aspire.Hosting.Azure.CosmosDB

Add Azure Cosmos DB resource

https://azure.microsoft.com/services/cosmos-db/
https://azure.microsoft.com/services/cosmos-db/
https://azure.microsoft.com/services/cosmos-db/
https://azure.microsoft.com/services/cosmos-db/
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azurecosmosdbresource
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azure.azurecosmosdbemulatorresource
https://www.nuget.org/packages/Aspire.Hosting.Azure.CosmosDB
https://www.nuget.org/packages/Aspire.Hosting.Azure.CosmosDB
https://www.nuget.org/packages/Aspire.Hosting.Azure.CosmosDB
https://learn.microsoft.com/en-us/dotnet/core/tools/dotnet-add-package
https://learn.microsoft.com/en-us/dotnet/core/tools/dependencies
https://learn.microsoft.com/en-us/dotnet/core/tools/dependencies
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azurecosmosextensions.addazurecosmosdb

When you add an AzureCosmosDBResource to the app host, it exposes other useful
APIs to add databases and containers. In other words, you must add an
AzureCosmosDBResource before adding any of the other Cosmos DB resources.

If you're new to Bicep, it's a domain-specific language for defining Azure resources. With
.NET Aspire, you don't need to write Bicep by-hand, instead the provisioning APIs
generate Bicep for you. When you publish your app, the generated Bicep is output
alongside the manifest file. When you add an Azure Cosmos DB resource, the following
Bicep is generated:

Bicep

var builder = DistributedApplication.CreateBuilder(args);

var cosmos = builder.AddAzureCosmosDB("cosmos-db");

// After adding all resources, run the app...

） Important

When you call AddAzureCosmosDB, it implicitly calls AddAzureProvisioning—
which adds support for generating Azure resources dynamically during app startup.
The app must configure the appropriate subscription and location. For more
information, see Local provisioning: Configuration.

Generated provisioning Bicep

@description('The location for the resource(s) to be deployed.')
param location string = resourceGroup().location

param principalType string

param principalId string

resource cosmos 'Microsoft.DocumentDB/databaseAccounts@2024-08-15' = {
 name: take('cosmos-${uniqueString(resourceGroup().id)}', 44)
 location: location
 properties: {
 locations: [
 {
 locationName: location
 failoverPriority: 0
 }
]
 consistencyPolicy: {

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azurecosmosdbresource
https://learn.microsoft.com/en-us/azure/azure-resource-manager/bicep/overview
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azurecosmosextensions.addazurecosmosdb
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azureprovisionerextensions.addazureprovisioning

The preceding Bicep is a module that provisions an Azure Cosmos DB account with the
following defaults:

kind : The kind of Cosmos DB account. The default is GlobalDocumentDB .
consistencyPolicy : The consistency policy of the Cosmos DB account. The default
is Session .
locations : The locations for the Cosmos DB account. The default is the resource
group's location.

In addition to the Cosmos DB account, it also adds the current application to the Data
Contributor role for the Cosmos DB account. The generated Bicep is a starting point
and is influenced by changes to the provisioning infrastructure in C#. Customizations to
the Bicep file directly will be overwritten, so make changes through the C# provisioning
APIs to ensure they are reflected in the generated files.

 defaultConsistencyLevel: 'Session'
 }
 databaseAccountOfferType: 'Standard'
 disableLocalAuth: true
 }
 kind: 'GlobalDocumentDB'
 tags: {
 'aspire-resource-name': 'cosmos'
 }
}

resource cosmos_roleDefinition
'Microsoft.DocumentDB/databaseAccounts/sqlRoleDefinitions@2024-08-15'
existing = {
 name: '00000000-0000-0000-0000-000000000002'
 parent: cosmos
}

resource cosmos_roleAssignment
'Microsoft.DocumentDB/databaseAccounts/sqlRoleAssignments@2024-08-15' = {
 name: guid(principalId, cosmos_roleDefinition.id, cosmos.id)
 properties: {
 principalId: principalId
 roleDefinitionId: cosmos_roleDefinition.id
 scope: cosmos.id
 }
 parent: cosmos
}

output connectionString string = cosmos.properties.documentEndpoint

Customize provisioning infrastructure

All .NET Aspire Azure resources are subclasses of the AzureProvisioningResource type.
This type enables the customization of the generated Bicep by providing a fluent API to
configure the Azure resources—using the ConfigureInfrastructure<T>
(IResourceBuilder<T>, Action<AzureResourceInfrastructure>) API. For example, you can
configure the kind , consistencyPolicy , locations , and more. The following example
demonstrates how to customize the Azure Cosmos DB resource:

C#

The preceding code:

Chains a call to the ConfigureInfrastructure API:
The infra parameter is an instance of the AzureResourceInfrastructure type.
The provisionable resources are retrieved by calling the
GetProvisionableResources() method.
The single CosmosDBAccount is retrieved.
The CosmosDBAccount.ConsistencyPolicy is assigned to a
DefaultConsistencyLevel.Strong.
A tag is added to the Cosmos DB account with a key of ExampleKey and a value
of Example value .

There are many more configuration options available to customize the Azure Cosmos
DB resource. For more information, see Azure.Provisioning.CosmosDB. For more
information, see Azure.Provisioning customization.

You might have an existing Azure Cosmos DB account that you want to connect to.
Instead of representing a new Azure Cosmos DB resource, you can add a connection

builder.AddAzureCosmosDB("cosmos-db")
 .ConfigureInfrastructure(infra =>
 {
 var cosmosDbAccount = infra.GetProvisionableResources()
 .OfType<CosmosDBAccount>()
 .Single();

 cosmosDbAccount.Kind = CosmosDBAccountKind.MongoDB;
 cosmosDbAccount.ConsistencyPolicy = new()
 {
 DefaultConsistencyLevel = DefaultConsistencyLevel.Strong,
 };
 cosmosDbAccount.Tags.Add("ExampleKey", "Example value");
 });

Connect to an existing Azure Cosmos DB account

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azure.azureprovisioningresource
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azureprovisioningresourceextensions.configureinfrastructure#aspire-hosting-azureprovisioningresourceextensions-configureinfrastructure-1(aspire-hosting-applicationmodel-iresourcebuilder((-0))-system-action((aspire-hosting-azure-azureresourceinfrastructure)))
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azureprovisioningresourceextensions.configureinfrastructure#aspire-hosting-azureprovisioningresourceextensions-configureinfrastructure-1(aspire-hosting-applicationmodel-iresourcebuilder((-0))-system-action((aspire-hosting-azure-azureresourceinfrastructure)))
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azureprovisioningresourceextensions.configureinfrastructure
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azure.azureresourceinfrastructure
https://learn.microsoft.com/en-us/dotnet/api/azure.provisioning.infrastructure.getprovisionableresources#azure-provisioning-infrastructure-getprovisionableresources
https://learn.microsoft.com/en-us/dotnet/api/azure.provisioning.cosmosdb.cosmosdbaccount
https://learn.microsoft.com/en-us/dotnet/api/azure.provisioning.cosmosdb.cosmosdbaccount.consistencypolicy#azure-provisioning-cosmosdb-cosmosdbaccount-consistencypolicy
https://learn.microsoft.com/en-us/dotnet/api/azure.provisioning.cosmosdb.defaultconsistencylevel#azure-provisioning-cosmosdb-defaultconsistencylevel-strong
https://learn.microsoft.com/en-us/dotnet/api/azure.provisioning.cosmosdb

string to the app host. To add a connection to an existing Azure Cosmos DB account,
call the AddConnectionString method:

C#

The connection string is configured in the app host's configuration, typically under User
Secrets, under the ConnectionStrings section. The app host injects this connection
string as an environment variable into all dependent resources, for example:

JSON

The dependent resource can access the injected connection string by calling the
GetConnectionString method, and passing the connection name as the parameter, in
this case "cosmos-db" . The GetConnectionString API is shorthand for
IConfiguration.GetSection("ConnectionStrings")[name] .

To add an Azure Cosmos DB database resource, call the AddCosmosDatabase method
on an IResourceBuilder<AzureCosmosDBResource> instance:

var builder = DistributedApplication.CreateBuilder(args);

var cosmos = builder.AddConnectionString("cosmos-db");

builder.AddProject<Projects.WebApplication>("web")
 .WithReference(cosmos);

// After adding all resources, run the app...

７ Note

Connection strings are used to represent a wide range of connection information,
including database connections, message brokers, endpoint URIs, and other
services. In .NET Aspire nomenclature, the term "connection string" is used to
represent any kind of connection information.

{
 "ConnectionStrings": {
 "cosmos-db":
"AccountEndpoint=https://{account_name}.documents.azure.com:443/;AccountKey=
{account_key};"
 }
}

Add Azure Cosmos DB database and container resources

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.parameterresourcebuilderextensions.addconnectionstring
https://learn.microsoft.com/en-us/aspnet/core/security/app-secrets
https://learn.microsoft.com/en-us/aspnet/core/security/app-secrets
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.configurationextensions.getconnectionstring
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azurecosmosextensions.addcosmosdatabase

C#

When you call AddCosmosDatabase , it adds a database named db to your Cosmos DB
resources and returns the newly created database resource. The database is created in
the Cosmos DB account that's represented by the AzureCosmosDBResource that you
added earlier. The database is a logical container for collections and users.

An Azure Cosmos DB container is where data is stored. When you create a container,
you need to supply a partition key.

To add an Azure Cosmos DB container resource, call the AddContainer method on an
IResourceBuilder<AzureCosmosDBDatabaseResource> instance:

C#

The container is created in the database that's represented by the
AzureCosmosDBDatabaseResource that you added earlier.

For more information, see Databases, containers, and items in Azure Cosmos DB.

To add an Azure Cosmos DB emulator resource, chain a call on an
IResourceBuilder<AzureCosmosDBResource> to the RunAsEmulator API:

C#

var builder = DistributedApplication.CreateBuilder(args);

var cosmos = builder.AddAzureCosmosDB("cosmos-db");
cosmos.AddCosmosDatabase("db");

// After adding all resources, run the app...

var builder = DistributedApplication.CreateBuilder(args);

var cosmos = builder.AddAzureCosmosDB("cosmos-db");
var db = cosmos.AddCosmosDatabase("db");
db.AddContainer("entries", "/id");

// After adding all resources, run the app...

Add Azure Cosmos DB emulator resource

var builder = DistributedApplication.CreateBuilder(args);

var cosmos = builder.AddAzureCosmosDB("cosmos-db")
 .RunAsEmulator();

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azurecosmosextensions.addcontainer
https://learn.microsoft.com/en-us/azure/cosmos-db/resource-model
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azurecosmosextensions.runasemulator

When you call RunAsEmulator , it configures your Cosmos DB resources to run locally
using an emulator. The emulator in this case is the Azure Cosmos DB Emulator. The
Azure Cosmos DB Emulator provides a free local environment for testing your Azure
Cosmos DB apps and it's a perfect companion to the .NET Aspire Azure hosting
integration. The emulator isn't installed, instead, it's accessible to .NET Aspire as a
container. When you add a container to the app host, as shown in the preceding
example with the mcr.microsoft.com/cosmosdb/emulator image, it creates and starts the
container when the app host starts. For more information, see Container resource
lifecycle.

There are various configurations available to container resources, for example, you can
configure the container's ports, environment variables, it's lifetime, and more.

By default, the Cosmos DB emulator container when configured by .NET Aspire, exposes
the following endpoints:

Endpoint Container port Host port

https 8081 dynamic

The port that it's listening on is dynamic by default. When the container starts, the port
is mapped to a random port on the host machine. To configure the endpoint port, chain
calls on the container resource builder provided by the RunAsEmulator method as shown
in the following example:

C#

// After adding all resources, run the app...

Configure Cosmos DB emulator container

Configure Cosmos DB emulator container gateway port

ﾉ Expand table

var builder = DistributedApplication.CreateBuilder(args);

var cosmos = builder.AddAzureCosmosDB("cosmos-db").RunAsEmulator(
 emulator =>
 {
 emulator.WithGatewayPort(7777);
 });

https://learn.microsoft.com/en-us/azure/cosmos-db/local-emulator

The preceding code configures the Cosmos DB emulator container's existing https
endpoint to listen on port 8081 . The Cosmos DB emulator container's port is mapped to
the host port as shown in the following table:

Endpoint name Port mapping (container:host)

https 8081:7777

To configure the Cosmos DB emulator container with a persistent lifetime, call the
WithLifetime method on the Cosmos DB emulator container resource and pass
ContainerLifetime.Persistent:

C#

For more information, see Container resource lifetime.

To add a data volume to the Azure Cosmos DB emulator resource, call the
WithDataVolume method on the Azure Cosmos DB emulator resource:

C#

// After adding all resources, run the app...

ﾉ Expand table

Configure Cosmos DB emulator container with persistent lifetime

var builder = DistributedApplication.CreateBuilder(args);

var cosmos = builder.AddAzureCosmosDB("cosmos-db").RunAsEmulator(
 emulator =>
 {

emulator.WithLifetime(ContainerLifetime.Persistent);
 });

// After adding all resources, run the app...

Configure Cosmos DB emulator container with data volume

var builder = DistributedApplication.CreateBuilder(args);

var cosmos = builder.AddAzureCosmosDB("cosmos-db").RunAsEmulator(
 emulator =>
 {

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.containerresourcebuilderextensions.withlifetime
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.containerlifetime#aspire-hosting-applicationmodel-containerlifetime-persistent
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azurecosmosextensions.withdatavolume

The data volume is used to persist the Cosmos DB emulator data outside the lifecycle of
its container. The data volume is mounted at the /tmp/cosmos/appdata path in the
Cosmos DB emulator container and when a name parameter isn't provided, the name is
generated. The emulator has its AZURE_COSMOS_EMULATOR_ENABLE_DATA_PERSISTENCE
environment variable set to true . For more information on data volumes and details on
why they're preferred over bind mounts, see Docker docs: Volumes .

To configure the partition count of the Cosmos DB emulator container, call the
WithPartitionCount method:

C#

The preceding code configures the Cosmos DB emulator container to have a partition
count of 100 . This is a shorthand for setting the AZURE_COSMOS_EMULATOR_PARTITION_COUNT
environment variable.

The next generation of the Azure Cosmos DB emulator is entirely Linux-based and is
available as a Docker container. It supports running on a wide variety of processors and
operating systems.

To use the preview version of the Cosmos DB emulator, call the RunAsPreviewEmulator
method. Since this feature is in preview, you need to explicitly opt into the preview
feature by suppressing the ASPIRECOSMOSDB001 experimental diagnostic.

 emulator.WithDataVolume();
 });

// After adding all resources, run the app...

Configure Cosmos DB emulator container partition count

var builder = DistributedApplication.CreateBuilder(args);

var cosmos = builder.AddAzureCosmosDB("cosmos-db").RunAsEmulator(
 emulator =>
 {
 emulator.WithPartitionCount(100); // Defaults to 25
 });

// After adding all resources, run the app...

Use Linux-based emulator (preview)

https://docs.docker.com/engine/storage/volumes
https://docs.docker.com/engine/storage/volumes
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azurecosmosextensions.withpartitioncount
https://learn.microsoft.com/en-us/azure/cosmos-db/emulator-linux
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azurecosmosextensions.runaspreviewemulator

The preview emulator also supports exposing a "Data Explorer" endpoint which allows
you to view the data stored in the Cosmos DB emulator via a web UI. To enable the Data
Explorer, call the WithDataExplorer method.

C#

The preceding code configures the Linux-based preview Cosmos DB emulator container,
with the Data Explorer endpoint, to use at run time.

The Azure Cosmos DB hosting integration automatically adds a health check for the
Cosmos DB resource. The health check verifies that the Cosmos DB is running and that a
connection can be established to it.

The hosting integration relies on the 📦 AspNetCore.HealthChecks.CosmosDb NuGet
package.

To get started with the .NET Aspire Microsoft Entity Framework Core Cosmos DB
integration, install the 📦 Aspire.Microsoft.EntityFrameworkCore.Cosmos NuGet
package in the client-consuming project, i.e., the project for the application that uses
the Microsoft Entity Framework Core Cosmos DB client.

.NET CLI

#pragma warning disable ASPIRECOSMOSDB001

var builder = DistributedApplication.CreateBuilder(args);

var cosmos = builder.AddAzureCosmosDB("cosmos-db").RunAsPreviewEmulator(
 emulator =>
 {
 emulator.WithDataExplorer();
 });

// After adding all resources, run the app...

Hosting integration health checks

Client integration

.NET CLI

dotnet add package Aspire.Microsoft.EntityFrameworkCore.Cosmos

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azurecosmosextensions.withdataexplorer
https://www.nuget.org/packages/AspNetCore.HealthChecks.CosmosDb
https://www.nuget.org/packages/AspNetCore.HealthChecks.CosmosDb
https://www.nuget.org/packages/Aspire.Microsoft.EntityFrameworkCore.Cosmos
https://www.nuget.org/packages/Aspire.Microsoft.EntityFrameworkCore.Cosmos

In the Program.cs file of your client-consuming project, call the AddCosmosDbContext
extension method to register a System.Data.Entity.DbContext for use via the
dependency injection container. The method takes a connection name parameter.

C#

You can then retrieve the DbContext instance using dependency injection. For example,
to retrieve the client from a service:

C#

For more information on using Entity Framework Core with Azure Cosmos DB, see the
Examples for Azure Cosmos DB for NoSQL SDK for .NET.

The .NET Aspire Microsoft Entity Framework Core Cosmos DB integration provides
multiple options to configure the Azure Cosmos DB connection based on the
requirements and conventions of your project.

When using a connection string from the ConnectionStrings configuration section, you
can provide the name of the connection string when calling

Add Cosmos DB context

builder.AddCosmosDbContext<MyDbContext>("cosmosdb", "databaseName");

 Tip

The connectionName parameter must match the name used when adding the
Cosmos DB resource in the app host project. In other words, when you call
AddAzureCosmosDB and provide a name of cosmosdb that same name should be used
when calling AddCosmosDbContext . For more information, see Add Azure Cosmos
DB resource.

public class ExampleService(MyDbContext context)
{
 // Use context...
}

Configuration

Use a connection string

https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.aspireazureefcorecosmosextensions.addcosmosdbcontext
https://learn.microsoft.com/en-us/dotnet/api/system.data.entity.dbcontext
https://learn.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.dbcontext
https://learn.microsoft.com/en-us/ef/core/providers/cosmos/?tabs=dotnet-core-cli

builder.AddCosmosDbContext :

C#

And then the connection string will be retrieved from the ConnectionStrings
configuration section:

JSON

For more information, see the ConnectionString documentation.

The .NET Aspire Microsoft Entity Framework Core Cosmos DB integration supports
Microsoft.Extensions.Configuration. It loads the EntityFrameworkCoreCosmosSettings
from configuration files such as appsettings.json. Example _appsettings.json that
configures some of the options:

JSON

For the complete Cosmos DB client integration JSON schema, see
Aspire.Microsoft.EntityFrameworkCore.Cosmos/ConfigurationSchema.json .

builder.AddCosmosDbContext<MyDbContext>("CosmosConnection");

{
 "ConnectionStrings": {
 "CosmosConnection":
"AccountEndpoint=https://{account_name}.documents.azure.com:443/;AccountKey=
{account_key};"
 }
}

Use configuration providers

{
 "Aspire": {
 "Microsoft": {
 "EntityFrameworkCore": {
 "Cosmos": {
 "DisableTracing": true
 }
 }
 }
 }
}

https://learn.microsoft.com/en-us/azure/cosmos-db/nosql/how-to-dotnet-get-started#connect-with-a-connection-string
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration
https://learn.microsoft.com/en-us/dotnet/api/aspire.microsoft.entityframeworkcore.cosmos.entityframeworkcorecosmossettings
https://github.com/dotnet/aspire/blob/v9.1.0/src/Components/Aspire.Microsoft.EntityFrameworkCore.Cosmos/ConfigurationSchema.json
https://github.com/dotnet/aspire/blob/v9.1.0/src/Components/Aspire.Microsoft.EntityFrameworkCore.Cosmos/ConfigurationSchema.json

You can also pass the Action<EntityFrameworkCoreCosmosSettings> configureSettings
delegate to set up some or all the EntityFrameworkCoreCosmosSettings options inline,
for example to disable tracing from code:

C#

The .NET Aspire Microsoft Entity Framework Core Cosmos DB integration currently
doesn't implement health checks, though this may change in future releases.

.NET Aspire integrations automatically set up Logging, Tracing, and Metrics
configurations, which are sometimes known as the pillars of observability. For more
information about integration observability and telemetry, see .NET Aspire integrations
overview. Depending on the backing service, some integrations may only support some
of these features. For example, some integrations support logging and tracing, but not
metrics. Telemetry features can also be disabled using the techniques presented in the
Configuration section.

The .NET Aspire Microsoft Entity Framework Core Cosmos DB integration uses the
following log categories:

Azure-Cosmos-Operation-Request-Diagnostics

Microsoft.EntityFrameworkCore.ChangeTracking

Microsoft.EntityFrameworkCore.Database.Command

Microsoft.EntityFrameworkCore.Infrastructure

Microsoft.EntityFrameworkCore.Query

Use inline delegates

builder.AddCosmosDbContext<MyDbContext>(
 "cosmosdb",
 settings => settings.DisableTracing = true);

Client integration health checks

Observability and telemetry

Logging

Tracing

https://learn.microsoft.com/en-us/dotnet/api/aspire.microsoft.entityframeworkcore.cosmos.entityframeworkcorecosmossettings

The .NET Aspire Microsoft Entity Framework Core Cosmos DB integration will emit the
following tracing activities using OpenTelemetry:

Azure.Cosmos.Operation

OpenTelemetry.Instrumentation.EntityFrameworkCore

The .NET Aspire Microsoft Entity Framework Core Cosmos DB integration currently
supports the following metrics:

Microsoft.EntityFrameworkCore

ec_Microsoft_EntityFrameworkCore_active_db_contexts

ec_Microsoft_EntityFrameworkCore_total_queries

ec_Microsoft_EntityFrameworkCore_queries_per_second

ec_Microsoft_EntityFrameworkCore_total_save_changes

ec_Microsoft_EntityFrameworkCore_save_changes_per_second

ec_Microsoft_EntityFrameworkCore_compiled_query_cache_hit_rate

ec_Microsoft_Entity_total_execution_strategy_operation_failures

ec_Microsoft_E_execution_strategy_operation_failures_per_second

ec_Microsoft_EntityFramew_total_optimistic_concurrency_failures

ec_Microsoft_EntityF_optimistic_concurrency_failures_per_second

Azure Cosmos DB docs
.NET Aspire integrations
.NET Aspire GitHub repo

Metrics

See also

https://learn.microsoft.com/en-us/azure/cosmos-db/introduction
https://github.com/dotnet/aspire
https://github.com/dotnet/aspire

.NET Aspire Azure PostgreSQL Entity
Framework Core integration
Article • 01/31/2025

Includes: Hosting integration and Client integration

Azure Database for PostgreSQL—Flexible Server is a relational database service based
on the open-source Postgres database engine. It's a fully managed database-as-a-
service that can handle mission-critical workloads with predictable performance,
security, high availability, and dynamic scalability. The .NET Aspire Azure PostgreSQL
integration provides a way to connect to existing Azure PostgreSQL databases, or create
new instances from .NET with the docker.io/library/postgres container image .

The .NET Aspire Azure PostgreSQL hosting integration models a PostgreSQL flexible
server and database as the AzurePostgresFlexibleServerResource and
AzurePostgresFlexibleServerDatabaseResource types. Other types that are inherently
available in the hosting integration are represented in the following resources:

PostgresServerResource
PostgresDatabaseResource
PgAdminContainerResource
PgWebContainerResource

To access these types and APIs for expressing them as resources in your app host
project, install the 📦 Aspire.Hosting.Azure.PostgreSQL NuGet package:

.NET CLI

For more information, see dotnet add package.

The Azure PostgreSQL hosting integration takes a dependency on the 📦
Aspire.Hosting.PostgreSQL NuGet package, extending it to support Azure. Everything
that you can do with the .NET Aspire PostgreSQL integration and .NET Aspire
PostgreSQL Entity Framework Core integration you can also do with this integration.

Hosting integration

.NET CLI

dotnet add package Aspire.Hosting.Azure.PostgreSQL

https://learn.microsoft.com/en-us/azure/postgresql/
https://hub.docker.com/_/postgres
https://hub.docker.com/_/postgres
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azure.azurepostgresflexibleserverresource
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azure.azurepostgresflexibleserverdatabaseresource
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.postgresserverresource
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.postgresdatabaseresource
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.postgres.pgadmincontainerresource
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.postgres.pgwebcontainerresource
https://www.nuget.org/packages/Aspire.Hosting.Azure.PostgreSQL
https://www.nuget.org/packages/Aspire.Hosting.Azure.PostgreSQL
https://learn.microsoft.com/en-us/dotnet/core/tools/dotnet-add-package
https://www.nuget.org/packages/Aspire.Hosting.PostgreSQL
https://www.nuget.org/packages/Aspire.Hosting.PostgreSQL
https://www.nuget.org/packages/Aspire.Hosting.PostgreSQL

After you've installed the .NET Aspire Azure PostgreSQL hosting integration, call the
AddAzurePostgresFlexibleServer extension method in your app host project:

C#

The preceding call to AddAzurePostgresFlexibleServer configures the PostgresSQL
server resource to be deployed as an Azure Postgres Flexible Server.

If you're new to Bicep, it's a domain-specific language for defining Azure resources. With
.NET Aspire, you don't need to write Bicep by hand, because the provisioning APIs
generate Bicep for you. When you publish your app, the generated Bicep is output
alongside the manifest file. When you add an Azure PostgreSQL resource, the following
Bicep is generated:

Bicep

Add Azure PostgreSQL server resource

var builder = DistributedApplication.CreateBuilder(args);

var postgres = builder.AddAzurePostgresFlexibleServer("postgres");
var postgresdb = postgres.AddDatabase("postgresdb");

var exampleProject = builder.AddProject<Projects.ExampleProject>()
 .WithReference(postgresdb);

） Important

By default, AddAzurePostgresFlexibleServer configures Microsoft Entra ID
authentication. This requires changes to applications that need to connect to these
resources. For more information, see Client integration.

 Tip

When you call AddAzurePostgresFlexibleServer, it implicitly calls
AddAzureProvisioning—which adds support for generating Azure resources
dynamically during app startup. The app must configure the appropriate
subscription and location. For more information, see Local provisioning:
Configuration.

Generated provisioning Bicep

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azurepostgresextensions.addazurepostgresflexibleserver
https://learn.microsoft.com/en-us/azure/postgresql/flexible-server/overview
https://learn.microsoft.com/en-us/azure/azure-resource-manager/bicep/overview
https://learn.microsoft.com/en-us/azure/postgresql/flexible-server/concepts-azure-ad-authentication
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azurepostgresextensions.addazurepostgresflexibleserver
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azureprovisionerextensions.addazureprovisioning

@description('The location for the resource(s) to be deployed.')
param location string = resourceGroup().location

param principalId string

param principalType string

param principalName string

resource postgres_flexible 'Microsoft.DBforPostgreSQL/flexibleServers@2024-
08-01' = {
 name: take('postgresflexible-${uniqueString(resourceGroup().id)}', 63)
 location: location
 properties: {
 authConfig: {
 activeDirectoryAuth: 'Enabled'
 passwordAuth: 'Disabled'
 }
 availabilityZone: '1'
 backup: {
 backupRetentionDays: 7
 geoRedundantBackup: 'Disabled'
 }
 highAvailability: {
 mode: 'Disabled'
 }
 storage: {
 storageSizeGB: 32
 }
 version: '16'
 }
 sku: {
 name: 'Standard_B1ms'
 tier: 'Burstable'
 }
 tags: {
 'aspire-resource-name': 'postgres-flexible'
 }
}

resource postgreSqlFirewallRule_AllowAllAzureIps
'Microsoft.DBforPostgreSQL/flexibleServers/firewallRules@2024-08-01' = {
 name: 'AllowAllAzureIps'
 properties: {
 endIpAddress: '0.0.0.0'
 startIpAddress: '0.0.0.0'
 }
 parent: postgres_flexible
}

resource postgres_flexible_admin
'Microsoft.DBforPostgreSQL/flexibleServers/administrators@2024-08-01' = {
 name: principalId
 properties: {

The preceding Bicep is a module that provisions an Azure PostgreSQL flexible server
with the following defaults:

authConfig : The authentication configuration of the PostgreSQL server. The default
is ActiveDirectoryAuth enabled and PasswordAuth disabled.
availabilityZone : The availability zone of the PostgreSQL server. The default is 1 .
backup : The backup configuration of the PostgreSQL server. The default is
BackupRetentionDays set to 7 and GeoRedundantBackup set to Disabled .
highAvailability : The high availability configuration of the PostgreSQL server. The
default is Disabled .
storage : The storage configuration of the PostgreSQL server. The default is
StorageSizeGB set to 32 .
version : The version of the PostgreSQL server. The default is 16 .
sku : The SKU of the PostgreSQL server. The default is Standard_B1ms .
tags : The tags of the PostgreSQL server. The default is aspire-resource-name set
to the name of the Aspire resource, in this case postgres-flexible .

In addition to the PostgreSQL flexible server, it also provisions an Azure Firewall rule to
allow all Azure IP addresses. Finally, an administrator is created for the PostgreSQL
server, and the connection string is outputted as an output variable. The generated
Bicep is a starting point and is influenced by changes to the provisioning infrastructure
in C#. Customizations to the Bicep file directly will be overwritten, so make changes
through the C# provisioning APIs to ensure they are reflected in the generated files.

All .NET Aspire Azure resources are subclasses of the AzureProvisioningResource type.
This type enables the customization of the generated Bicep by providing a fluent API to
configure the Azure resources by using the ConfigureInfrastructure<T>

 principalName: principalName
 principalType: principalType
 }
 parent: postgres_flexible
 dependsOn: [
 postgres_flexible
 postgreSqlFirewallRule_AllowAllAzureIps
]
}

output connectionString string =
'Host=${postgres_flexible.properties.fullyQualifiedDomainName};Username=${pr
incipalName}'

Customize provisioning infrastructure

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azure.azureprovisioningresource
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azureprovisioningresourceextensions.configureinfrastructure#aspire-hosting-azureprovisioningresourceextensions-configureinfrastructure-1(aspire-hosting-applicationmodel-iresourcebuilder((-0))-system-action((aspire-hosting-azure-azureresourceinfrastructure)))

(IResourceBuilder<T>, Action<AzureResourceInfrastructure>) API. For example, you can
configure the kind , consistencyPolicy , locations , and more. The following example
demonstrates how to customize the PostgreSQL server resource:

C#

The preceding code:

Chains a call to the ConfigureInfrastructure API:
The infra parameter is an instance of the AzureResourceInfrastructure type.
The provisionable resources are retrieved by calling the
GetProvisionableResources() method.
The single PostgreSqlFlexibleServer is retrieved.
The sku is set with PostgreSqlFlexibleServerSkuTier.Burstable.
The high availability properties are set with
PostgreSqlFlexibleServerHighAvailabilityMode.ZoneRedundant in standby
availability zone "2" .
A tag is added to the flexible server with a key of ExampleKey and a value of
Example value .

There are many more configuration options available to customize the PostgreSQL
flexible server resource. For more information, see Azure.Provisioning.PostgreSql and
Azure.Provisioning customization.

builder.AddAzurePostgresFlexibleServer("postgres")
 .ConfigureInfrastructure(infra =>
 {
 var flexibleServer = infra.GetProvisionableResources()
 .OfType<PostgreSqlFlexibleServer>()
 .Single();

 flexibleServer.Sku = new PostgreSqlFlexibleServerSku
 {
 Tier = PostgreSqlFlexibleServerSkuTier.Burstable,
 };
 flexibleServer.HighAvailability = new
PostgreSqlFlexibleServerHighAvailability
 {
 Mode =
PostgreSqlFlexibleServerHighAvailabilityMode.ZoneRedundant,
 StandbyAvailabilityZone = "2",
 };
 flexibleServer.Tags.Add("ExampleKey", "Example value");
 });

Connect to an existing Azure PostgreSQL flexible server

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azureprovisioningresourceextensions.configureinfrastructure#aspire-hosting-azureprovisioningresourceextensions-configureinfrastructure-1(aspire-hosting-applicationmodel-iresourcebuilder((-0))-system-action((aspire-hosting-azure-azureresourceinfrastructure)))
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azureprovisioningresourceextensions.configureinfrastructure
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azure.azureresourceinfrastructure
https://learn.microsoft.com/en-us/dotnet/api/azure.provisioning.infrastructure.getprovisionableresources#azure-provisioning-infrastructure-getprovisionableresources
https://learn.microsoft.com/en-us/dotnet/api/azure.provisioning.postgresql.postgresqlflexibleserver
https://learn.microsoft.com/en-us/dotnet/api/azure.provisioning.postgresql.postgresqlflexibleserverskutier#azure-provisioning-postgresql-postgresqlflexibleserverskutier-burstable
https://learn.microsoft.com/en-us/dotnet/api/azure.provisioning.postgresql.postgresqlflexibleserverhighavailabilitymode#azure-provisioning-postgresql-postgresqlflexibleserverhighavailabilitymode-zoneredundant
https://learn.microsoft.com/en-us/dotnet/api/azure.provisioning.postgresql

You might have an existing Azure PostgreSQL flexible server that you want to connect
to. Instead of representing a new Azure PostgreSQL flexible server resource, you can add
a connection string to the app host. To add a connection to an existing Azure
PostgreSQL flexible server, call the AddConnectionString method:

C#

The connection string is configured in the app host's configuration, typically under User
Secrets, under the ConnectionStrings section. The app host injects this connection
string as an environment variable into all dependent resources, for example:

JSON

The dependent resource can access the injected connection string by calling the
GetConnectionString method, and passing the connection name as the parameter, in
this case "postgres" . The GetConnectionString API is shorthand for
IConfiguration.GetSection("ConnectionStrings")[name] .

var builder = DistributedApplication.CreateBuilder(args);

var postgres = builder.AddConnectionString("postgres");

builder.AddProject<Projects.WebApplication>("web")
 .WithReference(postgres);

// After adding all resources, run the app...

７ Note

Connection strings are used to represent a wide range of connection information,
including database connections, message brokers, endpoint URIs, and other
services. In .NET Aspire nomenclature, the term "connection string" is used to
represent any kind of connection information.

{
 "ConnectionStrings": {
 "postgres": "Server=<PostgreSQL-server-
name>.postgres.database.azure.com;Database=<database-name>;Port=5432;Ssl
Mode=Require;User Id=<username>;"
 }
}

Run Azure PostgreSQL resource as a container

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.parameterresourcebuilderextensions.addconnectionstring
https://learn.microsoft.com/en-us/aspnet/core/security/app-secrets
https://learn.microsoft.com/en-us/aspnet/core/security/app-secrets
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.configurationextensions.getconnectionstring

The Azure PostgreSQL hosting integration supports running the PostgreSQL server as a
local container. This is beneficial for situations where you want to run the PostgreSQL
server locally for development and testing purposes, avoiding the need to provision an
Azure resource or connect to an existing Azure PostgreSQL server.

To run the PostgreSQL server as a container, call the RunAsContainer method:

C#

The preceding code configures an Azure PostgreSQL Flexible Server resource to run
locally in a container.

By default, the Azure PostgreSQL server is configured to use Microsoft Entra ID
authentication. If you want to use password authentication, you can configure the server
to use password authentication by calling the WithPasswordAuthentication method:

C#

var builder = DistributedApplication.CreateBuilder(args);

var postgres = builder.AddAzurePostgresFlexibleServer("postgres")
 .RunAsContainer();

var postgresdb = postgres.AddDatabase("postgresdb");

var exampleProject = builder.AddProject<Projects.ExampleProject>()
 .WithReference(postgresdb);

 Tip

The RunAsContainer method is useful for local development and testing. The API
exposes an optional delegate that enables you to customize the underlying
PostgresServerResource configuration. For example, you can add pgAdmin and
pgWeb, add a data volume or data bind mount, and add an init bind mount. For
more information, see the .NET Aspire PostgreSQL hosting integration section.

Configure the Azure PostgreSQL server to use password
authentication

var builder = DistributedApplication.CreateBuilder(args);

var username = builder.AddParameter("username", secret: true);
var password = builder.AddParameter("password", secret: true);

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azurepostgresextensions.runascontainer
https://learn.microsoft.com/en-us/azure/postgresql/flexible-server/concepts-azure-ad-authentication
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azurepostgresextensions.withpasswordauthentication
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.postgresserverresource

The preceding code configures the Azure PostgreSQL server to use password
authentication. The username and password parameters are added to the app host as
parameters, and the WithPasswordAuthentication method is called to configure the
Azure PostgreSQL server to use password authentication. For more information, see
External parameters.

To get started with the .NET Aspire PostgreSQL Entity Framework Core client integration,
install the 📦 Aspire.Npgsql.EntityFrameworkCore.PostgreSQL NuGet package in the
client-consuming project, that is, the project for the application that uses the
PostgreSQL client. The .NET Aspire PostgreSQL Entity Framework Core client integration
registers your desired DbContext subclass instances that you can use to interact with
PostgreSQL.

.NET CLI

In the Program.cs file of your client-consuming project, call the AddNpgsqlDbContext
extension method on any IHostApplicationBuilder to register your DbContext subclass
for use via the dependency injection container. The method takes a connection name
parameter.

C#

var postgres = builder.AddAzurePostgresFlexibleServer("postgres")
 .WithPasswordAuthentication(username, password);

var postgresdb = postgres.AddDatabase("postgresdb");

var exampleProject = builder.AddProject<Projects.ExampleProject>()
 .WithReference(postgresdb);

Client integration

.NET CLI

dotnet add package Aspire.Npgsql.EntityFrameworkCore.PostgreSQL

Add Npgsql database context

builder.AddNpgsqlDbContext<YourDbContext>(connectionName: "postgresdb");

https://www.nuget.org/packages/Aspire.Npgsql.EntityFrameworkCore.PostgreSQL
https://www.nuget.org/packages/Aspire.Npgsql.EntityFrameworkCore.PostgreSQL
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.aspireefpostgresqlextensions.addnpgsqldbcontext
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.ihostapplicationbuilder
https://learn.microsoft.com/en-us/dotnet/api/system.data.entity.dbcontext

After adding YourDbContext to the builder, you can get the YourDbContext instance
using dependency injection. For example, to retrieve your data source object from an
example service define it as a constructor parameter and ensure the ExampleService
class is registered with the dependency injection container:

C#

For more information on dependency injection, see .NET dependency injection.

You may prefer to use the standard Entity Framework method to obtain a database
context and add it to the dependency injection container:

C#

You have more flexibility when you create the database context in this way, for example:

 Tip

The connectionName parameter must match the name used when adding the
PostgreSQL server resource in the app host project. For more information, see Add
PostgreSQL server resource.

public class ExampleService(YourDbContext context)
{
 // Use context...
}

Enrich an Npgsql database context

builder.Services.AddDbContext<YourDbContext>(options =>

options.UseNpgsql(builder.Configuration.GetConnectionString("postgresdb")
 ?? throw new InvalidOperationException("Connection string
'postgresdb' not found.")));

７ Note

The connection string name that you pass to the GetConnectionString method
must match the name used when adding the PostgreSQL server resource in the app
host project. For more information, see Add PostgreSQL server resource.

https://learn.microsoft.com/en-us/dotnet/core/extensions/dependency-injection
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.configurationextensions.getconnectionstring

You can reuse existing configuration code for the database context without
rewriting it for .NET Aspire.
You can use Entity Framework Core interceptors to modify database operations.
You can choose not to use Entity Framework Core context pooling, which may
perform better in some circumstances.

If you use this method, you can enhance the database context with .NET Aspire-style
retries, health checks, logging, and telemetry features by calling the
EnrichNpgsqlDbContext method:

C#

The settings parameter is an instance of the
NpgsqlEntityFrameworkCorePostgreSQLSettings class.

The .NET Aspire PostgreSQL Entity Framework Core integration provides multiple
configuration approaches and options to meet the requirements and conventions of
your project.

When using a connection string from the ConnectionStrings configuration section, you
provide the name of the connection string when calling the AddNpgsqlDbContext
method:

C#

The connection string is retrieved from the ConnectionStrings configuration section:

JSON

builder.EnrichNpgsqlDbContext<YourDbContext>(
 configureSettings: settings =>
 {
 settings.DisableRetry = false;
 settings.CommandTimeout = 30;
 });

Configuration

Use a connection string

builder.AddNpgsqlDbContext<MyDbContext>("pgdb");

{
 "ConnectionStrings": {

https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.aspireefpostgresqlextensions.enrichnpgsqldbcontext
https://learn.microsoft.com/en-us/dotnet/api/aspire.npgsql.entityframeworkcore.postgresql.npgsqlentityframeworkcorepostgresqlsettings
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.aspireefpostgresqlextensions.addnpgsqldbcontext

The EnrichNpgsqlDbContext won't make use of the ConnectionStrings configuration
section since it expects a DbContext to be registered at the point it's called.

For more information, see the ConnectionString .

The .NET Aspire PostgreSQL Entity Framework Core integration supports
Microsoft.Extensions.Configuration. It loads the
NpgsqlEntityFrameworkCorePostgreSQLSettings from configuration files such as
appsettings.json by using the Aspire:Npgsql:EntityFrameworkCore:PostgreSQL key. If you
have set up your configurations in the Aspire:Npgsql:EntityFrameworkCore:PostgreSQL
section you can just call the method without passing any parameter.

The following example shows an appsettings.json file that configures some of the
available options:

JSON

For the complete PostgreSQL Entity Framework Core client integration JSON schema,
see Aspire.Npgsql.EntityFrameworkCore.PostgreSQL/ConfigurationSchema.json .

You can also pass the Action<NpgsqlEntityFrameworkCorePostgreSQLSettings> delegate
to set up some or all the options inline, for example to set the ConnectionString :

 "pgdb": "Host=myserver;Database=test"
 }
}

Use configuration providers

{
 "Aspire": {
 "Npgsql": {
 "EntityFrameworkCore": {
 "PostgreSQL": {
 "ConnectionString": "Host=myserver;Database=postgresdb",
 "DisableHealthChecks": true,
 "DisableTracing": true
 }
 }
 }
 }
}

Use inline delegates

https://www.npgsql.org/doc/connection-string-parameters.html
https://www.npgsql.org/doc/connection-string-parameters.html
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration
https://learn.microsoft.com/en-us/dotnet/api/aspire.npgsql.entityframeworkcore.postgresql.npgsqlentityframeworkcorepostgresqlsettings
https://github.com/dotnet/aspire/blob/v9.1.0/src/Components/Aspire.Npgsql.EntityFrameworkCore.PostgreSQL/ConfigurationSchema.json
https://github.com/dotnet/aspire/blob/v9.1.0/src/Components/Aspire.Npgsql.EntityFrameworkCore.PostgreSQL/ConfigurationSchema.json

C#

If you want to register more than one DbContext with different configuration, you can
use $"Aspire:Npgsql:EntityFrameworkCore:PostgreSQL:{typeof(TContext).Name}"
configuration section name. The json configuration would look like:

JSON

Then calling the AddNpgsqlDbContext method with AnotherDbContext type parameter
would load the settings from
Aspire:Npgsql:EntityFrameworkCore:PostgreSQL:AnotherDbContext section.

C#

By default, .NET Aspire client integrations have health checks enabled for all services.
Similarly, many .NET Aspire hosting integrations also enable health check endpoints. For

builder.AddNpgsqlDbContext<YourDbContext>(
 "pgdb",
 static settings => settings.ConnectionString = "<YOUR CONNECTION
STRING>");

Configure multiple DbContext classes

{
 "Aspire": {
 "Npgsql": {
 "EntityFrameworkCore": {
 "PostgreSQL": {
 "ConnectionString": "<YOUR CONNECTION STRING>",
 "DisableHealthChecks": true,
 "DisableTracing": true,
 "AnotherDbContext": {
 "ConnectionString": "<ANOTHER CONNECTION STRING>",
 "DisableTracing": false
 }
 }
 }
 }
 }
}

builder.AddNpgsqlDbContext<AnotherDbContext>();

Client integration health checks

https://learn.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.dbcontext
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.aspireefpostgresqlextensions.addnpgsqldbcontext

more information, see:

.NET app health checks in C#
Health checks in ASP.NET Core

By default, the .NET Aspire PostgreSQL Entity Framework Core integrations handles the
following:

Adds the DbContextHealthCheck , which calls EF Core's CanConnectAsync
method. The name of the health check is the name of the TContext type.
Integrates with the /health HTTP endpoint, which specifies all registered health
checks must pass for app to be considered ready to accept traffic

.NET Aspire integrations automatically set up Logging, Tracing, and Metrics
configurations, which are sometimes known as the pillars of observability. For more
information about integration observability and telemetry, see .NET Aspire integrations
overview. Depending on the backing service, some integrations may only support some
of these features. For example, some integrations support logging and tracing, but not
metrics. Telemetry features can also be disabled using the techniques presented in the
Configuration section.

The .NET Aspire PostgreSQL Entity Framework Core integration uses the following Log
categories:

Microsoft.EntityFrameworkCore.ChangeTracking

Microsoft.EntityFrameworkCore.Database.Command

Microsoft.EntityFrameworkCore.Database.Connection

Microsoft.EntityFrameworkCore.Database.Transaction

Microsoft.EntityFrameworkCore.Migrations

Microsoft.EntityFrameworkCore.Infrastructure

Microsoft.EntityFrameworkCore.Migrations

Microsoft.EntityFrameworkCore.Model

Microsoft.EntityFrameworkCore.Model.Validation

Microsoft.EntityFrameworkCore.Query

Microsoft.EntityFrameworkCore.Update

Observability and telemetry

Logging

https://learn.microsoft.com/en-us/dotnet/core/diagnostics/diagnostic-health-checks
https://learn.microsoft.com/en-us/aspnet/core/host-and-deploy/health-checks
https://github.com/Xabaril/AspNetCore.Diagnostics.HealthChecks/blob/master/src/HealthChecks.NpgSql/NpgSqlHealthCheck.cs
https://github.com/Xabaril/AspNetCore.Diagnostics.HealthChecks/blob/master/src/HealthChecks.NpgSql/NpgSqlHealthCheck.cs
https://learn.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.storage.idatabasecreator.canconnectasync

The .NET Aspire PostgreSQL Entity Framework Core integration will emit the following
tracing activities using OpenTelemetry:

Npgsql

The .NET Aspire PostgreSQL Entity Framework Core integration will emit the following
metrics using OpenTelemetry:

Microsoft.EntityFrameworkCore:
ec_Microsoft_EntityFrameworkCore_active_db_contexts

ec_Microsoft_EntityFrameworkCore_total_queries

ec_Microsoft_EntityFrameworkCore_queries_per_second

ec_Microsoft_EntityFrameworkCore_total_save_changes

ec_Microsoft_EntityFrameworkCore_save_changes_per_second

ec_Microsoft_EntityFrameworkCore_compiled_query_cache_hit_rate

ec_Microsoft_Entity_total_execution_strategy_operation_failures

ec_Microsoft_E_execution_strategy_operation_failures_per_second

ec_Microsoft_EntityFramew_total_optimistic_concurrency_failures

ec_Microsoft_EntityF_optimistic_concurrency_failures_per_second

Npgsql:
ec_Npgsql_bytes_written_per_second

ec_Npgsql_bytes_read_per_second

ec_Npgsql_commands_per_second

ec_Npgsql_total_commands

ec_Npgsql_current_commands

ec_Npgsql_failed_commands

ec_Npgsql_prepared_commands_ratio

ec_Npgsql_connection_pools

ec_Npgsql_multiplexing_average_commands_per_batch

ec_Npgsql_multiplexing_average_write_time_per_batch

By default, when you call AddAzurePostgresFlexibleServer in your PostgreSQL hosting
integration, it requires 📦 Azure.Identity NuGet package to enable authentication:

Tracing

Metrics

Add Azure authenticated Npgsql client

https://www.nuget.org/packages/Azure.Identity
https://www.nuget.org/packages/Azure.Identity

.NET CLI

The PostgreSQL connection can be consumed using the client integration and
Azure.Identity.

The following code snippets demonstrate how to use the DefaultAzureCredential class
from the Azure.Identity package to authenticate with Microsoft Entra ID and retrieve a
token to connect to the PostgreSQL database. The UsePasswordProvider method is
used to provide the token to the data source builder.

C#

With EF Core version 9, you can use the ConfigureDataSource method to configure the
NpgsqlDataSourceBuilder that's used by the integration instead of building one outside
of the integration and passing it in.

.NET CLI

dotnet add package Azure.Identity

EF Core version 8

var dsBuilder = new
NpgsqlDataSourceBuilder(builder.Configuration.GetConnectionString("postgresd
b"));
if (string.IsNullOrEmpty(dsBuilder.ConnectionStringBuilder.Password))
{
 var credentials = new DefaultAzureCredential();
 var tokenRequest = new TokenRequestContext(["https://ossrdbms-
aad.database.windows.net/.default"]);

 dsBuilder.UsePasswordProvider(
 passwordProvider: _ => credentials.GetToken(tokenRequest).Token,
 passwordProviderAsync: async (_, ct) => (await
credentials.GetTokenAsync(tokenRequest, ct)).Token);
}

builder.AddNpgsqlDbContext<MyDb1Context>(
 "postgresdb",
 configureDbContextOptions: (options) =>
options.UseNpgsql(dsBuilder.Build()));

EF Core version 9+

https://learn.microsoft.com/en-us/dotnet/api/azure.identity
https://learn.microsoft.com/en-us/dotnet/api/azure.identity.defaultazurecredential
https://learn.microsoft.com/en-us/dotnet/api/azure.identity
https://learn.microsoft.com/en-us/azure/postgresql/flexible-server/concepts-azure-ad-authentication
https://www.npgsql.org/doc/api/Npgsql.NpgsqlDataSourceBuilder.html#Npgsql_NpgsqlDataSourceBuilder_UsePasswordProvider_System_Func_Npgsql_NpgsqlConnectionStringBuilder_System_String__System_Func_Npgsql_NpgsqlConnectionStringBuilder_System_Threading_CancellationToken_System_Threading_Tasks_ValueTask_System_String___
https://www.npgsql.org/doc/api/Npgsql.NpgsqlDataSourceBuilder.html#Npgsql_NpgsqlDataSourceBuilder_UsePasswordProvider_System_Func_Npgsql_NpgsqlConnectionStringBuilder_System_String__System_Func_Npgsql_NpgsqlConnectionStringBuilder_System_Threading_CancellationToken_System_Threading_Tasks_ValueTask_System_String___

C#

PostgreSQL docs
Azure Database for PostgreSQL
.NET Aspire PostgreSQL Entity Framework Core integration
.NET Aspire integrations
.NET Aspire GitHub repo

builder.AddNpgsqlDbContext<MyDb1Context>(
 "postgresdb",
 configureDbContextOptions: (options) => options.UseNpgsql(npgsqlOptions
=>
 npgsqlOptions.ConfigureDataSource(dsBuilder =>
 {
 if
(string.IsNullOrEmpty(dsBuilder.ConnectionStringBuilder.Password))
 {
 var credentials = new DefaultAzureCredential();
 var tokenRequest = new
TokenRequestContext(["https://ossrdbms-aad.database.windows.net/.default"]);

 dsBuilder.UsePasswordProvider(
 passwordProvider: _ =>
credentials.GetToken(tokenRequest).Token,
 passwordProviderAsync: async (_, ct) => (await
credentials.GetTokenAsync(tokenRequest, ct)).Token);
 }
 })));

See also

https://www.npgsql.org/doc/api/Npgsql.html
https://www.npgsql.org/doc/api/Npgsql.html
https://learn.microsoft.com/en-us/azure/postgresql/
https://github.com/dotnet/aspire
https://github.com/dotnet/aspire

.NET Aspire Pomelo MySQL Entity
Framework Core integration
Article • 02/07/2025

Includes: Hosting integration and Client integration

MySQL is an open-source Relational Database Management System (RDBMS) that
uses Structured Query Language (SQL) to manage and manipulate data. It's employed in
a many different environments, from small projects to large-scale enterprise systems
and it's a popular choice to host data that underpins microservices in a cloud-native
application. The .NET Aspire Pomelo MySQL Entity Framework Core integration enables
you to connect to existing MySQL databases or create new instances from .NET with the
mysql container image .

The MySQL hosting integration models the server as the MySqlServerResource type and
the database as the MySqlDatabaseResource type. To access these types and APIs, add
the 📦 Aspire.Hosting.MySql NuGet package in the app host project.

.NET CLI

For more information, see dotnet add package or Manage package dependencies in
.NET applications.

In your app host project, call AddMySql to add and return a MySQL resource builder.
Chain a call to the returned resource builder to AddDatabase, to add a MySQL database
resource.

C#

Hosting integration

.NET CLI

dotnet add package Aspire.Hosting.MySql

Add MySQL server resource and database resource

var builder = DistributedApplication.CreateBuilder(args);

var mysql = builder.AddMySql("mysql")

https://www.mysql.com/
https://www.mysql.com/
https://hub.docker.com/_/mysql
https://hub.docker.com/_/mysql
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.mysqlserverresource
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.mysqldatabaseresource
https://www.nuget.org/packages/Aspire.Hosting.MySql
https://www.nuget.org/packages/Aspire.Hosting.MySql
https://learn.microsoft.com/en-us/dotnet/core/tools/dotnet-add-package
https://learn.microsoft.com/en-us/dotnet/core/tools/dependencies
https://learn.microsoft.com/en-us/dotnet/core/tools/dependencies
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.mysqlbuilderextensions.addmysql
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.mysqlbuilderextensions.adddatabase

When .NET Aspire adds a container image to the app host, as shown in the preceding
example with the mysql image, it creates a new MySQL instance on your local machine.
A reference to your MySQL resource builder (the mysql variable) is used to add a
database. The database is named mysqldb and then added to the ExampleProject . The
MySQL resource includes default credentials with a username of root and a random
password generated using the CreateDefaultPasswordParameter method.

When the app host runs, the password is stored in the app host's secret store. It's added
to the Parameters section, for example:

JSON

The name of the parameter is mysql-password , but really it's just formatting the resource
name with a -password suffix. For more information, see Safe storage of app secrets in
development in ASP.NET Core and Add MySQL resource with parameters.

The WithReference method configures a connection in the ExampleProject named
mysqldb .

 .WithLifetime(ContainerLifetime.Persistent);

var mysqldb = mysql.AddDatabase("mysqldb");

var myService = builder.AddProject<Projects.ExampleProject>()
 .WithReference(mysqldb)
 .WaitFor(mysqldb);

// After adding all resources, run the app...

７ Note

The SQL Server container is slow to start, so it's best to use a persistent lifetime to
avoid unnecessary restarts. For more information, see Container resource lifetime.

{
 "Parameters:mysql-password": "<THE_GENERATED_PASSWORD>"
}

 Tip

If you'd rather connect to an existing MySQL server, call AddConnectionString
instead. For more information, see Reference existing resources.

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.parameterresourcebuilderextensions.createdefaultpasswordparameter
https://learn.microsoft.com/en-us/aspnet/core/security/app-secrets
https://learn.microsoft.com/en-us/aspnet/core/security/app-secrets
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.resourcebuilderextensions.withreference
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.parameterresourcebuilderextensions.addconnectionstring

To add a data volume to the SQL Server resource, call the WithDataVolume method on
the SQL Server resource:

C#

The data volume is used to persist the MySQL server data outside the lifecycle of its
container. The data volume is mounted at the /var/lib/mysql path in the SQL Server
container and when a name parameter isn't provided, the name is generated at random.
For more information on data volumes and details on why they're preferred over bind
mounts, see Docker docs: Volumes .

To add a data bind mount to the MySQL resource, call the WithDataBindMount method:

C#

Add a MySQL resource with a data volume

var builder = DistributedApplication.CreateBuilder(args);

var mysql = builder.AddMySql("mysql")
 .WithDataVolume();

var mysqldb = mysql.AddDatabase("mysqldb");

builder.AddProject<Projects.ExampleProject>()
 .WithReference(mysqldb)
 .WaitFor(mysqldb);

// After adding all resources, run the app...

２ Warning

The password is stored in the data volume. When using a data volume and if the
password changes, it will not work until you delete the volume.

Add a MySQL resource with a data bind mount

var builder = DistributedApplication.CreateBuilder(args);

var mysql = builder.AddMySql("mysql")
 .WithDataBindMount(source: @"C:\MySql\Data");

var db = sql.AddDatabase("mysqldb");

builder.AddProject<Projects.ExampleProject>()
 .WithReference(mysqldb)

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.mysqlbuilderextensions.withdatavolume
https://docs.docker.com/engine/storage/volumes
https://docs.docker.com/engine/storage/volumes
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.mysqlbuilderextensions.withdatabindmount

Data bind mounts rely on the host machine's filesystem to persist the MySQL data
across container restarts. The data bind mount is mounted at the C:\MySql\Data on
Windows (or /MySql/Data on Unix) path on the host machine in the MySQL container.
For more information on data bind mounts, see Docker docs: Bind mounts .

When you want to provide a root MySQL password explicitly, you can pass it as a
parameter. Consider the following alternative example:

C#

For more information, see External parameters.

phpMyAdmin is a popular web-based administration tool for MySQL. You can use it
to browse and modify MySQL objects such as databases, tables, views, and indexes. To
use phpMyAdmin within your .NET Aspire solution, call the WithPhpMyAdmin method.

 .WaitFor(mysqldb);

// After adding all resources, run the app...

） Important

Data bind mounts have limited functionality compared to volumes , which
offer better performance, portability, and security, making them more suitable for
production environments. However, bind mounts allow direct access and
modification of files on the host system, ideal for development and testing where
real-time changes are needed.

Add MySQL resource with parameters

var password = builder.AddParameter("password", secret: true);

var mysql = builder.AddMySql("mysql", password)
 .WithLifetime(ContainerLifetime.Persistent);

var mysqldb = mysql.AddDatabase("mysqldb");

var myService = builder.AddProject<Projects.ExampleProject>()
 .WithReference(mysqldb)
 .WaitFor(mysqldb);

Add a PhpMyAdmin resource

https://docs.docker.com/engine/storage/bind-mounts
https://docs.docker.com/engine/storage/bind-mounts
https://www.phpmyadmin.net/
https://www.phpmyadmin.net/
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.mysqlbuilderextensions.withphpmyadmin
https://docs.docker.com/engine/storage/bind-mounts/
https://docs.docker.com/engine/storage/bind-mounts/
https://docs.docker.com/engine/storage/volumes/
https://docs.docker.com/engine/storage/volumes/

This method adds a new container resource to the solution that hosts phpMyAdmin and
connects it to the MySQL container:

C#

When you run the solution, the .NET Aspire dashboard displays the phpMyAdmin
resources with an endpoint. Select the link to the endpoint to view phpMyAdmin in a
new browser tab.

The MySQL hosting integration automatically adds a health check for the MySQL
resource. The health check verifies that the MySQL server is running and that a
connection can be established to it.

The hosting integration relies on the 📦 AspNetCore.HealthChecks.MySql NuGet
package.

To get started with the .NET Aspire Pomelo MySQL Entity Framework integration, install
the 📦 Aspire.Pomelo.EntityFrameworkCore.MySql NuGet package in the client-
consuming project, that is, the project for the application that uses the MySQL Entity
Framework Core client.

.NET CLI

var builder = DistributedApplication.CreateBuilder(args);

var mysql = builder.AddMySql("mysql")
 .WithPhpMyAdmin();

var db = sql.AddDatabase("mysqldb");

builder.AddProject<Projects.ExampleProject>()
 .WithReference(mysqldb)
 .WaitFor(mysqldb);

// After adding all resources, run the app...

Hosting integration health checks

Client integration

.NET CLI

https://www.nuget.org/packages/AspNetCore.HealthChecks.MySql
https://www.nuget.org/packages/AspNetCore.HealthChecks.MySql
https://www.nuget.org/packages/Aspire.Pomelo.EntityFrameworkCore.MySql
https://www.nuget.org/packages/Aspire.Pomelo.EntityFrameworkCore.MySql

For more information, see dotnet add package or Manage package dependencies in
.NET applications.

In the Program.cs file of your client-consuming project, call the AddMySqlDbContext
extension method on any IHostApplicationBuilder to register a DbContext for use
through the dependency injection container. The method takes a connection name
parameter.

C#

To retrieve ExampleDbContext object from a service:

C#

For more information on dependency injection, see .NET dependency injection.

You may prefer to use the standard Entity Framework method to obtain a database
context and add it to the dependency injection container:

dotnet add package Aspire.Pomelo.EntityFrameworkCore.MySql

Add a MySQL database context

builder.AddMySqlDbContext<ExampleDbContext>(connectionName: "mysqldb");

 Tip

The connectionName parameter must match the name used when adding the SQL
Server database resource in the app host project. In other words, when you call
AddDatabase and provide a name of mysqldb that same name should be used when
calling AddMySqlDbContext . For more information, see Add MySQL server resource
and database resource.

public class ExampleService(ExampleDbContext context)
{
 // Use context...
}

Enrich a MySQL database context

https://learn.microsoft.com/en-us/dotnet/core/tools/dotnet-add-package
https://learn.microsoft.com/en-us/dotnet/core/tools/dependencies
https://learn.microsoft.com/en-us/dotnet/core/tools/dependencies
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.aspireefmysqlextensions.addmysqldbcontext
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.ihostapplicationbuilder
https://learn.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.dbcontext
https://learn.microsoft.com/en-us/dotnet/core/extensions/dependency-injection

C#

You have more flexibility when you create the database context in this way, for example:

You can reuse existing configuration code for the database context without
rewriting it for .NET Aspire.
You can use Entity Framework Core interceptors to modify database operations.
You can choose not to use Entity Framework Core context pooling, which may
perform better in some circumstances.

If you use this method, you can enhance the database context with .NET Aspire-style
retries, health checks, logging, and telemetry features by calling the
EnrichMySqlDbContext method:

C#

The settings parameter is an instance of the
PomeloEntityFrameworkCoreMySqlSettings class.

The .NET Aspire Pomelo MySQL Entity Framework Core integration provides multiple
options to configure the database connection based on the requirements and
conventions of your project.

builder.Services.AddDbContext<ExampleDbContext>(options =>
 options.UseMySql(builder.Configuration.GetConnectionString("mysqldb")
 ?? throw new InvalidOperationException("Connection string 'mysqldb'
not found.")));

７ Note

The connection string name that you pass to the GetConnectionString method
must match the name used when adding the MySQL resource in the app host
project. For more information, see Add MySQL server resource and database
resource.

builder.EnrichMySqlDbContext<ExampleDbContext>(
 configureSettings: settings =>
 {
 settings.DisableRetry = false;
 settings.CommandTimeout = 30 // seconds
 });

Configuration

https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.aspireefmysqlextensions.enrichmysqldbcontext
https://learn.microsoft.com/en-us/dotnet/api/aspire.pomelo.entityframeworkcore.mysql.pomeloentityframeworkcoremysqlsettings
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.configurationextensions.getconnectionstring

When using a connection string from the ConnectionStrings configuration section, you
can provide the name of the connection string when calling
builder.AddMySqlDatabaseDbContext<TContext>() :

C#

And then the connection string will be retrieved from the ConnectionStrings
configuration section:

JSON

The EnrichMySqlDbContext won't make use of the ConnectionStrings configuration
section since it expects a DbContext to be registered at the point it's called.

For more information, see the MySqlConnector: ConnectionString documentation .

The .NET Aspire Pomelo MySQL Entity Framework Core integration supports
Microsoft.Extensions.Configuration. It loads the
PomeloEntityFrameworkCoreMySqlSettings from configuration files such as
appsettings.json by using the Aspire:Pomelo:EntityFrameworkCore:MySql key.

The following example shows an appsettings.json that configures some of the available
options:

JSON

Use a connection string

builder.AddMySqlDatabaseDbContext<MyDbContext>("mysql");

{
 "ConnectionStrings": {
 "mysql": "Server=mysql;Database=mysqldb"
 }
}

Use configuration providers

{
 "Aspire": {
 "Pomelo": {
 "EntityFrameworkCore": {
 "MySql": {
 "ConnectionString": "YOUR_CONNECTIONSTRING",
 "DisableHealthChecks": true,

https://mysqlconnector.net/connection-options/
https://mysqlconnector.net/connection-options/
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration
https://learn.microsoft.com/en-us/dotnet/api/aspire.pomelo.entityframeworkcore.mysql.pomeloentityframeworkcoremysqlsettings

For the complete MySQL integration JSON schema, see
Aspire.Pomelo.EntityFrameworkCore.MySql/ConfigurationSchema.json .

You can also pass the Action<PomeloEntityFrameworkCoreMySqlSettings> delegate to set
up some or all the options inline, for example to disable health checks from code:

C#

or

C#

By default, .NET Aspire client integrations have health checks enabled for all services.
Similarly, many .NET Aspire hosting integrations also enable health check endpoints. For
more information, see:

.NET app health checks in C#
Health checks in ASP.NET Core

The .NET Aspire Pomelo MySQL Entity Framework Core integration:

Adds the health check when
PomeloEntityFrameworkCoreMySqlSettings.DisableHealthChecks is false , which
calls EF Core's CanConnectAsync method.
Integrates with the /health HTTP endpoint, which specifies all registered health
checks must pass for app to be considered ready to accept traffic.

 "DisableTracing": true
 }
 }
 }
 }
}

Use inline delegates

builder.AddMySqlDbContext<MyDbContext>(
 "mysqldb",
 static settings => settings.DisableHealthChecks = true);

builder.EnrichMySqlDbContext<MyDbContext>(
 static settings => settings.DisableHealthChecks = true);

Client integration health checks

https://github.com/dotnet/aspire/blob/main/src/Components/Aspire.Pomelo.EntityFrameworkCore.MySql/ConfigurationSchema.json
https://github.com/dotnet/aspire/blob/main/src/Components/Aspire.Pomelo.EntityFrameworkCore.MySql/ConfigurationSchema.json
https://learn.microsoft.com/en-us/dotnet/core/diagnostics/diagnostic-health-checks
https://learn.microsoft.com/en-us/aspnet/core/host-and-deploy/health-checks
https://learn.microsoft.com/en-us/dotnet/api/aspire.pomelo.entityframeworkcore.mysql.pomeloentityframeworkcoremysqlsettings.disablehealthchecks#aspire-pomelo-entityframeworkcore-mysql-pomeloentityframeworkcoremysqlsettings-disablehealthchecks
https://learn.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.storage.idatabasecreator.canconnectasync

.NET Aspire integrations automatically set up Logging, Tracing, and Metrics
configurations, which are sometimes known as the pillars of observability. For more
information about integration observability and telemetry, see .NET Aspire integrations
overview. Depending on the backing service, some integrations may only support some
of these features. For example, some integrations support logging and tracing, but not
metrics. Telemetry features can also be disabled using the techniques presented in the
Configuration section.

The .NET Aspire Pomelo MySQL Entity Framework Core integration uses the following
log categories:

Microsoft.EntityFrameworkCore.ChangeTracking

Microsoft.EntityFrameworkCore.Database.Command

Microsoft.EntityFrameworkCore.Database.Connection

Microsoft.EntityFrameworkCore.Database.Transaction

Microsoft.EntityFrameworkCore.Infrastructure

Microsoft.EntityFrameworkCore.Migrations

Microsoft.EntityFrameworkCore.Model

Microsoft.EntityFrameworkCore.Model.Validation

Microsoft.EntityFrameworkCore.Query

Microsoft.EntityFrameworkCore.Update

The .NET Aspire Pomelo MySQL Entity Framework Core integration will emit the
following tracing activities using OpenTelemetry:

MySqlConnector

The .NET Aspire Pomelo MySQL Entity Framework Core integration currently supports
the following metrics:

MySqlConnector:
db.client.connections.create_time

Observability and telemetry

Logging

Tracing

Metrics

db.client.connections.use_time

db.client.connections.wait_time

db.client.connections.idle.max

db.client.connections.idle.min

db.client.connections.max

db.client.connections.pending_requests

db.client.connections.timeouts

db.client.connections.usage

MySQL database
Entity Framework Core docs
.NET Aspire integrations
.NET Aspire GitHub repo

See also

https://mysqlconnector.net/
https://mysqlconnector.net/
https://learn.microsoft.com/en-us/ef/core
https://github.com/dotnet/aspire
https://github.com/dotnet/aspire

.NET Aspire Oracle Entity Framework
Core integration
Article • 01/26/2025

Includes: Hosting integration and Client integration

Oracle Database is a widely-used relational database management system owned and
developed by Oracle. The .NET Aspire Oracle Entity Framework Core integration enables
you to connect to existing Oracle servers or create new servers from .NET with the
container-registry.orcale.com/databse/free container image.

The .NET Aspire Oracle hosting integration models the server as the
OracleDatabaseServerResource type and the database as the OracleDatabaseResource
type. To access these types and APIs, add the 📦 Aspire.Hosting.Oracle NuGet
package in the app host project.

.NET CLI

For more information, see dotnet add package or Manage package dependencies in
.NET applications.

In your app host project, call AddOracle to add and return an Oracle server resource
builder. Chain a call to the returned resource builder to AddDatabase, to add an Oracle
database to the server resource:

C#

Hosting integration

.NET CLI

dotnet add package Aspire.Hosting.Oracle

Add Oracle server and database resources

var builder = DistributedApplication.CreateBuilder(args);

var oracle = builder.AddOracle("oracle")
 .WithLifetime(ContainerLifetime.Persistent);

https://www.oracle.com/database/technologies/
https://www.oracle.com/database/technologies/
https://container-registry.oracle.com/ords/f?p=113:4:5999388133692:::RP,4:P4_REPOSITORY,AI_REPOSITORY,P4_REPOSITORY_NAME,AI_REPOSITORY_NAME:1863,1863,Oracle%20Database%20Free,Oracle%20Database%20Free&cs=3L7x5hgm9Co0WJN-3xZTrFJkDyCZKiS8wlK1jg7nU2yE65gVGYh4WbMLzmX59tAHoLwbwWeAz-kjraRQzB1V5TA
https://container-registry.oracle.com/ords/f?p=113:4:5999388133692:::RP,4:P4_REPOSITORY,AI_REPOSITORY,P4_REPOSITORY_NAME,AI_REPOSITORY_NAME:1863,1863,Oracle%20Database%20Free,Oracle%20Database%20Free&cs=3L7x5hgm9Co0WJN-3xZTrFJkDyCZKiS8wlK1jg7nU2yE65gVGYh4WbMLzmX59tAHoLwbwWeAz-kjraRQzB1V5TA
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.oracledatabaseserverresource
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.oracledatabaseresource
https://www.nuget.org/packages/Aspire.Hosting.Oracle
https://www.nuget.org/packages/Aspire.Hosting.Oracle
https://learn.microsoft.com/en-us/dotnet/core/tools/dotnet-add-package
https://learn.microsoft.com/en-us/dotnet/core/tools/dependencies
https://learn.microsoft.com/en-us/dotnet/core/tools/dependencies
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.oracledatabasebuilderextensions.addoracle
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.oracledatabasebuilderextensions.adddatabase

When .NET Aspire adds a container image to the app host, as shown in the preceding
example with the container-registry.oracle.com/database/free image, it creates a new
Oracle server on your local machine. A reference to your Oracle resource builder (the
oracle variable) is used to add a database. The database is named oracledb and then
added to the ExampleProject . The Oracle resource includes a random password
generated using the CreateDefaultPasswordParameter method.

The WithReference method configures a connection in the ExampleProject named
"oracledb" . For more information, see Container resource lifecycle.

The Oracle resource includes default credentials with a random password. Oracle
supports configuration-based default passwords by using the environment variable
ORACLE_PWD . When you want to provide a password explicitly, you can provide it as a
parameter:

C#

var oracledb = oracle.AddDatabase("oracledb");

builder.AddProject<Projects.ExampleProject>()
 .WithReference(oracledb);
 .WaitFor(oracledb);

// After adding all resources, run the app...

７ Note

The Oracle database container can be slow to start, so it's best to use a persistent
lifetime to avoid unnecessary restarts. For more information, see Container
resource lifetime.

 Tip

If you'd rather connect to an existing Oracle server, call AddConnectionString
instead. For more information, see Reference existing resources.

Add Oracle resource with password parameter

var password = builder.AddParameter("password", secret: true);

var oracle = builder.AddOracle("oracle", password)
 .WithLifetime(ContainerLifetime.Persistent);

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.parameterresourcebuilderextensions.createdefaultpasswordparameter
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.resourcebuilderextensions.withreference
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.parameterresourcebuilderextensions.addconnectionstring

The preceding code gets a parameter to pass to the AddOracle API, and internally
assigns the parameter to the ORACLE_PWD environment variable of the Oracle container.
The password parameter is usually specified as a user secret:

JSON

For more information, see External parameters.

To add a data volume to the Oracle resource, call the WithDataVolume method:

C#

The data volume is used to persist the Oracle data outside the lifecycle of its container.
The data volume is mounted at the /opt/oracle/oradata path in the Oracle container
and when a name parameter isn't provided, the name is generated at random. For more
information on data volumes and details on why they're preferred over bind mounts,
see Docker docs: Volumes .

var oracledb = oracle.AddDatabase("oracledb");

var myService = builder.AddProject<Projects.ExampleProject>()
 .WithReference(oracledb)
 .WaitFor(oracledb);

{
 "Parameters": {
 "password": "Non-default-P@ssw0rd"
 }
}

Add Oracle resource with data volume

var builder = DistributedApplication.CreateBuilder(args);

var oracle = builder.AddOracle("oracle")
 .WithDataVolume()
 .WithLifetime(ContainerLifetime.Persistent);

var oracledb = oracle.AddDatabase("oracle");

builder.AddProject<Projects.ExampleProject>()
 .WithReference(oracledb)
 .WaitFor(oracledb);

// After adding all resources, run the app...

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.oracledatabasebuilderextensions.withdatavolume
https://docs.docker.com/engine/storage/volumes
https://docs.docker.com/engine/storage/volumes

To add a data bind mount to the Oracle resource, call the WithDataBindMount method:

C#

Data bind mounts rely on the host machine's filesystem to persist the Oracle data across
container restarts. The data bind mount is mounted at the C:\Oracle\Data on Windows
(or /Oracle/Data on Unix) path on the host machine in the Oracle container. For more
information on data bind mounts, see Docker docs: Bind mounts .

The Oracle hosting integration automatically adds a health check for the Oracle
resource. The health check verifies that the Oracle server is running and that a
connection can be established to it.

２ Warning

The password is stored in the data volume. When using a data volume and if the
password changes, it will not work until you delete the volume.

Add Oracle resource with data bind mount

var builder = DistributedApplication.CreateBuilder(args);

var oracle = builder.AddOracle("oracle")
 .WithDataBindMount(source: @"C:\Oracle\Data");

var oracledb = oracle.AddDatabase("oracledb");

builder.AddProject<Projects.ExampleProject>()
 .WithReference(oracledb)
 .WaitFor(oracledb);

// After adding all resources, run the app...

） Important

Data bind mounts have limited functionality compared to volumes , which
offer better performance, portability, and security, making them more suitable for
production environments. However, bind mounts allow direct access and
modification of files on the host system, ideal for development and testing where
real-time changes are needed.

Hosting integration health checks

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.oracledatabasebuilderextensions.withdatabindmount
https://docs.docker.com/engine/storage/bind-mounts
https://docs.docker.com/engine/storage/bind-mounts
https://docs.docker.com/engine/storage/bind-mounts/
https://docs.docker.com/engine/storage/bind-mounts/
https://docs.docker.com/engine/storage/volumes/
https://docs.docker.com/engine/storage/volumes/

The hosting integration relies on the 📦 AspNetCore.HealthChecks.Oracle NuGet
package.

You need an Oracle database and connection string for accessing the database. To get
started with the .NET Aspire Oracle client integration, install the 📦
Aspire.Oracle.EntityFrameworkCore NuGet package in the client-consuming project,
that is, the project for the application that uses the Oracle client. The Oracle client
integration registers a DbContext instance that you can use to interact with Oracle.

.NET CLI

In the Program.cs file of your client-consuming project, call the
AddOracleDatabaseDbContext extension method on any IHostApplicationBuilder to
register a DbContext for use via the dependency injection container. The method takes a
connection name parameter.

C#

You can then retrieve the DbContext instance using dependency injection. For example,
to retrieve the connection from an example service:

Client integration

.NET CLI

dotnet add package Aspire.Oracle.EntityFrameworkCore

Add Oracle client

builder.AddOracleDatabaseDbContext<ExampleDbContext>(connectionName:
"oracledb");

 Tip

The connectionName parameter must match the name used when adding the Oracle
database resource in the app host project. In other words, when you call
AddDatabase and provide a name of oracledb that same name should be used
when calling AddOracleDatabaseDbContext . For more information, see Add Oracle
server and database resources.

https://www.nuget.org/packages/AspNetCore.HealthChecks.Oracle
https://www.nuget.org/packages/AspNetCore.HealthChecks.Oracle
https://www.nuget.org/packages/Aspire.Microsoft.Data.SqlClient
https://www.nuget.org/packages/Aspire.Microsoft.Data.SqlClient
https://www.nuget.org/packages/Aspire.Microsoft.Data.SqlClient
https://learn.microsoft.com/en-us/dotnet/api/system.data.entity.dbcontext
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.aspireoracleefcoreextensions.addoracledatabasedbcontext
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.ihostapplicationbuilder
https://learn.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.dbcontext

C#

For more information on dependency injection, see .NET dependency injection.

You may prefer to use the standard Entity Framework method to obtain a database
context and add it to the dependency injection container:

C#

You have more flexibility when you create the database context in this way, for example:

You can reuse existing configuration code for the database context without
rewriting it for .NET Aspire.
You can use Entity Framework Core interceptors to modify database operations.
You can choose not to use Entity Framework Core context pooling, which may
perform better in some circumstances.

If you use this method, you can enhance the database context with .NET Aspire-style
retries, health checks, logging, and telemetry features by calling the
EnrichOracleDatabaseDbContext method:

C#

public class ExampleService(ExampleDbContext context)
{
 // Use database context...
}

Enrich Oracle database context

builder.Services.AddDbContext<ExampleDbContext>(options =>
 options.UseOracle(builder.Configuration.GetConnectionString("oracledb")
 ?? throw new InvalidOperationException("Connection string 'oracledb'
not found.")));

７ Note

The connection string name that you pass to the GetConnectionString method
must match the name used when adding the Oracle resource in the app host
project. For more information, see Add Oracle server and database resources.

builder.EnrichOracleDatabaseDbContext<ExampleDbContext>(
 configureSettings: settings =>
 {

https://learn.microsoft.com/en-us/dotnet/core/extensions/dependency-injection
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.aspireoracleefcoreextensions.enrichoracledatabasedbcontext
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.configurationextensions.getconnectionstring

The settings parameter is an instance of the OracleEntityFrameworkCoreSettings class.

The .NET Aspire Oracle Entity Framework Core integration provides multiple
configuration approaches and options to meet the requirements and conventions of
your project.

When using a connection string from the ConnectionStrings configuration section, you
provide the name of the connection string when calling
builder.AddOracleDatabaseDbContext<TContext>() :

C#

The connection string is retrieved from the ConnectionStrings configuration section:

JSON

The EnrichOracleDatabaseDbContext won't make use of the ConnectionStrings
configuration section since it expects a DbContext to be registered at the point it is
called.

For more information, see the ODP.NET documentation .

The .NET Aspire Oracle Entity Framework Core integration supports
Microsoft.Extensions.Configuration from configuration files such as appsettings.json by

 settings.DisableRetry = false;
 settings.CommandTimeout = 30 // seconds
 });

Configuration

Use a connection string

builder.AddOracleDatabaseDbContext<ExampleDbContext>("oracleConnection");

{
 "ConnectionStrings": {
 "oracleConnection": "Data Source=TORCL;User Id=OracleUser;Password=Non-
default-P@ssw0rd;"
 }
}

Use configuration providers

https://learn.microsoft.com/en-us/dotnet/api/aspire.oracle.entityframeworkcore.oracleentityframeworkcoresettings
https://www.oracle.com/database/technologies/appdev/dotnet/odp.html
https://www.oracle.com/database/technologies/appdev/dotnet/odp.html
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration

using the Aspire:Oracle:EntityFrameworkCore key. If you have set up your
configurations in the Aspire:Oracle:EntityFrameworkCore section you can just call the
method without passing any parameter.

The following is an example of an appsettings.json that configures some of the available
options:

JSON

You can also pass the Action<OracleEntityFrameworkCoreSettings> delegate to set up
some or all the options inline, for example to disable health checks from code:

C#

or

C#

{
 "Aspire": {
 "Oracle": {
 "EntityFrameworkCore": {
 "DisableHealthChecks": true,
 "DisableTracing": true,
 "DisableRetry": false,
 "CommandTimeout": 30
 }
 }
 }
}

 Tip

The CommandTimeout property is in seconds. When set as shown in the preceding
example, the timeout is 30 seconds.

Use inline delegates

builder.AddOracleDatabaseDbContext<ExampleDbContext>(
 "oracle",
 static settings => settings.DisableHealthChecks = true);

builder.EnrichOracleDatabaseDbContext<ExampleDbContext>(
 static settings => settings.DisableHealthChecks = true);

Here are the configurable options with corresponding default values:

Name Description

ConnectionString The connection string of the Oracle database to connect to.

DisableHealthChecks A boolean value that indicates whether the database health check is
disabled or not.

DisableTracing A boolean value that indicates whether the OpenTelemetry tracing is
disabled or not.

DisableRetry A boolean value that indicates whether command retries should be
disabled or not.

CommandTimeout The time in seconds to wait for the command to execute.

By default, .NET Aspire client integrations have health checks enabled for all services.
Similarly, many .NET Aspire hosting integrations also enable health check endpoints. For
more information, see:

.NET app health checks in C#
Health checks in ASP.NET Core

By default, the .NET Aspire Oracle Entity Framework Core integration handles the
following:

Checks if the OracleEntityFrameworkCoreSettings.DisableHealthChecks is true .
If so, adds the DbContextHealthCheck , which calls EF Core's CanConnectAsync
method. The name of the health check is the name of the TContext type.

.NET Aspire integrations automatically set up Logging, Tracing, and Metrics
configurations, which are sometimes known as the pillars of observability. For more
information about integration observability and telemetry, see .NET Aspire integrations
overview. Depending on the backing service, some integrations may only support some
of these features. For example, some integrations support logging and tracing, but not

Configuration options

ﾉ Expand table

Client integration health checks

Observability and telemetry

https://learn.microsoft.com/en-us/dotnet/core/diagnostics/diagnostic-health-checks
https://learn.microsoft.com/en-us/aspnet/core/host-and-deploy/health-checks
https://learn.microsoft.com/en-us/dotnet/api/aspire.oracle.entityframeworkcore.oracleentityframeworkcoresettings.disablehealthchecks#aspire-oracle-entityframeworkcore-oracleentityframeworkcoresettings-disablehealthchecks
https://github.com/Xabaril/AspNetCore.Diagnostics.HealthChecks/blob/master/src/HealthChecks.NpgSql/NpgSqlHealthCheck.cs
https://github.com/Xabaril/AspNetCore.Diagnostics.HealthChecks/blob/master/src/HealthChecks.NpgSql/NpgSqlHealthCheck.cs
https://learn.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.storage.idatabasecreator.canconnectasync

metrics. Telemetry features can also be disabled using the techniques presented in the
Configuration section.

The .NET Aspire Oracle Entity Framework Core integration uses the following log
categories:

Microsoft.EntityFrameworkCore.ChangeTracking

Microsoft.EntityFrameworkCore.Database.Command

Microsoft.EntityFrameworkCore.Database.Connection

Microsoft.EntityFrameworkCore.Database.Transaction

Microsoft.EntityFrameworkCore.Infrastructure

Microsoft.EntityFrameworkCore.Migrations

Microsoft.EntityFrameworkCore.Model

Microsoft.EntityFrameworkCore.Model.Validation

Microsoft.EntityFrameworkCore.Query

Microsoft.EntityFrameworkCore.Update

The .NET Aspire Oracle Entity Framework Core integration will emit the following tracing
activities using OpenTelemetry:

OpenTelemetry.Instrumentation.EntityFrameworkCore

The .NET Aspire Oracle Entity Framework Core integration currently supports the
following metrics:

Microsoft.EntityFrameworkCore

Oracle Database
Oracle Database Documentation
Entity Framework Core docs
.NET Aspire integrations
.NET Aspire GitHub repo

Logging

Tracing

Metrics

See also

https://www.oracle.com/database/
https://www.oracle.com/database/
https://docs.oracle.com/en/database/oracle/oracle-database/index.html
https://docs.oracle.com/en/database/oracle/oracle-database/index.html
https://learn.microsoft.com/en-us/ef/core
https://github.com/dotnet/aspire
https://github.com/dotnet/aspire

.NET Aspire PostgreSQL Entity
Framework Core integration
Article • 02/07/2025

Includes: Hosting integration and Client integration

PostgreSQL is a powerful, open source object-relational database system with many
years of active development that has earned it a strong reputation for reliability, feature
robustness, and performance. The .NET Aspire PostgreSQL Entity Framework Core
integration provides a way to connect to existing PostgreSQL databases, or create new
instances from .NET with the docker.io/library/postgres container image .

The PostgreSQL hosting integration models various PostgreSQL resources as the
following types.

PostgresServerResource
PostgresDatabaseResource
PgAdminContainerResource
PgWebContainerResource

To access these types and APIs for expressing them as resources in your app host
project, install the 📦 Aspire.Hosting.PostgreSQL NuGet package:

.NET CLI

For more information, see dotnet add package or Manage package dependencies in
.NET applications.

In your app host project, call AddPostgres on the builder instance to add a PostgreSQL
server resource then call AddDatabase on the postgres instance to add a database
resource as shown in the following example:

Hosting integration

.NET CLI

dotnet add package Aspire.Hosting.PostgreSQL

Add PostgreSQL server resource

https://www.postgresql.org/
https://www.postgresql.org/
https://hub.docker.com/_/postgres
https://hub.docker.com/_/postgres
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.postgresserverresource
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.postgresdatabaseresource
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.postgres.pgadmincontainerresource
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.postgres.pgwebcontainerresource
https://www.nuget.org/packages/Aspire.Hosting.PostgreSQL
https://www.nuget.org/packages/Aspire.Hosting.PostgreSQL
https://learn.microsoft.com/en-us/dotnet/core/tools/dotnet-add-package
https://learn.microsoft.com/en-us/dotnet/core/tools/dependencies
https://learn.microsoft.com/en-us/dotnet/core/tools/dependencies
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.postgresbuilderextensions.addpostgres
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.postgresbuilderextensions.adddatabase

C#

When .NET Aspire adds a container image to the app host, as shown in the preceding
example with the docker.io/library/postgres image, it creates a new PostgreSQL server
instance on your local machine. A reference to your PostgreSQL server and your
PostgreSQL database instance (the postgresdb variable) are used to add a dependency
to the ExampleProject . The PostgreSQL server resource includes default credentials with
a username of "postgres" and randomly generated password using the
CreateDefaultPasswordParameter method.

The WithReference method configures a connection in the ExampleProject named
"messaging" . For more information, see Container resource lifecycle.

When adding PostgreSQL resources to the builder with the AddPostgres method, you
can chain calls to WithPgAdmin to add the dpage/pgadmin4 container. This container
is a cross-platform client for PostgreSQL databases, that serves a web-based admin
dashboard. Consider the following example:

C#

var builder = DistributedApplication.CreateBuilder(args);

var postgres = builder.AddPostgres("postgres");
var postgresdb = postgres.AddDatabase("postgresdb");

var exampleProject = builder.AddProject<Projects.ExampleProject>()
 .WithReference(postgresdb);

// After adding all resources, run the app...

 Tip

If you'd rather connect to an existing PostgreSQL server, call AddConnectionString
instead. For more information, see Reference existing resources.

Add PostgreSQL pgAdmin resource

var builder = DistributedApplication.CreateBuilder(args);

var postgres = builder.AddPostgres("postgres")
 .WithPgAdmin();

var postgresdb = postgres.AddDatabase("postgresdb");

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.parameterresourcebuilderextensions.createdefaultpasswordparameter
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.resourcebuilderextensions.withreference
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.postgresbuilderextensions.withpgadmin
https://www.pgadmin.org/
https://www.pgadmin.org/
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.parameterresourcebuilderextensions.addconnectionstring

The preceding code adds a container based on the docker.io/dpage/pgadmin4 image.
The container is used to manage the PostgreSQL server and database resources. The
WithPgAdmin method adds a container that serves a web-based admin dashboard for
PostgreSQL databases.

To configure the host port for the pgAdmin container, call the WithHostPort method on
the PostgreSQL server resource. The following example shows how to configure the host
port for the pgAdmin container:

C#

The preceding code adds and configures the host port for the pgAdmin container. The
host port is otherwise randomly assigned.

When adding PostgreSQL resources to the builder with the AddPostgres method, you
can chain calls to WithPgWeb to add the sosedoff/pgweb container. This container is
a cross-platform client for PostgreSQL databases, that serves a web-based admin
dashboard. Consider the following example:

C#

var exampleProject = builder.AddProject<Projects.ExampleProject>()
 .WithReference(postgresdb);

// After adding all resources, run the app...

Configure the pgAdmin host port

var builder = DistributedApplication.CreateBuilder(args);

var postgres = builder.AddPostgres("postgres")
 .WithPgAdmin(pgAdmin => pgAdmin.WithHostPort(5050));

var postgresdb = postgres.AddDatabase("postgresdb");

var exampleProject = builder.AddProject<Projects.ExampleProject>()
 .WithReference(postgresdb);

// After adding all resources, run the app...

Add PostgreSQL pgWeb resource

var builder = DistributedApplication.CreateBuilder(args);

var postgres = builder.AddPostgres("postgres")

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.postgresbuilderextensions.withhostport
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.postgresbuilderextensions.withpgweb
https://sosedoff.github.io/pgweb/
https://sosedoff.github.io/pgweb/

The preceding code adds a container based on the docker.io/sosedoff/pgweb image. All
registered PostgresDatabaseResource instances are used to create a configuration file
per instance, and each config is bound to the pgweb container bookmark directory. For
more information, see PgWeb docs: Server connection bookmarks .

To configure the host port for the pgWeb container, call the WithHostPort method on
the PostgreSQL server resource. The following example shows how to configure the host
port for the pgAdmin container:

C#

The preceding code adds and configures the host port for the pgWeb container. The
host port is otherwise randomly assigned.

To add a data volume to the PostgreSQL server resource, call the WithDataVolume
method on the PostgreSQL server resource:

C#

 .WithPgWeb();

var postgresdb = postgres.AddDatabase("postgresdb");

var exampleProject = builder.AddProject<Projects.ExampleProject>()
 .WithReference(postgresdb);

// After adding all resources, run the app...

Configure the pgWeb host port

var builder = DistributedApplication.CreateBuilder(args);

var postgres = builder.AddPostgres("postgres")
 .WithPgWeb(pgWeb => pgWeb.WithHostPort(5050));

var postgresdb = postgres.AddDatabase("postgresdb");

var exampleProject = builder.AddProject<Projects.ExampleProject>()
 .WithReference(postgresdb);

// After adding all resources, run the app...

Add PostgreSQL server resource with data volume

var builder = DistributedApplication.CreateBuilder(args);

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.postgresdatabaseresource
https://github.com/sosedoff/pgweb/wiki/Server-Connection-Bookmarks
https://github.com/sosedoff/pgweb/wiki/Server-Connection-Bookmarks
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.postgresbuilderextensions.withhostport
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.postgresbuilderextensions.withdatavolume

The data volume is used to persist the PostgreSQL server data outside the lifecycle of its
container. The data volume is mounted at the /var/lib/postgresql/data path in the
PostgreSQL server container and when a name parameter isn't provided, the name is
generated at random. For more information on data volumes and details on why they're
preferred over bind mounts, see Docker docs: Volumes .

To add a data bind mount to the PostgreSQL server resource, call the
WithDataBindMount method:

C#

var postgres = builder.AddPostgres("postgres")
 .WithDataVolume(isReadOnly: false);

var postgresdb = postgres.AddDatabase("postgresdb");

var exampleProject = builder.AddProject<Projects.ExampleProject>()
 .WithReference(postgresdb);

// After adding all resources, run the app...

Add PostgreSQL server resource with data bind mount

var builder = DistributedApplication.CreateBuilder(args);

var postgres = builder.AddPostgres("postgres")
 .WithDataBindMount(
 source: @"C:\PostgreSQL\Data",
 isReadOnly: false);

var postgresdb = postgres.AddDatabase("postgresdb");

var exampleProject = builder.AddProject<Projects.ExampleProject>()
 .WithReference(postgresdb);

// After adding all resources, run the app...

） Important

Data bind mounts have limited functionality compared to volumes , which
offer better performance, portability, and security, making them more suitable for
production environments. However, bind mounts allow direct access and
modification of files on the host system, ideal for development and testing where
real-time changes are needed.

https://docs.docker.com/engine/storage/volumes
https://docs.docker.com/engine/storage/volumes
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.postgresbuilderextensions.withdatabindmount
https://docs.docker.com/engine/storage/bind-mounts/
https://docs.docker.com/engine/storage/bind-mounts/
https://docs.docker.com/engine/storage/volumes/
https://docs.docker.com/engine/storage/volumes/

Data bind mounts rely on the host machine's filesystem to persist the PostgreSQL server
data across container restarts. The data bind mount is mounted at the
C:\PostgreSQL\Data on Windows (or /PostgreSQL/Data on Unix) path on the host
machine in the PostgreSQL server container. For more information on data bind mounts,
see Docker docs: Bind mounts .

To add an init bind mount to the PostgreSQL server resource, call the
WithInitBindMount method:

C#

The init bind mount relies on the host machine's filesystem to initialize the PostgreSQL
server database with the containers init folder. This folder is used for initialization,
running any executable shell scripts or .sql command files after the postgres-data folder
is created. The init bind mount is mounted at the C:\PostgreSQL\Init on Windows (or
/PostgreSQL/Init on Unix) path on the host machine in the PostgreSQL server
container.

When you want to explicitly provide the username and password used by the container
image, you can provide these credentials as parameters. Consider the following
alternative example:

C#

Add PostgreSQL server resource with init bind mount

var builder = DistributedApplication.CreateBuilder(args);

var postgres = builder.AddPostgres("postgres")
 .WithInitBindMount(@"C:\PostgreSQL\Init");

var postgresdb = postgres.AddDatabase("postgresdb");

var exampleProject = builder.AddProject<Projects.ExampleProject>()
 .WithReference(postgresdb);

// After adding all resources, run the app...

Add PostgreSQL server resource with parameters

var builder = DistributedApplication.CreateBuilder(args);

var username = builder.AddParameter("username", secret: true);
var password = builder.AddParameter("password", secret: true);

https://docs.docker.com/engine/storage/bind-mounts
https://docs.docker.com/engine/storage/bind-mounts
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.postgresbuilderextensions.withinitbindmount

For more information on providing parameters, see External parameters.

The PostgreSQL hosting integration automatically adds a health check for the
PostgreSQL server resource. The health check verifies that the PostgreSQL server is
running and that a connection can be established to it.

The hosting integration relies on the 📦 AspNetCore.HealthChecks.Npgsql NuGet
package.

To get started with the .NET Aspire PostgreSQL Entity Framework Core client integration,
install the 📦 Aspire.Npgsql.EntityFrameworkCore.PostgreSQL NuGet package in the
client-consuming project, that is, the project for the application that uses the
PostgreSQL client. The .NET Aspire PostgreSQL Entity Framework Core client integration
registers your desired DbContext subclass instances that you can use to interact with
PostgreSQL.

.NET CLI

In the Program.cs file of your client-consuming project, call the AddNpgsqlDbContext
extension method on any IHostApplicationBuilder to register your DbContext subclass
for use via the dependency injection container. The method takes a connection name
parameter.

var postgres = builder.AddPostgres("postgres", username, password);
var postgresdb = postgres.AddDatabase("postgresdb⸰㠶ㄸㄶ‰⸰㠶ㄸㄶ‰⸰㠶ㄸㄶ⁲朊焊㄰‰‰‱〠〠〠捭⁂吊⽒㄰㜰‱〮㔠呦਱‰‰‱″㌷⸲㤳‸〵⸱鐀蜀镈、焊ㄴ㌮㆔਱‰‷㔱〮㔠呦㄰㜰̀鈀鄀销‰‴‰‱を〠ょ⽒㆔㐮㢌ょ⾅〳‸㠠牧ੱ਱〠〠〠㄰‰‰⁣洠䉔ਯ刱鐴⸸谰蜯蔰㌂댯刱鐴⸸谰蜯蔰㌠⁂吊⼈‴‰‱を〠ょ⽒㆔㐮㢌ょ⾅〳>()㈲⠀逩〮㌲唀一☀䬀

https://www.nuget.org/packages/AspNetCore.HealthChecks.Npgsql
https://www.nuget.org/packages/AspNetCore.HealthChecks.Npgsql
https://www.nuget.org/packages/Aspire.Npgsql.EntityFrameworkCore.PostgreSQL
https://www.nuget.org/packages/Aspire.Npgsql.EntityFrameworkCore.PostgreSQL
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.aspireefpostgresqlextensions.addnpgsqldbcontext
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.ihostapplicationbuilder
https://learn.microsoft.com/en-us/dotnet/api/system.data.entity.dbcontext

C#

After adding YourDbContext to the builder, you can get the YourDbContext instance
using dependency injection. For example, to retrieve your data source object from an
example service define it as a constructor parameter and ensure the ExampleService
class is registered with the dependency injection container:

C#

For more information on dependency injection, see .NET dependency injection.

You may prefer to use the standard Entity Framework method to obtain a database
context and add it to the dependency injection container:

C#

builder.AddNpgsqlDbContext<YourDbContext>(connectionName: "postgresdb");

 Tip

The connectionName parameter must match the name used when adding the
PostgreSQL server resource in the app host project. For more information, see Add
PostgreSQL server resource.

public class ExampleService(YourDbContext context)
{
 // Use context...
}

Enrich an Npgsql database context

builder.Services.AddDbContext<YourDbContext>(options =>

options.UseNpgsql(builder.Configuration.GetConnectionString("postgresdb")
 ?? throw new InvalidOperationException("Connection string
'postgresdb' not found.")));

７ Note

https://learn.microsoft.com/en-us/dotnet/core/extensions/dependency-injection

You have more flexibility when you create the database context in this way, for example:

You can reuse existing configuration code for the database context without
rewriting it for .NET Aspire.
You can use Entity Framework Core interceptors to modify database operations.
You can choose not to use Entity Framework Core context pooling, which may
perform better in some circumstances.

If you use this method, you can enhance the database context with .NET Aspire-style
retries, health checks, logging, and telemetry features by calling the
EnrichNpgsqlDbContext method:

C#

The settings parameter is an instance of the
NpgsqlEntityFrameworkCorePostgreSQLSettings class.

The .NET Aspire PostgreSQL Entity Framework Core integration provides multiple
configuration approaches and options to meet the requirements and conventions of
your project.

When using a connection string from the ConnectionStrings configuration section, you
provide the name of the connection string when calling the AddNpgsqlDbContext
method:

C#

The connection string name that you pass to the GetConnectionString method
must match the name used when adding the PostgreSQL server resource in the app
host project. For more information, see Add PostgreSQL server resource.

builder.EnrichNpgsqlDbContext<YourDbContext>(
 configureSettings: settings =>
 {
 settings.DisableRetry = false;
 settings.CommandTimeout = 30;
 });

Configuration

Use a connection string

https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.aspireefpostgresqlextensions.enrichnpgsqldbcontext
https://learn.microsoft.com/en-us/dotnet/api/aspire.npgsql.entityframeworkcore.postgresql.npgsqlentityframeworkcorepostgresqlsettings
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.aspireefpostgresqlextensions.addnpgsqldbcontext
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.configurationextensions.getconnectionstring

The connection string is retrieved from the ConnectionStrings configuration section:

JSON

The EnrichNpgsqlDbContext won't make use of the ConnectionStrings configuration
section since it expects a DbContext to be registered at the point it's called.

For more information, see the ConnectionString .

The .NET Aspire PostgreSQL Entity Framework Core integration supports
Microsoft.Extensions.Configuration. It loads the
NpgsqlEntityFrameworkCorePostgreSQLSettings from configuration files such as
appsettings.json by using the Aspire:Npgsql:EntityFrameworkCore:PostgreSQL key. If you
have set up your configurations in the Aspire:Npgsql:EntityFrameworkCore:PostgreSQL
section you can just call the method without passing any parameter.

The following example shows an appsettings.json file that configures some of the
available options:

JSON

builder.AddNpgsqlDbContext<MyDbContext>("pgdb");

{
 "ConnectionStrings": {
 "pgdb": "Host=myserver;Database=test"
 }
}

Use configuration providers

{
 "Aspire": {
 "Npgsql": {
 "EntityFrameworkCore": {
 "PostgreSQL": {
 "ConnectionString": "Host=myserver;Database=postgresdb",
 "DisableHealthChecks": true,
 "DisableTracing": true
 }
 }
 }
 }
}

https://www.npgsql.org/doc/connection-string-parameters.html
https://www.npgsql.org/doc/connection-string-parameters.html
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration
https://learn.microsoft.com/en-us/dotnet/api/aspire.npgsql.entityframeworkcore.postgresql.npgsqlentityframeworkcorepostgresqlsettings

For the complete PostgreSQL Entity Framework Core client integration JSON schema,
see Aspire.Npgsql.EntityFrameworkCore.PostgreSQL/ConfigurationSchema.json .

You can also pass the Action<NpgsqlEntityFrameworkCorePostgreSQLSettings> delegate
to set up some or all the options inline, for example to set the ConnectionString :

C#

If you want to register more than one DbContext with different configuration, you can
use $"Aspire:Npgsql:EntityFrameworkCore:PostgreSQL:{typeof(TContext).Name}"
configuration section name. The json configuration would look like:

JSON

Then calling the AddNpgsqlDbContext method with AnotherDbContext type parameter
would load the settings from
Aspire:Npgsql:EntityFrameworkCore:PostgreSQL:AnotherDbContext section.

C#

Use inline delegates

builder.AddNpgsqlDbContext<YourDbContext>(
 "pgdb",
 static settings => settings.ConnectionString = "<YOUR CONNECTION
STRING>");

Configure multiple DbContext classes

{
 "Aspire": {
 "Npgsql": {
 "EntityFrameworkCore": {
 "PostgreSQL": {
 "ConnectionString": "<YOUR CONNECTION STRING>",
 "DisableHealthChecks": true,
 "DisableTracing": true,
 "AnotherDbContext": {
 "ConnectionString": "<ANOTHER CONNECTION STRING>",
 "DisableTracing": false
 }
 }
 }
 }
 }
}

https://github.com/dotnet/aspire/blob/v9.1.0/src/Components/Aspire.Npgsql.EntityFrameworkCore.PostgreSQL/ConfigurationSchema.json
https://github.com/dotnet/aspire/blob/v9.1.0/src/Components/Aspire.Npgsql.EntityFrameworkCore.PostgreSQL/ConfigurationSchema.json
https://learn.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.dbcontext
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.aspireefpostgresqlextensions.addnpgsqldbcontext

By default, .NET Aspire client integrations have health checks enabled for all services.
Similarly, many .NET Aspire hosting integrations also enable health check endpoints. For
more information, see:

.NET app health checks in C#
Health checks in ASP.NET Core

By default, the .NET Aspire PostgreSQL Entity Framework Core integrations handles the
following:

Adds the DbContextHealthCheck , which calls EF Core's CanConnectAsync
method. The name of the health check is the name of the TContext type.
Integrates with the /health HTTP endpoint, which specifies all registered health
checks must pass for app to be considered ready to accept traffic

.NET Aspire integrations automatically set up Logging, Tracing, and Metrics
configurations, which are sometimes known as the pillars of observability. For more
information about integration observability and telemetry, see .NET Aspire integrations
overview. Depending on the backing service, some integrations may only support some
of these features. For example, some integrations support logging and tracing, but not
metrics. Telemetry features can also be disabled using the techniques presented in the
Configuration section.

The .NET Aspire PostgreSQL Entity Framework Core integration uses the following Log
categories:

Microsoft.EntityFrameworkCore.ChangeTracking

Microsoft.EntityFrameworkCore.Database.Command

Microsoft.EntityFrameworkCore.Database.Connection

Microsoft.EntityFrameworkCore.Database.ទran閃actionMicrosoft.EntityFrameworkCore.႖igration閃Microsoft.EntityFrameworkCore.಑n袉ra閃隉r鞃ct鞑re

https://learn.microsoft.com/en-us/dotnet/core/diagnostics/diagnostic-health-checks
https://learn.microsoft.com/en-us/aspnet/core/host-and-deploy/health-checks
https://github.com/Xabaril/AspNetCore.Diagnostics.HealthChecks/blob/master/src/HealthChecks.NpgSql/NpgSqlHealthCheck.cs
https://github.com/Xabaril/AspNetCore.Diagnostics.HealthChecks/blob/master/src/HealthChecks.NpgSql/NpgSqlHealthCheck.cs
https://learn.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.storage.idatabasecreator.canconnectasync

Microsoft.EntityFrameworkCore.Migrations

Microsoft.EntityFrameworkCore.Model

Microsoft.EntityFrameworkCore.Model.Validation

Microsoft.EntityFrameworkCore.Query

Microsoft.EntityFrameworkCore.Update

The .NET Aspire PostgreSQL Entity Framework Core integration will emit the following
tracing activities using OpenTelemetry:

Npgsql

The .NET Aspire PostgreSQL Entity Framework Core integration will emit the following
metrics using OpenTelemetry:

Microsoft.EntityFrameworkCore:
ec_Microsoft_EntityFrameworkCore_active_db_contexts

ec_Microsoft_EntityFrameworkCore_total_queries

ec_Microsoft_EntityFrameworkCore_queries_per_second

ec_Microsoft_EntityFrameworkCore_total_save_changes

ec_Microsoft_EntityFrameworkCore_save_changes_per_second

ec_Microsoft_EntityFrameworkCore_compiled_query_cache_hit_rate

ec_Microsoft_Entity_total_execution_strategy_operation_failures

ec_Microsoft_E_execution_strategy_operation_failures_per_second

ec_Microsoft_EntityFramew_total_optimistic_concurrency_failures

ec_Microsoft_EntityF_optimistic_concurrency_failures_per_second

Npgsql:
ec_Npgsql_bytes_written_per_second

ec_Npgsql_bytes_read_per_second

ec_Npgsql_commands_per_second

ec_Npgsql_total_commands

ec_Npgsql_current_commands

ec_Npgsql_failed_commands

ec_Npgsql_prepared_commands_ratio

ec_Npgsql_connection_pools

ec_Npgsql_multiplexing_average_commands_per_batch

Tracing

Metrics

ec_Npgsql_multiplexing_average_write_time_per_batch

PostgreSQL docs
.NET Aspire Azure PostgreSQL Entity Framework Core integration
.NET Aspire integrations
.NET Aspire GitHub repo

See also

https://www.npgsql.org/doc/api/Npgsql.html
https://www.npgsql.org/doc/api/Npgsql.html
https://github.com/dotnet/aspire
https://github.com/dotnet/aspire

.NET Aspire SQL Server Entity
Framework Core integration
Article • 02/12/2025

Includes: Hosting integration and Client integration

SQL Server is a relational database management system developed by Microsoft. The
.NET Aspire SQL Server Entity Framework Core integration enables you to connect to
existing SQL Server instances or create new instances from .NET with the
mcr.microsoft.com/mssql/server container image .

The SQL Server hosting integration models the server as the SqlServerServerResource
type and the database as the SqlServerDatabaseResource type. To access these types
and APIs, add the 📦 Aspire.Hosting.SqlServer NuGet package in the app host
project.

.NET CLI

For more information, see dotnet add package or Manage package dependencies in
.NET applications.

In your app host project, call AddSqlServer to add and return a SQL Server resource
builder. Chain a call to the returned resource builder to AddDatabase, to add SQL Server
database resource.

C#

Hosting integration

.NET CLI

dotnet add package Aspire.Hosting.SqlServer

Add SQL Server resource and database resource

var builder = DistributedApplication.CreateBuilder(args);

var sql = builder.AddSqlServer("sql")
 .WithLifetime(ContainerLifetime.Persistent);

https://www.microsoft.com/sql-server
https://www.microsoft.com/sql-server
https://hub.docker.com/_/microsoft-mssql-server
https://hub.docker.com/_/microsoft-mssql-server
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.sqlserverserverresource
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.sqlserverdatabaseresource
https://www.nuget.org/packages/Aspire.Hosting.SqlServer
https://www.nuget.org/packages/Aspire.Hosting.SqlServer
https://learn.microsoft.com/en-us/dotnet/core/tools/dotnet-add-package
https://learn.microsoft.com/en-us/dotnet/core/tools/dependencies
https://learn.microsoft.com/en-us/dotnet/core/tools/dependencies
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.sqlserverbuilderextensions.addsqlserver
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.sqlserverbuilderextensions.adddatabase

When .NET Aspire adds a container image to the app host, as shown in the preceding
example with the mcr.microsoft.com/mssql/server image, it creates a new SQL Server
instance on your local machine. A reference to your SQL Server resource builder (the
sql variable) is used to add a database. The database is named database and then
added to the ExampleProject . The SQL Server resource includes default credentials with
a username of sa and a random password generated using the
CreateDefaultPasswordParameter method.

When the app host runs, the password is stored in the app host's secret store. It's added
to the Parameters section, for example:

JSON

The name of the parameter is sql-password , but really it's just formatting the resource
name with a -password suffix. For more information, see Safe storage of app secrets in
development in ASP.NET Core and Add SQL Server resource with parameters.

The WithReference method configures a connection in the ExampleProject named
database .

var db = sql.AddDatabase("database");

builder.AddProject<Projects.ExampleProject>()
 .WithReference(db)
 .WaitFor(db);

// After adding all resources, run the app...

７ Note

The SQL Server container is slow to start, so it's best to use a persistent lifetime to
avoid unnecessary restarts. For more information, see Container resource lifetime.

{
 "Parameters:sql-password": "<THE_GENERATED_PASSWORD>"
}

 Tip

If you'd rather connect to an existing SQL Server, call AddConnectionString
instead. For more information, see Reference existing resources.

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.parameterresourcebuilderextensions.createdefaultpasswordparameter
https://learn.microsoft.com/en-us/aspnet/core/security/app-secrets
https://learn.microsoft.com/en-us/aspnet/core/security/app-secrets
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.resourcebuilderextensions.withreference
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.parameterresourcebuilderextensions.addconnectionstring

To add a data volume to the SQL Server resource, call the WithDataVolume method on
the SQL Server resource:

C#

The data volume is used to persist the SQL Server data outside the lifecycle of its
container. The data volume is mounted at the /var/opt/mssql path in the SQL Server
container and when a name parameter isn't provided, the name is generated at random.
For more information on data volumes and details on why they're preferred over bind
mounts, see Docker docs: Volumes .

To add a data bind mount to the SQL Server resource, call the WithDataBindMount
method:

C#

Add SQL Server resource with data volume

var builder = DistributedApplication.CreateBuilder(args);

var sql = builder.AddSqlServer("sql")
 .WithDataVolume();

var db = sql.AddDatabase("database");

builder.AddProject<Projects.ExampleProject>()
 .WithReference(db)
 .WaitFor(db);

// After adding all resources, run the app...

２ Warning

The password is stored in the data volume. When using a data volume and if the
password changes, it will not work until you delete the volume.

Add SQL Server resource with data bind mount

var builder = DistributedApplication.CreateBuilder(args);

var sql = builder.AddSqlServer("sql")
 .WithDataBindMount(source: @"C:\SqlServer\Data");

var db = sql.AddDatabase("database");

builder.AddProject<Projects.ExampleProject>()

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.sqlserverbuilderextensions.withdatavolume
https://docs.docker.com/engine/storage/volumes
https://docs.docker.com/engine/storage/volumes
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.sqlserverbuilderextensions.withdatabindmount

Data bind mounts rely on the host machine's filesystem to persist the SQL Server data
across container restarts. The data bind mount is mounted at the C:\SqlServer\Data on
Windows (or /SqlServer/Data on Unix) path on the host machine in the SQL Server
container. For more information on data bind mounts, see Docker docs: Bind mounts .

When you want to explicitly provide the password used by the container image, you can
provide these credentials as parameters. Consider the following alternative example:

C#

For more information on providing parameters, see External parameters.

When the .NET Aspire app host runs, the server's database resources can be accessed
from external tools, such as SQL Server Management Studio (SSMS) or MSSQL for Visual

 .WithReference(db)
 .WaitFor(db);

// After adding all resources, run the app...

） Important

Data bind mounts have limited functionality compared to volumes , which
offer better performance, portability, and security, making them more suitable for
production environments. However, bind mounts allow direct access and
modification of files on the host system, ideal for development and testing where
real-time changes are needed.

Add SQL Server resource with parameters

var builder = DistributedApplication.CreateBuilder(args);

var password = builder.AddParameter("password", secret: true);

var sql = builder.AddSqlServer("sql", password);
var db = sql.AddDatabase("database");

builder.AddProject<Projects.ExampleProject>()
 .WithReference(db)
 .WaitFor(db);

// After adding all resources, run the app...

Connect to database resources

https://docs.docker.com/engine/storage/bind-mounts
https://docs.docker.com/engine/storage/bind-mounts
https://learn.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms
https://learn.microsoft.com/en-us/sql/tools/visual-studio-code-extensions/mssql/mssql-extension-visual-studio-code
https://docs.docker.com/engine/storage/bind-mounts/
https://docs.docker.com/engine/storage/bind-mounts/
https://docs.docker.com/engine/storage/volumes/
https://docs.docker.com/engine/storage/volumes/

Studio Code. The connection string for the database resource is available in the
dependent resources environment variables and is accessed using the .NET Aspire
dashboard: Resource details pane. The environment variable is named
ConnectionStrings__{name} where {name} is the name of the database resource, in this
example it's database . Use the connection string to connect to the database resource
from external tools. Imagine that you have a database named todos with a single
dbo.Todos table.

To connect to the database resource from SQL Server Management Studio, follow
these steps:

1. Open SSMS.

2. In the Connect to Server dialog, select the Additional Connection Parameters
tab.

3. Paste the connection string into the Additional Connection Parameters field
and select Connect.

4. If you're connected, you can see the database resource in the Object Explorer:

SQL Server Management Studio



https://learn.microsoft.com/en-us/sql/tools/visual-studio-code-extensions/mssql/mssql-extension-visual-studio-code
https://learn.microsoft.com/en-us/dotnet/aspire/docs/database/includes/media/ssms-new-connection.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/database/includes/media/ssms-new-connection.png#lightbox

For more information, see SQL Server Management Studio: Connect to a server.

The SQL Server hosting integration automatically adds a health check for the SQL Server
resource. The health check verifies that the SQL Server is running and that a connection
can be established to it.

The hosting integration relies on the 📦 AspNetCore.HealthChecks.SqlServer NuGet
package.

To get started with the .NET Aspire SQL Server Entity Framework Core integration, install
the 📦 Aspire.Microsoft.EntityFrameworkCore.SqlServer NuGet package in the client-
consuming project, that is, the project for the application that uses the SQL Server Entity
Framework Core client.

.NET CLI



Hosting integration health checks

Client integration

.NET CLI

https://learn.microsoft.com/en-us/sql/ssms/quickstarts/ssms-connect-query-sql-server
https://www.nuget.org/packages/AspNetCore.HealthChecks.SqlServer
https://www.nuget.org/packages/AspNetCore.HealthChecks.SqlServer
https://www.nuget.org/packages/Aspire.Microsoft.EntityFrameworkCore.SqlServer
https://www.nuget.org/packages/Aspire.Microsoft.EntityFrameworkCore.SqlServer
https://learn.microsoft.com/en-us/dotnet/aspire/docs/database/includes/media/ssms-connected.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/database/includes/media/ssms-connected.png#lightbox

For more information, see dotnet add package or Manage package dependencies in
.NET applications.

In the Program.cs file of your client-consuming project, call the AddSqlServerDbContext
extension method on any IHostApplicationBuilder to register a DbContext for use via
the dependency injection container. The method takes a connection name parameter.

C#

To retrieve ExampleDbContext object from a service:

C#

For more information on dependency injection, see .NET dependency injection.

You may prefer to use the standard Entity Framework method to obtain a database
context and add it to the dependency injection container:

C#

dotnet add package Aspire.Microsoft.EntityFrameworkCore.SqlServer

Add SQL Server database context

builder.AddSqlServerDbContext<ExampleDbContext>(connectionName: "database");

 Tip

The connectionName parameter must match the name used when adding the SQL
Server database resource in the app host project. In other words, when you call
AddDatabase and provide a name of database that same name should be used
when calling AddSqlServerDbContext . For more information, see Add SQL Server
resource and database resource.

public class ExampleService(ExampleDbContext context)
{
 // Use context...
}

Enrich a SQL Server database context

https://learn.microsoft.com/en-us/dotnet/core/tools/dotnet-add-package
https://learn.microsoft.com/en-us/dotnet/core/tools/dependencies
https://learn.microsoft.com/en-us/dotnet/core/tools/dependencies
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.aspiresqlserverefcoresqlclientextensions.addsqlserverdbcontext
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.ihostapplicationbuilder
https://learn.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.dbcontext
https://learn.microsoft.com/en-us/dotnet/core/extensions/dependency-injection

You have more flexibility when you create the database context in this way, for example:

You can reuse existing configuration code for the database context without
rewriting it for .NET Aspire.
You can use Entity Framework Core interceptors to modify database operations.
You can choose not to use Entity Framework Core context pooling, which may
perform better in some circumstances.

If you use this method, you can enhance the database context with .NET Aspire-style
retries, health checks, logging, and telemetry features by calling the
EnrichSqlServerDbContext method:

C#

The settings parameter is an instance of the
MicrosoftEntityFrameworkCoreSqlServerSettings class.

The .NET Aspire SQL Server Entity Framework Core integration provides multiple
configuration approaches and options to meet the requirements and conventions of
your project.

builder.Services.AddDbContext<ExampleDbContext>(options =>

options.UseSqlServer(builder.Configuration.GetConnectionString("database")
 ?? throw new InvalidOperationException("Connection string 'database'
not found.")));

７ Note

The connection string name that you pass to the GetConnectionString method
must match the name used when adding the SQL server resource in the app host
project. For more information, see Add SQL Server resource and database
resource.

builder.EnrichSqlServerDbContext<ExampleDbContext>(
 configureSettings: settings =>
 {
 settings.DisableRetry = false;
 settings.CommandTimeout = 30; // seconds
 });

Configuration

https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.aspiresqlserverefcoresqlclientextensions.enrichsqlserverdbcontext
https://learn.microsoft.com/en-us/dotnet/api/aspire.microsoft.entityframeworkcore.sqlserver.microsoftentityframeworkcoresqlserversettings
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.configurationextensions.getconnectionstring

When using a connection string from the ConnectionStrings configuration section, you
provide the name of the connection string when calling
builder.AddSqlServerDbContext<TContext>() :

C#

The connection string is retrieved from the ConnectionStrings configuration section:

JSON

The EnrichSqlServerDbContext won't make use of the ConnectionStrings configuration
section since it expects a DbContext to be registered at the point it's called.

For more information, see the ConnectionString.

The .NET Aspire SQL Server Entity Framework Core integration supports
Microsoft.Extensions.Configuration. It loads the
MicrosoftEntityFrameworkCoreSqlServerSettings from configuration files such as
appsettings.json by using the Aspire:Microsoft:EntityFrameworkCore:SqlServer key. If
you have set up your configurations in the
Aspire:Microsoft:EntityFrameworkCore:SqlServer section you can just call the method
without passing any parameter.

The following is an example of an appsettings.json file that configures some of the
available options:

JSON

Use connection string

builder.AddSqlServerDbContext<ExampleDbContext>("sql");

{
 "ConnectionStrings": {
 "sql": "Data Source=myserver;Initial Catalog=master"
 }
}

Use configuration providers

{
 "Aspire": {
 "Microsoft": {
 "EntityFrameworkCore": {
 "SqlServer": {

https://learn.microsoft.com/en-us/dotnet/api/system.data.sqlclient.sqlconnection.connectionstring#remarks
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration
https://learn.microsoft.com/en-us/dotnet/api/aspire.microsoft.entityframeworkcore.sqlserver.microsoftentityframeworkcoresqlserversettings

You can also pass the Action<MicrosoftEntityFrameworkCoreSqlServerSettings> delegate
to set up some or all the options inline, for example to turn off the metrics:

C#

If you want to register more than one DbContext with different configuration, you can
use $"Aspire.Microsoft.EntityFrameworkCore.SqlServer:{typeof(TContext).Name}"
configuration section name. The json configuration would look like:

JSON

 "ConnectionString": "YOUR_CONNECTIONSTRING",
 "DbContextPooling": true,
 "DisableHealthChecks": true,
 "DisableTracing": true,
 "DisableMetrics": false
 }
 }
 }
 }
}

Use inline configurations

builder.AddSqlServerDbContext<YourDbContext>(
 "sql",
 static settings =>
 settings.DisableMetrics = true);

Configure multiple DbContext connections

{
 "Aspire": {
 "Microsoft": {
 "EntityFrameworkCore": {
 "SqlServer": {
 "ConnectionString": "YOUR_CONNECTIONSTRING",
 "DbContextPooling": true,
 "DisableHealthChecks": true,
 "DisableTracing": true,
 "DisableMetrics": false,
 "AnotherDbContext": {
 "ConnectionString": "AnotherDbContext_CONNECTIONSTRING",
 "DisableTracing": false
 }
 }
 }
 }

Then calling the AddSqlServerDbContext method with AnotherDbContext type parameter
would load the settings from
Aspire:Microsoft:EntityFrameworkCore:SqlServer:AnotherDbContext section.

C#

Here are the configurable options with corresponding default values:

Name Description

ConnectionString The connection string of the SQL Server database to connect to.

DbContextPooling A boolean value that indicates whether the db context will be pooled or
explicitly created every time it's requested

MaxRetryCount The maximum number of retry attempts. Default value is 6, set it to 0 to
disable the retry mechanism.

DisableHealthChecks A boolean value that indicates whether the database health check is
disabled or not.

DisableTracing A boolean value that indicates whether the OpenTelemetry tracing is
disabled or not.

DisableMetrics A boolean value that indicates whether the OpenTelemetry metrics are
disabled or not.

Timeout The time in seconds to wait for the command to execute.

By default, .NET Aspire client integrations have health checks enabled for all services.
Similarly, many .NET Aspire hosting integrations also enable health check endpoints. For
more information, see:

.NET app health checks in C#

 }
}

builder.AddSqlServerDbContext<AnotherDbContext>("another-sql");

Configuration options

ﾉ Expand table

Client integration health checks

https://learn.microsoft.com/en-us/dotnet/core/diagnostics/diagnostic-health-checks

Health checks in ASP.NET Core

By default, the .NET Aspire Sql Server Entity Framework Core integration handles the
following:

Adds the DbContextHealthCheck , which calls EF Core's CanConnectAsync
method. The name of the health check is the name of the TContext type.
Integrates with the /health HTTP endpoint, which specifies all registered health
checks must pass for app to be considered ready to accept traffic

.NET Aspire integrations automatically set up Logging, Tracing, and Metrics
configurations, which are sometimes known as the pillars of observability. For more
information about integration observability and telemetry, see .NET Aspire integrations
overview. Depending on the backing service, some integrations may only support some
of these features. For example, some integrations support logging and tracing, but not
metrics. Telemetry features can also be disabled using the techniques presented in the
Configuration section.

The .NET Aspire SQL Server Entity Framework Core integration uses the following Log
categories:

Microsoft.EntityFrameworkCore.ChangeTracking

Microsoft.EntityFrameworkCore.Database.Command

Microsoft.EntityFrameworkCore.Database.Connection

Microsoft.EntityFrameworkCore.Database.Transaction

Microsoft.EntityFrameworkCore.Infrastructure

Microsoft.EntityFrameworkCore.Migrations

Microsoft.EntityFrameworkCore.Model

Microsoft.EntityFrameworkCore.Model.Validation

Microsoft.EntityFrameworkCore.Query

Microsoft.EntityFrameworkCore.Update

The .NET Aspire SQL Server Entity Framework Core integration will emit the following
Tracing activities using OpenTelemetry:

Observability and telemetry

Logging

Tracing

https://learn.microsoft.com/en-us/aspnet/core/host-and-deploy/health-checks
https://github.com/Xabaril/AspNetCore.Diagnostics.HealthChecks/blob/master/src/HealthChecks.NpgSql/NpgSqlHealthCheck.cs
https://github.com/Xabaril/AspNetCore.Diagnostics.HealthChecks/blob/master/src/HealthChecks.NpgSql/NpgSqlHealthCheck.cs
https://learn.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.storage.idatabasecreator.canconnectasync

"OpenTelemetry.Instrumentation.EntityFrameworkCore"

The .NET Aspire SQL Server Entity Framework Core integration will emit the following
metrics using OpenTelemetry:

Microsoft.EntityFrameworkCore:
ec_Microsoft_EntityFrameworkCore_active_db_contexts

ec_Microsoft_EntityFrameworkCore_total_queries

ec_Microsoft_EntityFrameworkCore_queries_per_second

ec_Microsoft_EntityFrameworkCore_total_save_changes

ec_Microsoft_EntityFrameworkCore_save_changes_per_second

ec_Microsoft_EntityFrameworkCore_compiled_query_cache_hit_rate

ec_Microsoft_Entity_total_execution_strategy_operation_failures

ec_Microsoft_E_execution_strategy_operation_failures_per_second

ec_Microsoft_EntityFramew_total_optimistic_concurrency_failures

ec_Microsoft_EntityF_optimistic_concurrency_failures_per_second

Azure SQL Database documentation
.NET Aspire integrations
.NET Aspire GitHub repo

Metrics

See also

https://learn.microsoft.com/en-us/azure/azure-sql/
https://github.com/dotnet/aspire
https://github.com/dotnet/aspire

.NET Aspire Keycloak integration
(Preview)
Article • 03/06/2025

Includes: Hosting integration and Client integration

Keycloak is an open-source Identity and Access Management solution aimed at
modern applications and services. The .NET Aspire Keycloak integration enables you to
connect to existing Keycloak instances or create new instances from .NET with the
quay.io/keycloak/keycloak container image .

The .NET Aspire Keycloak hosting integration models the server as the KeycloakResource
type. To access these types and APIs, add the 📦 Aspire.Hosting.Keycloak NuGet
package in the app host project.

.NET CLI

For more information, see dotnet add package or Manage package dependencies in
.NET applications.

In your app host project, call AddKeycloak to add and return a Keycloak resource
builder. Chain a call to the returned resource builder to configure the Keycloak.

C#

Hosting integration

.NET CLI

dotnet add package Aspire.Hosting.Keycloak --prerelease

Add Keycloak resource

var builder = DistributedApplication.CreateBuilder(args);

var keycloak = builder.AddKeycloak("keycloak", 8080);

var apiService = builder.AddProject<Projects.Keycloak_ApiService>
("apiservice")
 .WithReference(keycloak)
 .WaitFor(keycloak);

https://www.keycloak.org/
https://www.keycloak.org/
https://quay.io/repository/keycloak/keycloak
https://quay.io/repository/keycloak/keycloak
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.keycloakresource
https://www.nuget.org/packages/Aspire.Hosting.Keycloak
https://www.nuget.org/packages/Aspire.Hosting.Keycloak
https://learn.microsoft.com/en-us/dotnet/core/tools/dotnet-add-package
https://learn.microsoft.com/en-us/dotnet/core/tools/dependencies
https://learn.microsoft.com/en-us/dotnet/core/tools/dependencies
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.keycloakresourcebuilderextensions.addkeycloak

When .NET Aspire adds a container image to the app host, as shown in the preceding
example with the quay.io/keycloak/keycloak image, it creates a new Keycloak instance
on your local machine. The Keycloak resource includes default credentials:

KEYCLOAK_ADMIN : A value of admin .
KEYCLOAK_ADMIN_PASSWORD : Random password generated using the
CreateDefaultPasswordParameter method.

When the app host runs, the password is stored in the app host's secret store. It's added
to the Parameters section, for example:

JSON

The name of the parameter is keycloak-password , but really it's just formatting the
resource name with a -password suffix. For more information, see Safe storage of app
secrets in development in ASP.NET Core and Add Keycloak resource.

The WithReference method configures a connection in the ExampleProject named
keycloak and the WaitFor instructs the app host to not start the dependant service until
the keycloak resource is ready.

builder.AddProject<Projects.Keycloak_Web>("webfrontend")
 .WithExternalHttpEndpoints()
 .WithReference(keycloak)
 .WithReference(apiService)
 .WaitFor(apiService);

// After adding all resources, run the app...

 Tip

For local development use a stable port for the Keycloak resource (8080 in the
preceding example). It can be any port, but it should be stable to avoid issues with
browser cookies that will persist OIDC tokens (which include the authority URL, with
port) beyond the lifetime of the app host.

{
 "Parameters:keycloak-password": "<THE_GENERATED_PASSWORD>"
}

 Tip

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.parameterresourcebuilderextensions.createdefaultpasswordparameter
https://learn.microsoft.com/en-us/aspnet/core/security/app-secrets
https://learn.microsoft.com/en-us/aspnet/core/security/app-secrets
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.resourcebuilderextensions.withreference
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.resourcebuilderextensions.waitfor

To add a data volume to the Keycloak resource, call the WithDataVolume method on the
Keycloak resource:

C#

The data volume is used to persist the Keycloak data outside the lifecycle of its
container. The data volume is mounted at the /opt/keycloak/data path in the Keycloak
container and when a name parameter isn't provided, the name is generated at random.
For more information on data volumes and details on why they're preferred over bind
mounts, see Docker docs: Volumes .

To add a data bind mount to the Keycloak resource, call the WithDataBindMount
method:

C#

If you'd rather connect to an existing Keycloak instance, call AddConnectionString
instead. For more information, see Reference existing resources.

Add Keycloak resource with data volume

var keycloak = builder.AddKeycloak("keycloak", 8080)
 .WithDataVolume();

var apiService = builder.AddProject<Projects.Keycloak_ApiService>
("apiservice")
 .WithReference(keycloak)
 .WaitFor(keycloak);

builder.AddProject<Projects.Keycloak_Web>("webfrontend")
 .WithExternalHttpEndpoints()
 .WithReference(keycloak)
 .WithReference(apiService)
 .WaitFor(apiService);

// After adding all resources, run the app...

２ Warning

The admin credentials are stored in the data volume. When using a data volume
and if the credentials change, it will not work until you delete the volume.

Add Keycloak resource with data bind mount

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.keycloakresourcebuilderextensions.withdatavolume
https://docs.docker.com/engine/storage/volumes
https://docs.docker.com/engine/storage/volumes
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.keycloakresourcebuilderextensions.withdatabindmount
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.parameterresourcebuilderextensions.addconnectionstring

Data bind mounts rely on the host machine's filesystem to persist the Keycloak data
across container restarts. The data bind mount is mounted at the C:\Keycloak\Data on
Windows (or /Keycloak/Data on Unix) path on the host machine in the Keycloak
container. For more information on data bind mounts, see Docker docs: Bind mounts .

When you want to explicitly provide the admin username and password used by the
container image, you can provide these credentials as parameters. Consider the
following alternative example:

C#

var keycloak = builder.AddKeycloak("keycloak", 8080)
 .WithDataBindMount(@"C:\Keycloak\Data");

var apiService = builder.AddProject<Projects.Keycloak_ApiService>
("apiservice")
 .WithReference(keycloak)
 .WaitFor(keycloak);

builder.AddProject<Projects.Keycloak_Web>("webfrontend")
 .WithExternalHttpEndpoints()
 .WithReference(keycloak)
 .WithReference(apiService)
 .WaitFor(apiService);

// After adding all resources, run the app...

） Important

Data bind mounts have limited functionality compared to volumes , which
offer better performance, portability, and security, making them more suitable for
production environments. However, bind mounts allow direct access and
modification of files on the host system, ideal for development and testing where
real-time changes are needed.

Add Keycloak resource with parameters

var builder = DistributedApplication.CreateBuilder(args);

var username = builder.AddParameter("username");
var password = builder.AddParameter("password", secret: true);

var keycloak = builder.AddKeycloak("keycloak", 8080, username, password);

var apiService = builder.AddProject<Projects.Keycloak_ApiService>

https://docs.docker.com/engine/storage/bind-mounts
https://docs.docker.com/engine/storage/bind-mounts
https://docs.docker.com/engine/storage/bind-mounts/
https://docs.docker.com/engine/storage/bind-mounts/
https://docs.docker.com/engine/storage/volumes/
https://docs.docker.com/engine/storage/volumes/

The username and password parameters are usually provided as environment variables
or secrets. The parameters are used to set the KEYCLOAK_ADMIN and
KEYCLOAK_ADMIN_PASSWORD environment variables in the container. For more information
on providing parameters, see External parameters.

To import a realm into Keycloak, call the WithRealmImport method:

C#

The realm import files are mounted at /opt/keycloak/data/import in the Keycloak
container. Realm import files are JSON files that represent the realm configuration. For
more information on realm import, see Keycloak docs: Importing a realm .

As an example, the following JSON file could be added to the app host project in a
/Realms folder—to serve as a source realm configuration file:

("apiservice")
 .WithReference(keycloak)
 .WaitFor(keycloak);

builder.AddProject<Projects.Keycloak_Web>("webfrontend")
 .WithExternalHttpEndpoints()
 .WithReference(keycloak)
 .WithReference(apiService)
 .WaitFor(apiService);

// After adding all resources, run the app...

Add Keycloak resource with realm import

var builder = DistributedApplication.CreateBuilder(args);

var keycloak = builder.AddKeycloak("keycloak", 8080)
 .WithDataVolume()
 .WithRealmImport("./Realms");

var apiService = builder.AddProject<Projects.AspireApp_ApiService>
("apiservice")
 .WithReference(keycloak)
 .WaitFor(keycloak);

builder.AddProject<Projects.AspireApp_Web>("webfrontend")
 .WithExternalHttpEndpoints()
 .WithReference(keycloak)
 .WithReference(apiService)
 .WaitFor(apiService);

builder.Build().Run();

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.keycloakresourcebuilderextensions.withrealmimport
https://www.keycloak.org/docs/latest/server_admin/index.html#_import
https://www.keycloak.org/docs/latest/server_admin/index.html#_import

JSON

{
 "id": "86683c73-be28-4380-a014-6316c0404192",
 "realm": "WeatherShop",
 "notBefore": 0,
 "defaultSignatureAlgorithm": "RS256",
 "revokeRefreshToken": false,
 "refreshTokenMaxReuse": 0,
 "accessTokenLifespan": 300,
 "accessTokenLifespanForImplicitFlow": 900,
 "ssoSessionIdleTimeout": 1800,
 "ssoSessionMaxLifespan": 36000,
 "ssoSessionIdleTimeoutRememberMe": 0,
 "ssoSessionMaxLifespanRememberMe": 0,
 "offlineSessionIdleTimeout": 2592000,
 "offlineSessionMaxLifespanEnabled": false,
 "offlineSessionMaxLifespan": 5184000,
 "clientSessionIdleTimeout": 0,
 "clientSessionMaxLifespan": 0,
 "clientOfflineSessionIdleTimeout": 0,
 "clientOfflineSessionMaxLifespan": 0,
 "accessCodeLifespan": 60,
 "accessCodeLifespanUserAction": 300,
 "accessCodeLifespanLogin": 1800,
 "actionTokenGeneratedByAdminLifespan": 43200,
 "actionTokenGeneratedByUserLifespan": 300,
 "oauth2DeviceCodeLifespan": 600,
 "oauth2DevicePollingInterval": 5,
 "enabled": true,
 "sslRequired": "external",
 "registrationAllowed": true,
 "registrationEmailAsUsername": false,
 "rememberMe": false,
 "verifyEmail": false,
 "loginWithEmailAllowed": true,
 "duplicateEmailsAllowed": false,
 "resetPasswordAllowed": false,
 "editUsernameAllowed": false,
 "bruteForceProtected": false,
 "permanentLockout": false,
 "maxTemporaryLockouts": 0,
 "maxFailureWaitSeconds": 900,
 "minimumQuickLoginWaitSeconds": 60,
 "waitIncrementSeconds": 60,
 "quickLoginCheckMilliSeconds": 1000,
 "maxDeltaTimeSeconds": 43200,
 "failureFactor": 30,
 "roles": {
 "realm": [
 {
 "id": "79e15e0c-7084-4595-9066-c852bc5a6aca",
 "name": "uma_authorization",
 "description": "${role_uma_authorization}",

 "composite": false,
 "clientRole": false,
 "containerId": "86683c73-be28-4380-a014-6316c0404192",
 "attributes": {}
 },
 {
 "id": "f2bd959d-ed9d-4409-af6d-206a4a52cc23",
 "name": "default-roles-weathershop",
 "description": "${role_default-roles}",
 "composite": true,
 "composites": {
 "realm": ["offline_access", "uma_authorization"],
 "client": {
 "account": ["view-profile", "manage-account"]
 }
 },
 "clientRole": false,
 "containerId": "86683c73-be28-4380-a014-6316c0404192",
 "attributes": {}
 },
 {
 "id": "5e1d3cf6-c7ac-478d-a70c-4299abf58490",
 "name": "offline_access",
 "description": "${role_offline-access}",
 "composite": false,
 "clientRole": false,
 "containerId": "86683c73-be28-4380-a014-6316c0404192",
 "attributes": {}
 }
],
 "client": {
 "realm-management": [
 {
 "id": "fe6e42fe-8629-40da-9afe-1179fc964988",
 "name": "manage-users",
 "description": "${role_manage-users}",
 "composite": false,
 "clientRole": true,
 "containerId": "0aa2db92-8cc4-490f-a084-55f5b889613a",
 "attributes": {}
 },
 {
 "id": "f82abb6c-239c-4533-afbd-a7aa03937204",
 "name": "view-users",
 "description": "${role_view-users}",
 "composite": true,
 "composites": {
 "client": {
 "realm-management": ["query-groups", "query-
users"]
 }
 },
 "clientRole": true,
 "containerId": "0aa2db92-8cc4-490f-a084-55f5b889613a",
 "attributes": {}

 },
 {
 "id": "1eb57351-1302-45e5-924a-9b0dc337a2bb",
 "name": "view-events",
 "description": "${role_view-events}",
 "composite": false,
 "clientRole": true,
 "containerId": "0aa2db92-8cc4-490f-a084-55f5b889613a",
 "attributes": {}
 },
 {
 "id": "df3a077e-9bd4-4924-8281-cab7c7fd73e3",
 "name": "manage-authorization",
 "description": "${role_manage-authorization}",
 "composite": false,
 "clientRole": true,
 "containerId": "0aa2db92-8cc4-490f-a084-55f5b889613a",
 "attributes": {}
 },
 {
 "id": "d9fcb43a-3bad-492c-9af9-f199a6382064",
 "name": "query-groups",
 "description": "${role_query-groups}",
 "composite": false,
 "clientRole": true,
 "containerId": "0aa2db92-8cc4-490f-a084-55f5b889613a",
 "attributes": {}
 },
 {
 "id": "1dbdaf2b-a29c-4c54-86b7-d7c338e7672f",
 "name": "realm-admin",
 "description": "${role_realm-admin}",
 "composite": true,
 "composites": {
 "client": {
 "realm-management": ["view-users", "manage-
users", "view-events", "query-groups", "manage-authorization", "query-
users", "manage-realm", "view-identity-providers", "create-client", "view-
authorization", "query-clients", "view-clients", "query-realms",
"impersonation", "view-realm", "manage-events", "manage-identity-providers",
"manage-clients"]
 }
 },
 "clientRole": true,
 "containerId": "0aa2db92-8cc4-490f-a084-55f5b889613a",
 "attributes": {}
 },
 {
 "id": "4c1ff7e3-cc1d-4b1d-a88f-fb71416c742a",
 "name": "query-users",
 "description": "${role_query-users}",
 "composite": false,
 "clientRole": true,
 "containerId": "0aa2db92-8cc4-490f-a084-55f5b889613a",
 "attributes": {}

 },
 {
 "id": "284b35f8-5bc2-4482-8769-81d3594df5a3",
 "name": "manage-realm",
 "description": "${role_manage-realm}",
 "composite": false,
 "clientRole": true,
 "containerId": "0aa2db92-8cc4-490f-a084-55f5b889613a",
 "attributes": {}
 },
 {
 "id": "7e872c38-8a22-469f-92ca-ec67e95d3c33",
 "name": "view-identity-providers",
 "description": "${role_view-identity-providers}",
 "composite": false,
 "clientRole": true,
 "containerId": "0aa2db92-8cc4-490f-a084-55f5b889613a",
 "attributes": {}
 },
 {
 "id": "9f4c2563-7575-461e-b2c8-b2b87f314cb9",
 "name": "create-client",
 "description": "${role_create-client}",
 "composite": false,
 "clientRole": true,
 "containerId": "0aa2db92-8cc4-490f-a084-55f5b889613a",
 "attributes": {}
 },
 {
 "id": "8f92f45c-bfa0-4a66-9812-334fe223c8be",
 "name": "query-clients",
 "description": "${role_query-clients}",
 "composite": false,
 "clientRole": true,
 "containerId": "0aa2db92-8cc4-490f-a084-55f5b889613a",
 "attributes": {}
 },
 {
 "id": "2a0143cf-ad90-4f68-bcb2-a50aa358b070",
 "name": "view-authorization",
 "description": "${role_view-authorization}",
 "composite": false,
 "clientRole": true,
 "containerId": "0aa2db92-8cc4-490f-a084-55f5b889613a",
 "attributes": {}
 },
 {
 "id": "95cc13bf-1342-445a-99fd-141522a7e777",
 "name": "view-clients",
 "description": "${role_view-clients}",
 "composite": true,
 "composites": {
 "client": {
 "realm-management": ["query-clients"]
 }

 },
 "clientRole": true,
 "containerId": "0aa2db92-8cc4-490f-a084-55f5b889613a",
 "attributes": {}
 },
 {
 "id": "109f4b83-ba7d-4036-91e7-7e169cd4c30c",
 "name": "query-realms",
 "description": "${role_query-realms}",
 "composite": false,
 "clientRole": true,
 "containerId": "0aa2db92-8cc4-490f-a084-55f5b889613a",
 "attributes": {}
 },
 {
 "id": "17bcb2b7-3a35-4089-85ea-1d034303b5d6",
 "name": "impersonation",
 "description": "${role_impersonation}",
 "composite": false,
 "clientRole": true,
 "containerId": "0aa2db92-8cc4-490f-a084-55f5b889613a",
 "attributes": {}
 },
 {
 "id": "21c51846-5f22-4318-82b7-9e64e2d256f4",
 "name": "view-realm",
 "description": "${role_view-realm}",
 "composite": false,
 "clientRole": true,
 "containerId": "0aa2db92-8cc4-490f-a084-55f5b889613a",
 "attributes": {}
 },
 {
 "id": "a0599e32-b53b-43bf-a7f6-ac0507ed277d",
 "name": "manage-events",
 "description": "${role_manage-events}",
 "composite": false,
 "clientRole": true,
 "containerId": "0aa2db92-8cc4-490f-a084-55f5b889613a",
 "attributes": {}
 },
 {
 "id": "e732e665-efb7-4df0-8843-b22bf2fe4717",
 "name": "manage-identity-providers",
 "description": "${role_manage-identity-providers}",
 "composite": false,
 "clientRole": true,
 "containerId": "0aa2db92-8cc4-490f-a084-55f5b889613a",
 "attributes": {}
 },
 {
 "id": "6d1b10f2-4c51-4279-8418-d4b82c17f203",
 "name": "manage-clients",
 "description": "${role_manage-clients}",
 "composite": false,

 "clientRole": true,
 "containerId": "0aa2db92-8cc4-490f-a084-55f5b889613a",
 "attributes": {}
 }
],
 "WeatherWeb": [],
 "security-admin-console": [],
 "admin-cli": [],
 "account-console": [],
 "broker": [
 {
 "id": "7184260f-55c4-454a-bf67-dade5b74df7e",
 "name": "read-token",
 "description": "${role_read-token}",
 "composite": false,
 "clientRole": true,
 "containerId": "db2ab30c-b83b-499e-9545-decdc906a372",
 "attributes": {}
 }
],
 "Postman": [],
 "weather.api": [],
 "account": [
 {
 "id": "b4a01a53-3ed0-4e96-8fd1-efb0c143a45d",
 "name": "view-groups",
 "description": "${role_view-groups}",
 "composite": false,
 "clientRole": true,
 "containerId": "65816a45-48d3-4856-b052-c65cb03881d3",
 "attributes": {}
 },
 {
 "id": "e9af1e5f-c0a5-4515-a77a-38fec79135d0",
 "name": "delete-account",
 "description": "${role_delete-account}",
 "composite": false,
 "clientRole": true,
 "containerId": "65816a45-48d3-4856-b052-c65cb03881d3",
 "attributes": {}
 },
 {
 "id": "526cc4f7-6cf8-4f2b-8241-de0e60d2fd47",
 "name": "manage-consent",
 "description": "${role_manage-consent}",
 "composite": true,
 "composites": {
 "client": {
 "account": ["view-consent"]
 }
 },
 "clientRole": true,
 "containerId": "65816a45-48d3-4856-b052-c65cb03881d3",
 "attributes": {}
 },

 {
 "id": "cf93d42f-ffd9-4b3f-bf8d-55aa934f2fe3",
 "name": "view-applications",
 "description": "${role_view-applications}",
 "composite": false,
 "clientRole": true,
 "containerId": "65816a45-48d3-4856-b052-c65cb03881d3",
 "attributes": {}
 },
 {
 "id": "f3b44155-fe06-4fea-8b8f-6954f54d48bb",
 "name": "view-profile",
 "description": "${role_view-profile}",
 "composite": false,
 "clientRole": true,
 "containerId": "65816a45-48d3-4856-b052-c65cb03881d3",
 "attributes": {}
 },
 {
 "id": "65a74b6a-a00f-46b6-8ead-6c051e78c37e",
 "name": "manage-account",
 "description": "${role_manage-account}",
 "composite": true,
 "composites": {
 "client": {
 "account": ["manage-account-links"]
 }
 },
 "clientRole": true,
 "containerId": "65816a45-48d3-4856-b052-c65cb03881d3",
 "attributes": {}
 },
 {
 "id": "c914cc47-8a49-4f30-9851-6f639c4e7adf",
 "name": "manage-account-links",
 "description": "${role_manage-account-links}",
 "composite": false,
 "clientRole": true,
 "containerId": "65816a45-48d3-4856-b052-c65cb03881d3",
 "attributes": {}
 },
 {
 "id": "261d0db4-28c7-4900-a156-01ab4e2483e5",
 "name": "view-consent",
 "description": "${role_view-consent}",
 "composite": false,
 "clientRole": true,
 "containerId": "65816a45-48d3-4856-b052-c65cb03881d3",
 "attributes": {}
 }
]
 }
 },
 "groups": [],
 "defaultRole": {

 "id": "f2bd959d-ed9d-4409-af6d-206a4a52cc23",
 "name": "default-roles-weathershop",
 "description": "${role_default-roles}",
 "composite": true,
 "clientRole": false,
 "containerId": "86683c73-be28-4380-a014-6316c0404192"
 },
 "requiredCredentials": ["password"],
 "otpPolicyType": "totp",
 "otpPolicyAlgorithm": "HmacSHA1",
 "otpPolicyInitialCounter": 0,
 "otpPolicyDigits": 6,
 "otpPolicyLookAheadWindow": 1,
 "otpPolicyPeriod": 30,
 "otpPolicyCodeReusable": false,
 "otpSupportedApplications": ["totpAppFreeOTPName", "totpAppGoogleName",
"totpAppMicrosoftAuthenticatorName"],
 "localizationTexts": {},
 "webAuthnPolicyRpEntityName": "keycloak",
 "webAuthnPolicySignatureAlgorithms": ["ES256"],
 "webAuthnPolicyRpId": "",
 "webAuthnPolicyAttestationConveyancePreference": "not specified",
 "webAuthnPolicyAuthenticatorAttachment": "not specified",
 "webAuthnPolicyRequireResidentKey": "not specified",
 "webAuthnPolicyUserVerificationRequirement": "not specified",
 "webAuthnPolicyCreateTimeout": 0,
 "webAuthnPolicyAvoidSameAuthenticatorRegister": false,
 "webAuthnPolicyAcceptableAaguids": [],
 "webAuthnPolicyExtraOrigins": [],
 "webAuthnPolicyPasswordlessRpEntityName": "keycloak",
 "webAuthnPolicyPasswordlessSignatureAlgorithms": ["ES256"],
 "webAuthnPolicyPasswordlessRpId": "",
 "webAuthnPolicyPasswordlessAttestationConveyancePreference": "not
specified",
 "webAuthnPolicyPasswordlessAuthenticatorAttachment": "not specified",
 "webAuthnPolicyPasswordlessRequireResidentKey": "not specified",
 "webAuthnPolicyPasswordlessUserVerificationRequirement": "not
specified",
 "webAuthnPolicyPasswordlessCreateTimeout": 0,
 "webAuthnPolicyPasswordlessAvoidSameAuthenticatorRegister": false,
 "webAuthnPolicyPasswordlessAcceptableAaguids": [],
 "webAuthnPolicyPasswordlessExtraOrigins": [],
 "scopeMappings": [
 {
 "clientScope": "offline_access",
 "roles": ["offline_access"]
 }
],
 "clientScopeMappings": {
 "account": [
 {
 "client": "account-console",
 "roles": ["manage-account", "view-groups"]
 }
]

 },
 "clients": [
 {
 "id": "bd03dd61-71bf-4f50-acfa-bfc2444ee1d2",
 "clientId": "Postman",
 "name": "",
 "description": "",
 "rootUrl": "",
 "adminUrl": "",
 "baseUrl": "",
 "surrogateAuthRequired": false,
 "enabled": true,
 "alwaysDisplayInConsole": false,
 "clientAuthenticatorType": "client-secret",
 "redirectUris": ["https://oauth.pstmn.io/v1/callback"],
 "webOrigins": ["https://oauth.pstmn.io"],
 "notBefore": 0,
 "bearerOnly": false,
 "consentRequired": false,
 "standardFlowEnabled": true,
 "implicitFlowEnabled": false,
 "directAccessGrantsEnabled": false,
 "serviceAccountsEnabled": false,
 "publicClient": true,
 "frontchannelLogout": true,
 "protocol": "openid-connect",
 "attributes": {
 "oidc.ciba.grant.enabled": "false",
 "client.secret.creation.time": "1718111570",
 "backchannel.logout.session.required": "true",
 "post.logout.redirect.uris": "+",
 "oauth2.device.authorization.grant.enabled": "false",
 "display.on.consent.screen": "false",
 "backchannel.logout.revoke.offline.tokens": "false"
 },
 "authenticationFlowBindingOverrides": {},
 "fullScopeAllowed": true,
 "nodeReRegistrationTimeout": -1,
 "defaultClientScopes": ["web-origins", "acr", "profile",
"roles", "email"],
 "optionalClientScopes": ["address", "phone", "offline_access",
"weather:all", "microprofile-jwt"]
 },
 {
 "id": "016c17d1-8e0f-4a67-9116-86b4691ba99c",
 "clientId": "WeatherWeb",
 "name": "",
 "description": "",
 "rootUrl": "",
 "adminUrl": "",
 "baseUrl": "",
 "surrogateAuthRequired": false,
 "enabled": true,
 "alwaysDisplayInConsole": false,
 "clientAuthenticatorType": "client-secret",

 "redirectUris": ["https://localhost:7085/signin-oidc"],
 "webOrigins": ["https://localhost:7085"],
 "notBefore": 0,
 "bearerOnly": false,
 "consentRequired": false,
 "standardFlowEnabled": true,
 "implicitFlowEnabled": false,
 "directAccessGrantsEnabled": false,
 "serviceAccountsEnabled": false,
 "publicClient": true,
 "frontchannelLogout": true,
 "protocol": "openid-connect",
 "attributes": {
 "oidc.ciba.grant.enabled": "false",
 "post.logout.redirect.uris":
"https://localhost:7085/signout-callback-oidc",
 "oauth2.device.authorization.grant.enabled": "false",
 "backchannel.logout.session.required": "true",
 "backchannel.logout.revoke.offline.tokens": "false"
 },
 "authenticationFlowBindingOverrides": {},
 "fullScopeAllowed": true,
 "nodeReRegistrationTimeout": -1,
 "defaultClientScopes": ["web-origins", "acr", "profile",
"roles", "email"],
 "optionalClientScopes": ["address", "phone", "offline_access",
"weather:all", "microprofile-jwt"]
 },
 {
 "id": "65816a45-48d3-4856-b052-c65cb03881d3",
 "clientId": "account",
 "name": "${client_account}",
 "rootUrl": "${authBaseUrl}",
 "baseUrl": "/realms/WeatherShop/account/",
 "surrogateAuthRequired": false,
 "enabled": true,
 "alwaysDisplayInConsole": false,
 "clientAuthenticatorType": "client-secret",
 "redirectUris": ["/realms/WeatherShop/account/*"],
 "webOrigins": [],
 "notBefore": 0,
 "bearerOnly": false,
 "consentRequired": false,
 "standardFlowEnabled": true,
 "implicitFlowEnabled": false,
 "directAccessGrantsEnabled": false,
 "serviceAccountsEnabled": false,
 "publicClient": true,
 "frontchannelLogout": false,
 "protocol": "openid-connect",
 "attributes": {
 "post.logout.redirect.uris": "+"
 },
 "authenticationFlowBindingOverrides": {},
 "fullScopeAllowed": false,

 "nodeReRegistrationTimeout": 0,
 "defaultClientScopes": ["web-origins", "acr", "profile",
"roles", "email"],
 "optionalClientScopes": ["address", "phone", "offline_access",
"microprofile-jwt"]
 },
 {
 "id": "437fda77-3ba1-4d7b-b192-808e4e62833b",
 "clientId": "account-console",
 "name": "${client_account-console}",
 "rootUrl": "${authBaseUrl}",
 "baseUrl": "/realms/WeatherShop/account/",
 "surrogateAuthRequired": false,
 "enabled": true,
 "alwaysDisplayInConsole": false,
 "clientAuthenticatorType": "client-secret",
 "redirectUris": ["/realms/WeatherShop/account/*"],
 "webOrigins": [],
 "notBefore": 0,
 "bearerOnly": false,
 "consentRequired": false,
 "standardFlowEnabled": true,
 "implicitFlowEnabled": false,
 "directAccessGrantsEnabled": false,
 "serviceAccountsEnabled": false,
 "publicClient": true,
 "frontchannelLogout": false,
 "protocol": "openid-connect",
 "attributes": {
 "post.logout.redirect.uris": "+",
 "pkce.code.challenge.method": "S256"
 },
 "authenticationFlowBindingOverrides": {},
 "fullScopeAllowed": false,
 "nodeReRegistrationTimeout": 0,
 "protocolMappers": [
 {
 "id": "e4606d8a-a581-402c-9290-4e3b988f2090",
 "name": "audience resolve",
 "protocol": "openid-connect",
 "protocolMapper": "oidc-audience-resolve-mapper",
 "consentRequired": false,
 "config": {}
 }
],
 "defaultClientScopes": ["web-origins", "acr", "profile",
"roles", "email"],
 "optionalClientScopes": ["address", "phone", "offline_access",
"microprofile-jwt"]
 },
 {
 "id": "f13fd042-6931-4032-a0ba-f63b364f8d56",
 "clientId": "admin-cli",
 "name": "${client_admin-cli}",
 "surrogateAuthRequired": false,

 "enabled": true,
 "alwaysDisplayInConsole": false,
 "clientAuthenticatorType": "client-secret",
 "redirectUris": [],
 "webOrigins": [],
 "notBefore": 0,
 "bearerOnly": false,
 "consentRequired": false,
 "standardFlowEnabled": false,
 "implicitFlowEnabled": false,
 "directAccessGrantsEnabled": true,
 "serviceAccountsEnabled": false,
 "publicClient": true,
 "frontchannelLogout": false,
 "protocol": "openid-connect",
 "attributes": {
 "post.logout.redirect.uris": "+"
 },
 "authenticationFlowBindingOverrides": {},
 "fullScopeAllowed": false,
 "nodeReRegistrationTimeout": 0,
 "defaultClientScopes": ["web-origins", "acr", "profile",
"roles", "email"],
 "optionalClientScopes": ["address", "phone", "offline_access",
"microprofile-jwt"]
 },
 {
 "id": "db2ab30c-b83b-499e-9545-decdc906a372",
 "clientId": "broker",
 "name": "${client_broker}",
 "surrogateAuthRequired": false,
 "enabled": true,
 "alwaysDisplayInConsole": false,
 "clientAuthenticatorType": "client-secret",
 "redirectUris": [],
 "webOrigins": [],
 "notBefore": 0,
 "bearerOnly": true,
 "consentRequired": false,
 "standardFlowEnabled": true,
 "implicitFlowEnabled": false,
 "directAccessGrantsEnabled": false,
 "serviceAccountsEnabled": false,
 "publicClient": false,
 "frontchannelLogout": false,
 "protocol": "openid-connect",
 "attributes": {
 "post.logout.redirect.uris": "+"
 },
 "authenticationFlowBindingOverrides": {},
 "fullScopeAllowed": false,
 "nodeReRegistrationTimeout": 0,
 "defaultClientScopes": ["web-origins", "acr", "profile",
"roles", "email"],
 "optionalClientScopes": ["address", "phone", "offline_access",

"microprofile-jwt"]
 },
 {
 "id": "0aa2db92-8cc4-490f-a084-55f5b889613a",
 "clientId": "realm-management",
 "name": "${client_realm-management}",
 "surrogateAuthRequired": false,
 "enabled": true,
 "alwaysDisplayInConsole": false,
 "clientAuthenticatorType": "client-secret",
 "redirectUris": [],
 "webOrigins": [],
 "notBefore": 0,
 "bearerOnly": true,
 "consentRequired": false,
 "standardFlowEnabled": true,
 "implicitFlowEnabled": false,
 "directAccessGrantsEnabled": false,
 "serviceAccountsEnabled": false,
 "publicClient": false,
 "frontchannelLogout": false,
 "protocol": "openid-connect",
 "attributes": {
 "post.logout.redirect.uris": "+"
 },
 "authenticationFlowBindingOverrides": {},
 "fullScopeAllowed": false,
 "nodeReRegistrationTimeout": 0,
 "defaultClientScopes": ["web-origins", "acr", "profile",
"roles", "email"],
 "optionalClientScopes": ["address", "phone", "offline_access",
"microprofile-jwt"]
 },
 {
 "id": "e0cc9cef-924e-4799-a921-4811f3bb5d65",
 "clientId": "security-admin-console",
 "name": "${client_security-admin-console}",
 "rootUrl": "${authAdminUrl}",
 "baseUrl": "/admin/WeatherShop/console/",
 "surrogateAuthRequired": false,
 "enabled": true,
 "alwaysDisplayInConsole": false,
 "clientAuthenticatorType": "client-secret",
 "redirectUris": ["/admin/WeatherShop/console/*"],
 "webOrigins": ["+"],
 "notBefore": 0,
 "bearerOnly": false,
 "consentRequired": false,
 "standardFlowEnabled": true,
 "implicitFlowEnabled": false,
 "directAccessGrantsEnabled": false,
 "serviceAccountsEnabled": false,
 "publicClient": true,
 "frontchannelLogout": false,
 "protocol": "openid-connect",

 "attributes": {
 "post.logout.redirect.uris": "+",
 "pkce.code.challenge.method": "S256"
 },
 "authenticationFlowBindingOverrides": {},
 "fullScopeAllowed": false,
 "nodeReRegistrationTimeout": 0,
 "protocolMappers": [
 {
 "id": "254ac20c-6701-4095-82c6-6abd6669b9de",
 "name": "locale",
 "protocol": "openid-connect",
 "protocolMapper": "oidc-usermodel-attribute-mapper",
 "consentRequired": false,
 "config": {
 "introspection.token.claim": "true",
 "userinfo.token.claim": "true",
 "user.attribute": "locale",
 "id.token.claim": "true",
 "access.token.claim": "true",
 "claim.name": "locale",
 "jsonType.label": "String"
 }
 }
],
 "defaultClientScopes": ["web-origins", "acr", "profile",
"roles", "email"],
 "optionalClientScopes": ["address", "phone", "offline_access",
"microprofile-jwt"]
 },
 {
 "id": "4b5953fd-b218-41be-b061-58f37c1c7d26",
 "clientId": "weather.api",
 "name": "",
 "description": "",
 "rootUrl": "",
 "adminUrl": "",
 "baseUrl": "",
 "surrogateAuthRequired": false,
 "enabled": true,
 "alwaysDisplayInConsole": false,
 "clientAuthenticatorType": "client-secret",
 "secret": "**********",
 "redirectUris": ["/*"],
 "webOrigins": ["/*"],
 "notBefore": 0,
 "bearerOnly": false,
 "consentRequired": false,
 "standardFlowEnabled": true,
 "implicitFlowEnabled": false,
 "directAccessGrantsEnabled": false,
 "serviceAccountsEnabled": false,
 "publicClient": false,
 "frontchannelLogout": true,
 "protocol": "openid-connect",

 "attributes": {
 "oidc.ciba.grant.enabled": "false",
 "client.secret.creation.time": "1718111354",
 "backchannel.logout.session.required": "true",
 "post.logout.redirect.uris": "+",
 "oauth2.device.authorization.grant.enabled": "false",
 "backchannel.logout.revoke.offline.tokens": "false"
 },
 "authenticationFlowBindingOverrides": {},
 "fullScopeAllowed": true,
 "nodeReRegistrationTimeout": -1,
 "defaultClientScopes": ["web-origins", "acr", "profile",
"roles", "email"],
 "optionalClientScopes": ["address", "phone", "offline_access",
"microprofile-jwt"]
 }
],
 "clientScopes": [
 {
 "id": "2a6322a2-2f6a-469f-b3c7-d0922db4ad46",
 "name": "phone",
 "description": "OpenID Connect built-in scope: phone",
 "protocol": "openid-connect",
 "attributes": {
 "include.in.token.scope": "true",
 "display.on.consent.screen": "true",
 "consent.screen.text": "${phoneScopeConsentText}"
 },
 "protocolMappers": [
 {
 "id": "ab515c55-d65b-42d3-9d3c-18921a8df065",
 "name": "phone number",
 "protocol": "openid-connect",
 "protocolMapper": "oidc-usermodel-attribute-mapper",
 "consentRequired": false,
 "config": {
 "introspection.token.claim": "true",
 "userinfo.token.claim": "true",
 "user.attribute": "phoneNumber",
 "id.token.claim": "true",
 "access.token.claim": "true",
 "claim.name": "phone_number",
 "jsonType.label": "String"
 }
 },
 {
 "id": "bfaa5db4-137c-4824-bfae-ed77762872c2",
 "name": "phone number verified",
 "protocol": "openid-connect",
 "protocolMapper": "oidc-usermodel-attribute-mapper",
 "consentRequired": false,
 "config": {
 "introspection.token.claim": "true",
 "userinfo.token.claim": "true",
 "user.attribute": "phoneNumberVerified",

 "id.token.claim": "true",
 "access.token.claim": "true",
 "claim.name": "phone_number_verified",
 "jsonType.label": "boolean"
 }
 }
]
 },
 {
 "id": "52fc55cb-995e-4aa2-95ae-3b3d6601dc41",
 "name": "weather:all",
 "description": "",
 "protocol": "openid-connect",
 "attributes": {
 "include.in.token.scope": "true",
 "display.on.consent.screen": "true",
 "gui.order": "",
 "consent.screen.text": ""
 },
 "protocolMappers": [
 {
 "id": "06d03e02-1e56-4bde-911d-bcf28aeba90f",
 "name": "weather api audience",
 "protocol": "openid-connect",
 "protocolMapper": "oidc-audience-mapper",
 "consentRequired": false,
 "config": {
 "included.client.audience": "weather.api",
 "introspection.token.claim": "true",
 "userinfo.token.claim": "false",
 "id.token.claim": "false",
 "lightweight.claim": "false",
 "access.token.claim": "true"
 }
 }
]
 },
 {
 "id": "292ded65-c85e-4c56-ad4d-8e886b9bb261",
 "name": "email",
 "description": "OpenID Connect built-in scope: email",
 "protocol": "openid-connect",
 "attributes": {
 "include.in.token.scope": "true",
 "display.on.consent.screen": "true",
 "consent.screen.text": "${emailScopeConsentText}"
 },
 "protocolMappers": [
 {
 "id": "42743882-7e0a-455e-b6a3-794ec8bf0f22",
 "name": "email verified",
 "protocol": "openid-connect",
 "protocolMapper": "oidc-usermodel-property-mapper",
 "consentRequired": false,
 "config": {

 "introspection.token.claim": "true",
 "userinfo.token.claim": "true",
 "user.attribute": "emailVerified",
 "id.token.claim": "true",
 "access.token.claim": "true",
 "claim.name": "email_verified",
 "jsonType.label": "boolean"
 }
 },
 {
 "id": "b6dd2af9-e583-4d01-95fa-3f0db3ab0129",
 "name": "email",
 "protocol": "openid-connect",
 "protocolMapper": "oidc-usermodel-attribute-mapper",
 "consentRequired": false,
 "config": {
 "introspection.token.claim": "true",
 "userinfo.token.claim": "true",
 "user.attribute": "email",
 "id.token.claim": "true",
 "access.token.claim": "true",
 "claim.name": "email",
 "jsonType.label": "String"
 }
 }
]
 },
 {
 "id": "09a76939-4997-49f5-b88e-dfe54a2819f5",
 "name": "offline_access",
 "description": "OpenID Connect built-in scope: offline_access",
 "protocol": "openid-connect",
 "attributes": {
 "consent.screen.text": "${offlineAccessScopeConsentText}",
 "display.on.consent.screen": "true"
 }
 },
 {
 "id": "95ff8627-716e-49f0-b960-52185409d628",
 "name": "profile",
 "description": "OpenID Connect built-in scope: profile",
 "protocol": "openid-connect",
 "attributes": {
 "include.in.token.scope": "true",
 "display.on.consent.screen": "true",
 "consent.screen.text": "${profileScopeConsentText}"
 },
 "protocolMappers": [
 {
 "id": "b1ae43d1-9d52-40cd-9c6a-a8557ea63f9a",
 "name": "picture",
 "protocol": "openid-connect",
 "protocolMapper": "oidc-usermodel-attribute-mapper",
 "consentRequired": false,
 "config": {

 "introspection.token.claim": "true",
 "userinfo.token.claim": "true",
 "user.attribute": "picture",
 "id.token.claim": "true",
 "access.token.claim": "true",
 "claim.name": "picture",
 "jsonType.label": "String"
 }
 },
 {
 "id": "b9e09b82-3e67-4175-b34a-419b24a13a7f",
 "name": "zoneinfo",
 "protocol": "openid-connect",
 "protocolMapper": "oidc-usermodel-attribute-mapper",
 "consentRequired": false,
 "config": {
 "introspection.token.claim": "true",
 "userinfo.token.claim": "true",
 "user.attribute": "zoneinfo",
 "id.token.claim": "true",
 "access.token.claim": "true",
 "claim.name": "zoneinfo",
 "jsonType.label": "String"
 }
 },
 {
 "id": "06e88533-d2cc-4ae3-a25a-a17e93f69dee",
 "name": "nickname",
 "protocol": "openid-connect",
 "protocolMapper": "oidc-usermodel-attribute-mapper",
 "consentRequired": false,
 "config": {
 "introspection.token.claim": "true",
 "userinfo.token.claim": "true",
 "user.attribute": "nickname",
 "id.token.claim": "true",
 "access.token.claim": "true",
 "claim.name": "nickname",
 "jsonType.label": "String"
 }
 },
 {
 "id": "b697c055-2fb9-4985-8919-33d9f524eaa9",
 "name": "full name",
 "protocol": "openid-connect",
 "protocolMapper": "oidc-full-name-mapper",
 "consentRequired": false,
 "config": {
 "id.token.claim": "true",
 "introspection.token.claim": "true",
 "access.token.claim": "true",
 "userinfo.token.claim": "true"
 }
 },
 {

 "id": "70663048-2110-4271-a8f4-105e77fe2905",
 "name": "profile",
 "protocol": "openid-connect",
 "protocolMapper": "oidc-usermodel-attribute-mapper",
 "consentRequired": false,
 "config": {
 "introspection.token.claim": "true",
 "userinfo.token.claim": "true",
 "user.attribute": "profile",
 "id.token.claim": "true",
 "access.token.claim": "true",
 "claim.name": "profile",
 "jsonType.label": "String"
 }
 },
 {
 "id": "85c992ed-4971-41f1-a4b8-c6263b29dff8",
 "name": "website",
 "protocol": "openid-connect",
 "protocolMapper": "oidc-usermodel-attribute-mapper",
 "consentRequired": false,
 "config": {
 "introspection.token.claim": "true",
 "userinfo.token.claim": "true",
 "user.attribute": "website",
 "id.token.claim": "true",
 "access.token.claim": "true",
 "claim.name": "website",
 "jsonType.label": "String"
 }
 },
 {
 "id": "49e1d494-a72e-49de-a5de-8c2ad752205c",
 "name": "birthdate",
 "protocol": "openid-connect",
 "protocolMapper": "oidc-usermodel-attribute-mapper",
 "consentRequired": false,
 "config": {
 "introspection.token.claim": "true",
 "userinfo.token.claim": "true",
 "user.attribute": "birthdate",
 "id.token.claim": "true",
 "access.token.claim": "true",
 "claim.name": "birthdate",
 "jsonType.label": "String"
 }
 },
 {
 "id": "a746724f-7622-4ad4-91ef-811da6c735ad",
 "name": "updated at",
 "protocol": "openid-connect",
 "protocolMapper": "oidc-usermodel-attribute-mapper",
 "consentRequired": false,
 "config": {
 "introspection.token.claim": "true",

 "userinfo.token.claim": "true",
 "user.attribute": "updatedAt",
 "id.token.claim": "true",
 "access.token.claim": "true",
 "claim.name": "updated_at",
 "jsonType.label": "long"
 }
 },
 {
 "id": "d647d13f-9f96-49f3-b32a-62ad63c37d0e",
 "name": "gender",
 "protocol": "openid-connect",
 "protocolMapper": "oidc-usermodel-attribute-mapper",
 "consentRequired": false,
 "config": {
 "introspection.token.claim": "true",
 "userinfo.token.claim": "true",
 "user.attribute": "gender",
 "id.token.claim": "true",
 "access.token.claim": "true",
 "claim.name": "gender",
 "jsonType.label": "String"
 }
 },
 {
 "id": "86204f6f-16ce-4c9f-9fca-f66b3f292554",
 "name": "given name",
 "protocol": "openid-connect",
 "protocolMapper": "oidc-usermodel-attribute-mapper",
 "consentRequired": false,
 "config": {
 "introspection.token.claim": "true",
 "userinfo.token.claim": "true",
 "user.attribute": "firstName",
 "id.token.claim": "true",
 "access.token.claim": "true",
 "claim.name": "given_name",
 "jsonType.label": "String"
 }
 },
 {
 "id": "f4005bd9-18d2-4456-9e7c-98c5a637f063",
 "name": "locale",
 "protocol": "openid-connect",
 "protocolMapper": "oidc-usermodel-attribute-mapper",
 "consentRequired": false,
 "config": {
 "introspection.token.claim": "true",
 "userinfo.token.claim": "true",
 "user.attribute": "locale",
 "id.token.claim": "true",
 "access.token.claim": "true",
 "claim.name": "locale",
 "jsonType.label": "String"
 }

 },
 {
 "id": "04b20a5a-1588-476c-a465-26a691320510",
 "name": "family name",
 "protocol": "openid-connect",
 "protocolMapper": "oidc-usermodel-attribute-mapper",
 "consentRequired": false,
 "config": {
 "introspection.token.claim": "true",
 "userinfo.token.claim": "true",
 "user.attribute": "lastName",
 "id.token.claim": "true",
 "access.token.claim": "true",
 "claim.name": "family_name",
 "jsonType.label": "String"
 }
 },
 {
 "id": "f812580a-7863-44c3-bcf0-c3f441f0194e",
 "name": "middle name",
 "protocol": "openid-connect",
 "protocolMapper": "oidc-usermodel-attribute-mapper",
 "consentRequired": false,
 "config": {
 "introspection.token.claim": "true",
 "userinfo.token.claim": "true",
 "user.attribute": "middleName",
 "id.token.claim": "true",
 "access.token.claim": "true",
 "claim.name": "middle_name",
 "jsonType.label": "String"
 }
 },
 {
 "id": "c2ae83c9-62c2-4a65-adef-c1d6fd126ec4",
 "name": "username",
 "protocol": "openid-connect",
 "protocolMapper": "oidc-usermodel-attribute-mapper",
 "consentRequired": false,
 "config": {
 "introspection.token.claim": "true",
 "userinfo.token.claim": "true",
 "user.attribute": "username",
 "id.token.claim": "true",
 "access.token.claim": "true",
 "claim.name": "preferred_username",
 "jsonType.label": "String"
 }
 }
]
 },
 {
 "id": "3ab2520f-feb4-43fd-9256-fa9f3e521aa7",
 "name": "address",
 "description": "OpenID Connect built-in scope: address",

 "protocol": "openid-connect",
 "attributes": {
 "include.in.token.scope": "true",
 "display.on.consent.screen": "true",
 "consent.screen.text": "${addressScopeConsentText}"
 },
 "protocolMappers": [
 {
 "id": "b083371e-07ae-4b01-9e8c-6a54b396359f",
 "name": "address",
 "protocol": "openid-connect",
 "protocolMapper": "oidc-address-mapper",
 "consentRequired": false,
 "config": {
 "user.attribute.formatted": "formatted",
 "user.attribute.country": "country",
 "introspection.token.claim": "true",
 "user.attribute.postal_code": "postal_code",
 "userinfo.token.claim": "true",
 "user.attribute.street": "street",
 "id.token.claim": "true",
 "user.attribute.region": "region",
 "access.token.claim": "true",
 "user.attribute.locality": "locality"
 }
 }
]
 },
 {
 "id": "fda66a99-e8b6-49e6-9186-0a7026ec0275",
 "name": "web-origins",
 "description": "OpenID Connect scope for add allowed web origins
to the access token",
 "protocol": "openid-connect",
 "attributes": {
 "include.in.token.scope": "false",
 "display.on.consent.screen": "false",
 "consent.screen.text": ""
 },
 "protocolMappers": [
 {
 "id": "4b12d4de-8c05-4251-9c8f-f801cfa3bf2a",
 "name": "allowed web origins",
 "protocol": "openid-connect",
 "protocolMapper": "oidc-allowed-origins-mapper",
 "consentRequired": false,
 "config": {
 "introspection.token.claim": "true",
 "access.token.claim": "true"
 }
 }
]
 },
 {
 "id": "581928cd-35d7-4c79-a9d1-4e1c9c8ade7e",

 "name": "acr",
 "description": "OpenID Connect scope for add acr (authentication
context class reference) to the token",
 "protocol": "openid-connect",
 "attributes": {
 "include.in.token.scope": "false",
 "display.on.consent.screen": "false"
 },
 "protocolMappers": [
 {
 "id": "d664d3db-be9f-4fee-a72a-be6a295c47f5",
 "name": "acr loa level",
 "protocol": "openid-connect",
 "protocolMapper": "oidc-acr-mapper",
 "consentRequired": false,
 "config": {
 "id.token.claim": "true",
 "introspection.token.claim": "true",
 "access.token.claim": "true",
 "userinfo.token.claim": "true"
 }
 }
]
 },
 {
 "id": "9ac2f136-a665-4550-ac77-cc61a1cd1e95",
 "name": "role_list",
 "description": "SAML role list",
 "protocol": "saml",
 "attributes": {
 "consent.screen.text": "${samlRoleListScopeConsentText}",
 "display.on.consent.screen": "true"
 },
 "protocolMappers": [
 {
 "id": "040520c7-9dfb-4f9d-a93e-17e3267b1517",
 "name": "role list",
 "protocol": "saml",
 "protocolMapper": "saml-role-list-mapper",
 "consentRequired": false,
 "config": {
 "single": "false",
 "attribute.nameformat": "Basic",
 "attribute.name": "Role"
 }
 }
]
 },
 {
 "id": "f0ff8363-c507-4113-adc0-47f6b346de26",
 "name": "roles",
 "description": "OpenID Connect scope for add user roles to the
access token",
 "protocol": "openid-connect",
 "attributes": {

 "include.in.token.scope": "false",
 "display.on.consent.screen": "true",
 "consent.screen.text": "${rolesScopeConsentText}"
 },
 "protocolMappers": [
 {
 "id": "13aa2234-81bf-4018-a67c-d657045eac1f",
 "name": "client roles",
 "protocol": "openid-connect",
 "protocolMapper": "oidc-usermodel-client-role-mapper",
 "consentRequired": false,
 "config": {
 "introspection.token.claim": "true",
 "multivalued": "true",
 "user.attribute": "foo",
 "access.token.claim": "true",
 "claim.name": "resource_access.${client_id}.roles",
 "jsonType.label": "String"
 }
 },
 {
 "id": "d0b63e0d-5543-41dc-baf6-1c6987d6a18d",
 "name": "audience resolve",
 "protocol": "openid-connect",
 "protocolMapper": "oidc-audience-resolve-mapper",
 "consentRequired": false,
 "config": {
 "introspection.token.claim": "true",
 "access.token.claim": "true"
 }
 },
 {
 "id": "38881c98-4009-412b-b924-d36f55273f3e",
 "name": "realm roles",
 "protocol": "openid-connect",
 "protocolMapper": "oidc-usermodel-realm-role-mapper",
 "consentRequired": false,
 "config": {
 "introspection.token.claim": "true",
 "multivalued": "true",
 "user.attribute": "foo",
 "access.token.claim": "true",
 "claim.name": "realm_access.roles",
 "jsonType.label": "String"
 }
 }
]
 },
 {
 "id": "b8a70a2a-a24d-4862-ad4b-dd737b60f7ce",
 "name": "microprofile-jwt",
 "description": "Microprofile - JWT built-in scope",
 "protocol": "openid-connect",
 "attributes": {
 "include.in.token.scope": "true",

 "display.on.consent.screen": "false"
 },
 "protocolMappers": [
 {
 "id": "4eb888ff-b503-4506-b35c-ea0ac0ff3cd3",
 "name": "groups",
 "protocol": "openid-connect",
 "protocolMapper": "oidc-usermodel-realm-role-mapper",
 "consentRequired": false,
 "config": {
 "introspection.token.claim": "true",
 "multivalued": "true",
 "userinfo.token.claim": "true",
 "user.attribute": "foo",
 "id.token.claim": "true",
 "access.token.claim": "true",
 "claim.name": "groups",
 "jsonType.label": "String"
 }
 },
 {
 "id": "d39896cb-3f45-4a62-a254-f7d0eb10e60a",
 "name": "upn",
 "protocol": "openid-connect",
 "protocolMapper": "oidc-usermodel-attribute-mapper",
 "consentRequired": false,
 "config": {
 "introspection.token.claim": "true",
 "userinfo.token.claim": "true",
 "user.attribute": "username",
 "id.token.claim": "true",
 "access.token.claim": "true",
 "claim.name": "upn",
 "jsonType.label": "String"
 }
 }
]
 }
],
 "defaultDefaultClientScopes": ["role_list", "profile", "email",
"roles", "web-origins", "acr"],
 "defaultOptionalClientScopes": ["offline_access", "address", "phone",
"microprofile-jwt", "weather:all"],
 "browserSecurityHeaders": {
 "contentSecurityPolicyReportOnly": "",
 "xContentTypeOptions": "nosniff",
 "referrerPolicy": "no-referrer",
 "xRobotsTag": "none",
 "xFrameOptions": "SAMEORIGIN",
 "contentSecurityPolicy": "frame-src 'self'; frame-ancestors 'self';
object-src 'none';",
 "xXSSProtection": "1; mode=block",
 "strictTransportSecurity": "max-age=31536000; includeSubDomains"
 },
 "smtpServer": {},

 "eventsEnabled": false,
 "eventsListeners": ["jboss-logging"],
 "enabledEventTypes": [],
 "adminEventsEnabled": false,
 "adminEventsDetailsEnabled": false,
 "identityProviders": [],
 "identityProviderMappers": [],
 "components": {

"org.keycloak.services.clientregistration.policy.ClientRegistrationPolicy":
[
 {
 "id": "887848c6-60f6-47ac-ae7f-62f8a5608a4b",
 "name": "Trusted Hosts",
 "providerId": "trusted-hosts",
 "subType": "anonymous",
 "subComponents": {},
 "config": {
 "host-sending-registration-request-must-match": ["true"
],
 "client-uris-must-match": ["true"]
 }
 },
 {
 "id": "4333143f-bf59-419a-99e2-2cce8a5d414a",
 "name": "Consent Required",
 "providerId": "consent-required",
 "subType": "anonymous",
 "subComponents": {},
 "config": {}
 },
 {
 "id": "1ac2db3a-57a1-4567-bc2b-80a2b0c96b71",
 "name": "Max Clients Limit",
 "providerId": "max-clients",
 "subType": "anonymous",
 "subComponents": {},
 "config": {
 "max-clients": ["200"]
 }
 },
 {
 "id": "adb4b546-6386-46e0-8ce9-80bacbba2afe",
 "name": "Allowed Protocol Mapper Types",
 "providerId": "allowed-protocol-mappers",
 "subType": "authenticated",
 "subComponents": {},
 "config": {
 "allowed-protocol-mapper-types": ["oidc-usermodel-
attribute-mapper", "oidc-address-mapper", "saml-role-list-mapper", "saml-
user-property-mapper", "saml-user-attribute-mapper", "oidc-sha256-pairwise-
sub-mapper", "oidc-full-name-mapper", "oidc-usermodel-property-mapper"]
 }
 },
 {

 "id": "241c5dea-68b9-4684-a816-80b08ef86bff",
 "name": "Full Scope Disabled",
 "providerId": "scope",
 "subType": "anonymous",
 "subComponents": {},
 "config": {}
 },
 {
 "id": "6b0e159c-33dc-492b-9d88-421973015466",
 "name": "Allowed Protocol Mapper Types",
 "providerId": "allowed-protocol-mappers",
 "subType": "anonymous",
 "subComponents": {},
 "config": {
 "allowed-protocol-mapper-types": ["saml-user-property-
mapper", "oidc-usermodel-attribute-mapper", "saml-user-attribute-mapper",
"oidc-address-mapper", "oidc-sha256-pairwise-sub-mapper", "oidc-usermodel-
property-mapper", "saml-role-list-mapper", "oidc-full-name-mapper"]
 }
 },
 {
 "id": "730409bc-ce7e-4b64-a870-946aeba9f65b",
 "name": "Allowed Client Scopes",
 "providerId": "allowed-client-templates",
 "subType": "anonymous",
 "subComponents": {},
 "config": {
 "allow-default-scopes": ["true"]
 }
 },
 {
 "id": "0b4b8c74-20b6-4902-b971-9b97001da41e",
 "name": "Allowed Client Scopes",
 "providerId": "allowed-client-templates",
 "subType": "authenticated",
 "subComponents": {},
 "config": {
 "allow-default-scopes": ["true"]
 }
 }
],
 "org.keycloak.keys.KeyProvider": [
 {
 "id": "c08db9a9-0d9d-4b56-96d5-7f2b1d4528df",
 "name": "rsa-generated",
 "providerId": "rsa-generated",
 "subComponents": {},
 "config": {
 "privateKey": [
"MIIEowIBAAKCAQEAyJtAKWr1DdQmh9Nxp2LUGOrc5OA+rdXkV6+kOT21wVsIP/1bg6HekqfMySZ
hIxlALfegc90j0mrqkolb5s7axotTwwABwIvgxW5hHIQ4huntiZUYPUuf4m51dwyLs/GM1gSbzs9
ciBKC5i4S21CQzuGp0QHpyOOn1kQZd0vYSGjpG3ewMYphJEfd60TQP74RcqASNoOaS3lU7+5SCQu
iff1fSZYqYvIFmK3rcNrauTSryx6rh935ODSdYzQN0XA6g1WJK2hbBlBJJzeAj/CXXcBaw7aB1Ao
C7kjJ7XaYmHdC+7zIYhvNKcGtFhrMjoOVnJM9PiRMrk7ous7XAmKc6QIDAQABAoIBAC4qjm5Js1o
qnfBpwJDrPVD7sfjJQ5t5azqjzQkwUrUMGF6zlZ06QhDhpY8QMlAjxkGd6JLpjE4nNVMiYeBA8Be

7pjvs8zpG5qRBBf/MTP79dGFSitjGX+X6EjXi0P7JIuZ4+otybMLS8cV7ynKm/KBjzhMv28fT3oM
AupSaA40MESKVD8BDR0bNQ6H3h1xrq2+81xViFsle9qcrZjJzCz/rttNi3DUct5IeJwc9Wai937L
6H/BU5eBd9vQHM5raLL0iDSF5CQF2tE/j3hq8kdpRm9XRUm/0WaXOz8Il96GfSEUXLVvKnLdHu7q
YbqKKBYI7B3xz8VYiHgDvBMqiBzUCgYEA9Sd/EijWpXAAaFOJk75BOu0sSjZHjoGbaLE1XWsQyM1
fkFT9kxQ+8/kDiHSJal+utoEIrMWK/KdrrIjT0TXbWKCarV+ebgCt9dkTd6Or2SUku5k0TMSMoVE
I2KxI6ZHvCz2Vxe8Ahbao28u8xOGRQYSs5ynvH0oBTex+RP3sv6UCgYEA0Xs55XdSn1PGazAuZYk
9ZKJhCovdalYdjnJYxuSPfBgHV4CIHdhHvd/hohumMakQsnRDmJzbk/uFlqJecZtcQ/DukGylC/6
dvfp6prUrVhghK+7+Bnry7zfQ9rMWslrlhf9ZTrQ8F9pssCtgAfs+Pfj0zF5DxQqFqF3wz12sJPU
CgYATR5HkubV3uUEu8zLknZe/rJtJEs+501OHfjg2Ko9dW1linmx6vqLcyP6QIqoT5YZ179vgyoB
NslTzcqdF0rh3VdoUPGrXN9J2fSXcyNBg+VzULA5C40oz/Y12jMYHKGTmO2el80/VNDI/Ztxnl12
3C1oVq+SUT1ue5zRe9KFDyQKBgBihnqsmnqZxWVFdNvdlbbyZg0OUMpLAUXVgaKPqWBzFToexa0/
nEHh5DLTc/2uzb20sUo5tUzxRROHzcZt2IyEyATsmKzn/1Fh0TVuwzcmvyKa70U69wjbynzWC1VZ
fbcGVxtCETNSZMFJ+pylUe3sZ/N7S7rEKjbDAawJXB1jJAoGBAOZF4M9C1GLCZqt4RrF1MBI0Q+7
Im45Hvr0FSck0y9xLpl9yolQREWoiCo5+WM54YMeSWu0rzBsLAjCoFpIX2cWcICsdPAnyyjIMPmu
Gt/uUaIWmq/ZRAsqkOW0sqxUMggjytNCtvdCyfQOcKsEHpBKrA6z+8l/3Z1RQFwan+VPs"],
 "certificate": [
"MIICpTCCAY0CBgGQcJfMUjANBgkqhkiG9w0BAQsFADAWMRQwEgYDVQQDDAtXZWF0aGVyU2hvcDA
eFw0yNDA3MDEyMzE2NTRaFw0zNDA3MDEyMzE4MzRaMBYxFDASBgNVBAMMC1dlYXRoZXJTaG9wMII
BIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAyJtAKWr1DdQmh9Nxp2LUGOrc5OA+rdXkV6+
kOT21wVsIP/1bg6HekqfMySZhIxlALfegc90j0mrqkolb5s7axotTwwABwIvgxW5hHIQ4huntiZU
YPUuf4m51dwyLs/GM1gSbzs9ciBKC5i4S21CQzuGp0QHpyOOn1kQZd0vYSGjpG3ewMYphJEfd60T
QP74RcqASNoOaS3lU7+5SCQuiff1fSZYqYvIFmK3rcNrauTSryx6rh935ODSdYzQN0XA6g1WJK2h
bBlBJJzeAj/CXXcBaw7aB1AoC7kjJ7XaYmHdC+7zIYhvNKcGtFhrMjoOVnJM9PiRMrk7ous7XAmK
c6QIDAQABMA0GCSqGSIb3DQEBCwUAA4IBAQAeDhADaUkVzu1o8CvCfU9oa6hGsJa+2qFeUPQnG7H
ZAQ07MjQ/RZgMMOmdhspZIuaf+Yrx/My8VDphKzNtb2eNHgFVVQDy1F1jVy9z+t7xCwX3UfjtVNM
p3tMmzWUEi0pckW0mq4Bz3w0+dKPw8z0K2c19dVN1NHDViqFghB+77tO8JguwTDE8fkmXjLixDCc
enBCPXjxNWmhXgOMF1wKhlq1h0+SaKt/F2P/WzyoYu6tz8qVysQvv4knB/HEGjSji+DN+uJFE4RJ
G+B5X+vp5LHvlYKIROQ7/aSzvCjx7zrslmcTsSTL3F1k2Ox2Hz+rGIcA8sGqbj+W5+nKxRbad"
],
 "priority": ["100"]
 }
 },
 {
 "id": "9adc7ed1-f51b-48d4-9d52-96b46abefa18",
 "name": "aes-generated",
 "providerId": "aes-generated",
 "subComponents": {},
 "config": {
 "kid": ["eb1853e7-ac8c-4e8f-8b4f-9ea28a71da76"],
 "secret": ["Jges9iPdpfx0aivf3RUUpw"],
 "priority": ["100"]
 }
 },
 {
 "id": "f4b81876-91be-46f3-9050-c351cd1531af",
 "name": "rsa-enc-generated",
 "providerId": "rsa-enc-generated",
 "subComponents": {},
 "config": {
 "privateKey": [
"MIIEowIBAAKCAQEAlP+NrT2KVZpdrbPoTsMO7MqeXYDeJNl7IXjY0hCb7p1iB6YLOr/lA5ryk/C
IHI05HRt+AEYFac87mb51SEvAa9cHjQ00v7t6hoYV1esyRmB0Nnf8AAEq9GoZxX9nUsIMcExQ3gH
kF56kidYtjQSgl5SlwgdvlsjRiDP9ZJlsWTBb+8v0OCCbQLZFl93IlTZ7QlaxXoB0dCuuLNyBpEL
Fbc0+JeB+1P/Dw5azUKGdp3ng2K9IrtDBiMh+KicpLZeBpUlqdKqyI2WvwruL1SlqH/ymWCxseRH
0Z9VZ30MfW8C5fHq3qnLQp0OWDa7Re/pRbCZPabivDkZCtuWUeAVbRwIDAQABAoIBAAoioBaKuyA

7kefA9yp0Zk2BMuiVXYcQLCoIuGcBrjm7BvISP21NpFxsa9fYYsneaWYrepS2LqQV7q30oLG8RWi
Qhfj4TwBD1n/UGyQkDZVv9jfGTaQKcEuT9BDVK8gbXxE8f7u6UTOyHOsrYInZKLtm5yedrd+J5Yb
oUnJHZXFjmCpuyap8zJQdczUpZeLkj4bRqEHYlM1a5vfMFpr2+k4/Nqo36CCaGzIcwtYxnC002rL
7ra9MaR1fy5KHtcoYQeePuPvXu1UxBU01+W1QmIsw+KmXftdtWYAMcVFkHDs+22h3mCxRhQqcxmL
1LUP9FfGzrWiX4eTduw4YOkzO7+ECgYEAx732U2G7Qdp1uXsVGE7ceFcrpl/LOTaL8eEtULBiFRd
rn5LOTAptpoDPB8vYCwIQSNrBWXNqTiDubOBcL7sumBK2i4Omtzk/USuMcJmSiMcHaANa/ZNK9nq
twMACqXpIPEkpofzfgBSaRYY1KxaWLbepyLjqviADV98zOI4qY28CgYEAvvbNd+C0pi5u/EkUxhR
dxwCxICfkDYjArcjPU3ZBjIyAzmJ08wU+3CDm2sgts1TX+D7MPsRLqsaM8vMB+BR1xo3FfP/nqNv
jYkChACtHhvkWGVE/qf3/53NNa4lKeVz8h1iV18dvLICj+V+lvUyQPuER4cA8Kzs7dObl52V6Oak
CgYB5bSkvPW2aNhV1QbbsRRzQZ6XYicnAqUFgNRTYRbIKwmch5hxVq81G+G1jfu+CmamOsLX0DC7
m+iwXsjk4pyFHP7ELlWgnYLz2OnQxC5tCXURKXifVmdJrjt7MG65Cm10IkS2nFVRFx8CVXWY7IIs
BlfK4XHoQROPjaoP38K0iLwKBgQCho6RdkR04ANu+vllQJNMP7B0Be+KENjnpn60mF1X6kr9AcoR
NZCZGC698hq5wOiOoo/ccNelafz+1MU58X00lqMD+QlojSySX+N6OlxOvQs2a1nQN/sqKbcWdfZN
FURkLs0b6Y3xN7gFdxsEyj0kVgEszjBUh/rwgAoWdrP6dKQKBgD2b7GG1/TPTBfOvvE7q7xa5IlT
MUbBU2yY8H6XvDgfG5KUXXFpqINTOE4OjuyVwJRwE2/GQGayfZvfa+LGkW8Hy6Iz/vaa1Brjodza
/2PblM5v1t96xA0WQDime8okJN0q7ocbLfQnT0+3TVMbvCjeBtOqmMOJT3EijpAqVbR6N"],
 "certificate": [
"MIICpTCCAY0CBgGQcJfM/jANBgkqhkiG9w0BAQsFADAWMRQwEgYDVQQDDAtXZWF0aGVyU2hvcDA
eFw0yNDA3MDEyMzE2NTVaFw0zNDA3MDEyMzE4MzVaMBYxFDASBgNVBAMMC1dlYXRoZXJTaG9wMII
BIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAlP+NrT2KVZpdrbPoTsMO7MqeXYDeJNl7IXj
Y0hCb7p1iB6YLOr/lA5ryk/CIHI05HRt+AEYFac87mb51SEvAa9cHjQ00v7t6hoYV1esyRmB0Nnf
8AAEq9GoZxX9nUsIMcExQ3gHkF56kidYtjQSgl5SlwgdvlsjRiDP9ZJlsWTBb+8v0OCCbQLZFl93
IlTZ7QlaxXoB0dCuuLNyBpELFbc0+JeB+1P/Dw5azUKGdp3ng2K9IrtDBiMh+KicpLZeBpUlqdKq
yI2WvwruL1SlqH/ymWCxseRH0Z9VZ30MfW8C5fHq3qnLQp0OWDa7Re/pRbCZPabivDkZCtuWUeAV
bRwIDAQABMA0GCSqGSIb3DQEBCwUAA4IBAQAUIS+ce3NPCSk7iiA4vzm1hGrEq7Q+1CwE9hq/p8o
KowOEVvg68tE+yzNsYw6qM+KKdzQfmiVeT8skDhNwL+5+Oxsg9dw7KW1me+g/pjiFx1eXt/rHN5a
VDz7/F3QAP0G/CUF6dVNh0ggoGhwAH74iH91apmJgDUEBVzwaYCrHDJ81nWZOGZm4MF6FFvc8Kwf
/+KEefL7psH5I4BqS+gRaPFWjBnABS7WkJ879gv0Q3tHE4KXF1b3eudGFrW4rG048pqNJgxAXdoD
qFR5qIi9pfuE+HCmuhPv2Xq+I7S4PpUYnUM7o0Ng+1hJsRLhiG0Kmcepy7thiJJI619miVXdF"
],
 "priority": ["100"],
 "algorithm": ["RSA-OAEP"]
 }
 },
 {
 "id": "c962c2d9-ac19-4a91-88b3-959c6fcfc4c4",
 "name": "hmac-generated-hs512",
 "providerId": "hmac-generated",
 "subComponents": {},
 "config": {
 "kid": ["f43f7c3d-e27c-4a86-bda1-e1f9fa0b2c0b"],
 "secret": [
"FAyCBV9_zIF2oQO0XqgwCJz09iJDMKPHORhWI1ZV4OA9cLFVJCA-
z4tEXq2QNU48xDMwv_z_UYIEm73nnJEypuaVwacu6N7jexaKjhqROYidQyPzXAr7QwD6Du1LaLdC
AHaBo7rRP3Pl5fDmcX6K3C1Qe1OK86fkZVuD_2TX6No"],
 "priority": ["100"],
 "algorithm": ["HS512"]
 }
 }
]
 },
 "internationalizationEnabled": false,
 "supportedLocales": [],
 "authenticationFlows": [
 {

 "id": "57c6972a-8262-4fdd-9a3d-6454f7e4804d",
 "alias": "Account verification options",
 "description": "Method with which to verity the existing
account",
 "providerId": "basic-flow",
 "topLevel": false,
 "builtIn": true,
 "authenticationExecutions": [
 {
 "authenticator": "idp-email-verification",
 "authenticatorFlow": false,
 "requirement": "ALTERNATIVE",
 "priority": 10,
 "autheticatorFlow": false,
 "userSetupAllowed": false
 },
 {
 "authenticatorFlow": true,
 "requirement": "ALTERNATIVE",
 "priority": 20,
 "autheticatorFlow": true,
 "flowAlias": "Verify Existing Account by Re-
authentication",
 "userSetupAllowed": false
 }
]
 },
 {
 "id": "12219f2a-a63e-4e35-87b0-0c1fc82e9e00",
 "alias": "Browser - Conditional OTP",
 "description": "Flow to determine if the OTP is required for the
authentication",
 "providerId": "basic-flow",
 "topLevel": false,
 "builtIn": true,
 "authenticationExecutions": [
 {
 "authenticator": "conditional-user-configured",
 "authenticatorFlow": false,
 "requirement": "REQUIRED",
 "priority": 10,
 "autheticatorFlow": false,
 "userSetupAllowed": false
 },
 {
 "authenticator": "auth-otp-form",
 "authenticatorFlow": false,
 "requirement": "REQUIRED",
 "priority": 20,
 "autheticatorFlow": false,
 "userSetupAllowed": false
 }
]
 },
 {

 "id": "16a216e0-2305-4a26-8b3c-a1ad95ee0551",
 "alias": "Direct Grant - Conditional OTP",
 "description": "Flow to determine if the OTP is required for the
authentication",
 "providerId": "basic-flow",
 "topLevel": false,
 "builtIn": true,
 "authenticationExecutions": [
 {
 "authenticator": "conditional-user-configured",
 "authenticatorFlow": false,
 "requirement": "REQUIRED",
 "priority": 10,
 "autheticatorFlow": false,
 "userSetupAllowed": false
 },
 {
 "authenticator": "direct-grant-validate-otp",
 "authenticatorFlow": false,
 "requirement": "REQUIRED",
 "priority": 20,
 "autheticatorFlow": false,
 "userSetupAllowed": false
 }
]
 },
 {
 "id": "973a2638-3205-40a5-9ae1-171e862f98c2",
 "alias": "First broker login - Conditional OTP",
 "description": "Flow to determine if the OTP is required for the
authentication",
 "providerId": "basic-flow",
 "topLevel": false,
 "builtIn": true,
 "authenticationExecutions": [
 {
 "authenticator": "conditional-user-configured",
 "authenticatorFlow": false,
 "requirement": "REQUIRED",
 "priority": 10,
 "autheticatorFlow": false,
 "userSetupAllowed": false
 },
 {
 "authenticator": "auth-otp-form",
 "authenticatorFlow": false,
 "requirement": "REQUIRED",
 "priority": 20,
 "autheticatorFlow": false,
 "userSetupAllowed": false
 }
]
 },
 {
 "id": "d024eba2-74d6-4cd2-a149-eda663682a7b",

 "alias": "Handle Existing Account",
 "description": "Handle what to do if there is existing account
with same email/username like authenticated identity provider",
 "providerId": "basic-flow",
 "topLevel": false,
 "builtIn": true,
 "authenticationExecutions": [
 {
 "authenticator": "idp-confirm-link",
 "authenticatorFlow": false,
 "requirement": "REQUIRED",
 "priority": 10,
 "autheticatorFlow": false,
 "userSetupAllowed": false
 },
 {
 "authenticatorFlow": true,
 "requirement": "REQUIRED",
 "priority": 20,
 "autheticatorFlow": true,
 "flowAlias": "Account verification options",
 "userSetupAllowed": false
 }
]
 },
 {
 "id": "37b5496c-9e09-402f-b079-9c588322f91d",
 "alias": "Reset - Conditional OTP",
 "description": "Flow to determine if the OTP should be reset or
not. Set to REQUIRED to force.",
 "providerId": "basic-flow",
 "topLevel": false,
 "builtIn": true,
 "authenticationExecutions": [
 {
 "authenticator": "conditional-user-configured",
 "authenticatorFlow": false,
 "requirement": "REQUIRED",
 "priority": 10,
 "autheticatorFlow": false,
 "userSetupAllowed": false
 },
 {
 "authenticator": "reset-otp",
 "authenticatorFlow": false,
 "requirement": "REQUIRED",
 "priority": 20,
 "autheticatorFlow": false,
 "userSetupAllowed": false
 }
]
 },
 {
 "id": "62d51e78-668a-4d31-9369-0611a7507ed5"

̀

 "description": "Flow for the existing/non-existing user
alternatives",
 "providerId": "basic-flow",
 "topLevel": false,
 "builtIn": true,
 "authenticationExecutions": [
 {
 "authenticatorConfig": "create unique user config",
 "authenticator": "idp-create-user-if-unique",
 "authenticatorFlow": false,
 "requirement": "ALTERNATIVE",
 "priority": 10,
 "autheticatorFlow": false,
 "userSetupAllowed": false
 },
 {
 "authenticatorFlow": true,
 "requirement": "ALTERNATIVE",
 "priority": 20,
 "autheticatorFlow": true,
 "flowAlias": "Handle Existing Account",
 "userSetupAllowed": false
 }
]
 },
 {
 "id": "ab6b9698-fd26-40a7-8edf-fa456a395394",
 "alias": "Verify Existing Account by Re-authentication",
 "description": "Reauthentication of existing account",
 "providerId": "basic-flow",
 "topLevel": false,
 "builtIn": true,
 "authenticationExecutions": [
 {
 "authenticator": "idp-username-password-form",
 "authenticatorFlow": false,
 "requirement": "REQUIRED",
 "priority": 10,
 "autheticatorFlow": false,
 "userSetupAllowed": false
 },
 {
 "authenticatorFlow": true,
 "requirement": "CONDITIONAL",
 "priority": 20,
 "autheticatorFlow": true,
 "flowAlias": "First broker login - Conditional OTP",
 "userSetupAllowed": false
 }
]
 },
 {
 "id": "74b79e04-bf44-4d84-92e7-04b753801622",
 "alias": "browser",
 "description": "browser based authentication",

 "providerId": "basic-flow",
 "topLevel": true,
 "builtIn": true,
 "authenticationExecutions": [
 {
 "authenticator": "auth-cookie",
 "authenticatorFlow": false,
 "requirement": "ALTERNATIVE",
 "priority": 10,
 "autheticatorFlow": false,
 "userSetupAllowed": false
 },
 {
 "authenticator": "auth-spnego",
 "authenticatorFlow": false,
 "requirement": "DISABLED",
 "priority": 20,
 "autheticatorFlow": false,
 "userSetupAllowed": false
 },
 {
 "authenticator": "identity-provider-redirector",
 "authenticatorFlow": false,
 "requirement": "ALTERNATIVE",
 "priority": 25,
 "autheticatorFlow": false,
 "userSetupAllowed": false
 },
 {
 "authenticatorFlow": true,
 "requirement": "ALTERNATIVE",
 "priority": 30,
 "autheticatorFlow": true,
 "flowAlias": "forms",
 "userSetupAllowed": false
 }
]
 },
 {
 "id": "bb15232e-9f1c-4dfd-8d10-e1d35cd1bfde",
 "alias": "clients",
 "description": "Base authentication for clients",
 "providerId": "client-flow",
 "topLevel": true,
 "builtIn": true,
 "authenticationExecutions": [
 {
 "authenticator": "client-secret",
 "authenticatorFlow": false,
 "requirement": "ALTERNATIVE",
 "priority": 10,
 "autheticatorFlow": false,
 "userSetupAllowed": false
 },
 {

 "authenticator": "client-jwt",
 "authenticatorFlow": false,
 "requirement": "ALTERNATIVE",
 "priority": 20,
 "autheticatorFlow": false,
 "userSetupAllowed": false
 },
 {
 "authenticator": "client-secret-jwt",
 "authenticatorFlow": false,
 "requirement": "ALTERNATIVE",
 "priority": 30,
 "autheticatorFlow": false,
 "userSetupAllowed": false
 },
 {
 "authenticator": "client-x509",
 "authenticatorFlow": false,
 "requirement": "ALTERNATIVE",
 "priority": 40,
 "autheticatorFlow": false,
 "userSetupAllowed": false
 }
]
 },
 {
 "id": "dd3fe894-1594-40fb-949d-9986f36bd725",
 "alias": "direct grant",
 "description": "OpenID Connect Resource Owner Grant",
 "providerId": "basic-flow",
 "topLevel": true,
 "builtIn": true,
 "authenticationExecutions": [
 {
 "authenticator": "direct-grant-validate-username",
 "authenticatorFlow": false,
 "requirement": "REQUIRED",
 "priority": 10,
 "autheticatorFlow": false,
 "userSetupAllowed": false
 },
 {
 "authenticator": "direct-grant-validate-password",
 "authenticatorFlow": false,
 "requirement": "REQUIRED",
 "priority": 20,
 "autheticatorFlow": false,
 "userSetupAllowed": false
 },
 {
 "authenticatorFlow": true,
 "requirement": "CONDITIONAL",
 "priority": 30,
 "autheticatorFlow": true,
 "flowAlias": "Direct Grant - Conditional OTP",

 "userSetupAllowed": false
 }
]
 },
 {
 "id": "5c277901-3d67-470e-baf1-e47e9ab92dbd",
 "alias": "docker auth",
 "description": "Used by Docker clients to authenticate against
the IDP",
 "providerId": "basic-flow",
 "topLevel": true,
 "builtIn": true,
 "authenticationExecutions": [
 {
 "authenticator": "docker-http-basic-authenticator",
 "authenticatorFlow": false,
 "requirement": "REQUIRED",
 "priority": 10,
 "autheticatorFlow": false,
 "userSetupAllowed": false
 }
]
 },
 {
 "id": "e14e1d45-149f-4090-ad79-7c2d0c2f185c",
 "alias": "first broker login",
 "description": "Actions taken after first broker login with
identity provider account, which is not yet linked to any Keycloak account",
 "providerId": "basic-flow",
 "topLevel": true,
 "builtIn": true

:

:

: [

"auth㌳nticator"

 "providerId": "basic-flow",
 "topLevel": false,
 "builtIn": true,
 "authenticationExecutions": [
 {
 "authenticator": "auth-username-password-form",
 "authenticatorFlow": false,
 "requirement": "REQUIRED",
 "priority": 10,
 "autheticatorFlow": false,
 "userSetupAllowed": false
 },
 {
 "authenticatorFlow": true,
 "requirement": "CONDITIONAL",
 "priority": 20,
 "autheticatorFlow": true,
 "flowAlias": "Browser - Conditional OTP",
 "userSetupAllowed": false
 }
]
 },
 {
 "id": "d88b5042-8af8-4797-9c6a-ae44a9a0fff2",
 "alias": "registration",
 "description": "registration flow",
 "providerId": "basic-flow",
 "topLevel": true,
 "builtIn": true,
 "authenticationExecutions": [
 {
 "authenticator": "registration-page-form",
 "authenticatorFlow": true,
 "requirement": "REQUIRED",
 "priority": 10,
 "autheticatorFlow": true,
 "flowAlias": "registration form",
 "userSetupAllowed": false
 }
]
 },
 {
 "id": "2a9320cb-970e-4b4d-b585-60d2299a043f",
 "alias": "registration form",
 "description": "registration form",
 "providerId": "form-flow",
 "topLevel": false,
 "builtIn": true,
 "authenticationExecutions": [
 {
 "authenticator": "registration-user-creation",
 "authenticatorFlow": false,
 "requirement": "REQUIRED",
 "priority": 20,
 "autheticatorFlow": false,

 "userSetupAllowed": false
 },
 {
 "authenticator": "registration-password-action",
 "authenticatorFlow": false,
 "requirement": "REQUIRED",
 "priority": 50,
 "autheticatorFlow": false,
 "userSetupAllowed": false
 },
 {
 "authenticator": "registration-recaptcha-action",
 "authenticatorFlow": false,
 "requirement": "DISABLED",
 "priority": 60,
 "autheticatorFlow": false,
 "userSetupAllowed": false
 },
 {
 "authenticator": "registration-terms-and-conditions",
 "authenticatorFlow": false,
 "requirement": "DISABLED",
 "priority": 70,
 "autheticatorFlow": false,
 "userSetupAllowed": false
 }
]
 },
 {
 "id": "528ba840-6b22-4c32-ba17-40c99783883e",
 "alias": "reset credentials",
 "description": "Reset credentials for a user if they forgot
their password or something",
 "providerId": "basic-flow",
 "topLevel": true,
 "builtIn": true,
 "authenticationExecutions": [
 {
 "authenticator": "reset-credentials-choose-user",
 "authenticatorFlow": false,
 "requirement": "REQUIRED",
 "priority": 10,
 "autheticatorFlow": false,
 "userSetupAllowed": false
 },
 {
 "authenticator": "reset-credential-email",
 "authenticatorFlow": false,
 "requirement": "REQUIRED",
 "priority": 20,
 "autheticatorFlow": false,
 "userSetupAllowed": false
 },
 {
 "authenticator": "reset-password",

 "authenticatorFlow": false,
 "requirement": "REQUIRED",
 "priority": 30,
 "autheticatorFlow": false,
 "userSetupAllowed": false
 },
 {
 "authenticatorFlow": true,
 "requirement": "CONDITIONAL",
 "priority": 40,
 "autheticatorFlow": true,
 "flowAlias": "Reset - Conditional OTP",
 "userSetupAllowed": false
 }
]
 },
 {
 "id": "bf172b2d-052a-4ce4-9084-c59e9b82bc10",
 "alias": "saml ecp",
 "description": "SAML ECP Profile Authentication Flow",
 "providerId": "basic-flow",
 "topLevel": true,
 "builtIn": true,
 "authenticationExecutions": [
 {
 "authenticator": "http-basic-authenticator",
 "authenticatorFlow": false,
 "requirement": "REQUIRED",
 "priority": 10,
 "autheticatorFlow": false,
 "userSetupAllowed": false
 }
]
 }
],
 "authenticatorConfig": [
 {
 "id": "796c70f7-6391-45ed-aafa-4ed82c84d14e",
 "alias": "create unique user config",
 "config": {
 "require.password.update.after.registration": "false"
 }
 },
 {
 "id": "e007b422-2050-43af-b132-10ea16d92f5c",
 "alias": "review profile config",
 "config": {
 "update.profile.on.first.login": "missing"
 }
 }
],
 "requiredActions": [
 {
 "alias": "CONFIGURE_TOTP",
 "name": "Configure OTP",

 "providerId": "CONFIGURE_TOTP",
 "enabled": true,
 "defaultAction": false,
 "priority": 10,
 "config": {}
 },
 {
 "alias": "TERMS_AND_CONDITIONS",
 "name": "Terms and Conditions",
 "providerId": "TERMS_AND_CONDITIONS",
 "enabled": false,
 "defaultAction": false,
 "priority": 20,
 "config": {}
 },
 {
 "alias": "UPDATE_PASSWORD",
 "name": "Update Password",
 "providerId": "UPDATE_PASSWORD",
 "enabled": true,
 "defaultAction": false,
 "priority": 30,
 "config": {}
 },
 {
 "alias": "UPDATE_PROFILE",
 "name": "Update Profile",
 "providerId": "UPDATE_PROFILE",
 "enabled": true,
 "defaultAction": false,
 "priority": 40,
 "config": {}
 },
 {
 "alias": "VERIFY_EMAIL",
 "name": "Verify Email",
 "providerId": "VERIFY_EMAIL",
 "enabled": true,
 "defaultAction": false,
 "priority": 50,
 "config": {}
 },
 {
 "alias": "delete_account",
 "name": "Delete Account",
 "providerId": "delete_account",
 "enabled": false,
 "defaultAction": false,
 "priority": 60,
 "config": {}
 },
 {
 "alias": "webauthn-register",
 "name": "Webauthn Register",
 "providerId": "webauthn-register",

 "enabled": true,
 "defaultAction": false,
 "priority": 70,
 "config": {}
 },
 {
 "alias": "webauthn-register-passwordless",
 "name": "Webauthn Register Passwordless",
 "providerId": "webauthn-register-passwordless",
 "enabled": true,
 "defaultAction": false,
 "priority": 80,
 "config": {}
 },
 {
 "alias": "VERIFY_PROFILE",
 "name": "Verify Profile",
 "providerId": "VERIFY_PROFILE",
 "enabled": true,
 "defaultAction": false,
 "priority": 90,
 "config": {}
 },
 {
 "alias": "delete_credential",
 "name": "Delete Credential",
 "providerId": "delete_credential",
 "enabled": true,
 "defaultAction": false,
 "priority": 100,
 "config": {}
 },
 {
 "alias": "update_user_locale",
 "name": "Update User Locale",
 "providerId": "update_user_locale",
 "enabled": true,
 "defaultAction": false,
 "priority": 1000,
 "config": {}
 }
],
 "browserFlow": "browser",
 "registrationFlow": "registration",
 "directGrantFlow": "direct grant",
 "resetCredentialsFlow": "reset credentials",
 "clientAuthenticationFlow": "clients",
 "dockerAuthenticationFlow": "docker auth",
 "firstBrokerLoginFlow": "first broker login",
 "attributes": {
 "cibaBackchannelTokenDeliveryMode": "poll",
 "cibaExpiresIn": "120",
 "cibaAuthRequestedUserHint": "login_hint",
 "oauth2DeviceCodeLifespan": "600",
 "clientOfflineSessionMaxLifespan": "0",

The Keycloak hosting integration doesn't currently support a health checks, nor does it
automatically add them.

To get started with the .NET Aspire Keycloak client integration, install the 📦
Aspire.Keycloak.Authentication NuGet package in the client-consuming project, that
is, the project for the application that uses the Keycloak client. The Keycloak client
integration registers JwtBearer and OpenId Connect authentication handlers in the DI
container for connecting to a Keycloak.

.NET CLI

In the Program.cs file of your ASP.NET Core API project, call the AddKeycloakJwtBearer
extension method to add JwtBearer authentication, using a connection name, realm and
any required JWT Bearer options:

 "oauth2DevicePollingInterval": "5",
 "clientSessionIdleTimeout": "0",
 "parRequestUriLifespan": "60",
 "clientSessionMaxLifespan": "0",
 "clientOfflineSessionIdleTimeout": "0",
 "cibaInterval": "5",
 "realmReusableOtpCode": "false"
 },
 "keycloakVersion": "24.0.5",
 "userManagedAccessAllowed": false,
 "clientProfiles": {
 "profiles": []
 },
 "clientPolicies": {
 "policies": []
 }
}

Hosting integration health checks

Client integration

.NET CLI

dotnet add package Aspire.Keycloak.Authentication --prerelease

Add JWT bearer authentication

https://www.nuget.org/packages/Aspire.Keycloak.Authentication
https://www.nuget.org/packages/Aspire.Keycloak.Authentication
https://www.nuget.org/packages/Aspire.Keycloak.Authentication
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.aspirekeycloakextensions.addkeycloakjwtbearer

C#

You can set many other options via the Action<JwtBearerOptions> configureOptions
delegate.

To further exemplify the JWT bearer authentication, consider the following example:

C#

builder.Services.AddAuthentication()
 .AddKeycloakJwtBearer(
 serviceName: "keycloak",
 realm: "api",
 options =>
 {
 options.Audience = "store.api";
 });

JWT bearer authentication example

var builder = WebApplication.CreateBuilder(args);

// Add service defaults & Aspire client integrations.
builder.AddServiceDefaults();

// Add services to the container.
builder.Services.AddProblemDetails();

// Learn more about configuring OpenAPI at https://aka.ms/aspnet/openapi
builder.Services.AddOpenApi();

builder.Services.AddAuthentication()
 .AddKeycloakJwtBearer(
 serviceName: "keycloak",
 realm: "WeatherShop",
 configureOptions: options =>
 {
 options.RequireHttpsMetadata = false;
 options.Audience = "weather.api";
 });

builder.Services.AddAuthorizationBuilder();

var app = builder.Build();

// Configure the HTTP request pipeline.
app.UseExceptionHandler();

if (app.Environment.IsDevelopment())
{
 app.MapOpenApi();

The preceding ASP.NET Core Minimal API Program class demonstrates:

Adding authentication services to the DI container with the AddAuthentication API.
Adding JWT bearer authentication with the AddKeycloakJwtBearer API and
configuring:

The serviceName as keycloak .
The realm as WeatherShop .
The options with the Audience set to weather.api and sets
RequireHttpsMetadata to false .

Adds authorization services to the DI container with the AddAuthorizationBuilder
API.
Calls the RequireAuthorization API to require authorization on the
/weatherforecast endpoint.

For a complete working sample, see .NET Aspire playground: Keycloak integration .

}

string[] summaries = ["Freezing", "Bracing", "Chilly", "Cool", "Mild",
"Warm", "Balmy", "Hot", "Sweltering", "Scorching"];

app.MapGet("/weatherforecast", () =>
 {
 var forecast = Enumerable.Range(1, 5).Select(index =>
 new WeatherForecast
 (
 DateOnly.FromDateTime(DateTime.Now.AddDays(index)),
 Random.Shared.Next(-20, 55),
 summaries[Random.Shared.Next(summaries.Length)]
))
 .ToArray();
 return forecast;
 })
 .WithName("GetWeatherForecast")
 .RequireAuthorization();

app.MapDefaultEndpoints();

app.Run();

record WeatherForecast(DateOnly Date, int TemperatureC, string? Summary)
{
 public int TemperatureF => 32 + (int)(TemperatureC / 0.5556);
}

Add OpenId Connect authentication

https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.authenticationservicecollectionextensions.addauthentication
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.aspirekeycloakextensions.addkeycloakjwtbearer
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.policyservicecollectionextensions.addauthorizationbuilder
https://learn.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.authorizationendpointconventionbuilderextensions.requireauthorization
https://github.com/dotnet/aspire/tree/01ed51919f8df692ececce51048a140615dc759d/playground/keycloak
https://github.com/dotnet/aspire/tree/01ed51919f8df692ececce51048a140615dc759d/playground/keycloak

In the Program.cs file of your API-consuming project (for example, Blazor), call the
AddKeycloakOpenIdConnect extension method to add OpenId Connect authentication,
using a connection name, realm and any required OpenId Connect options:

C#

You can set many other options via the Action<OpenIdConnectOptions>?
configureOptions delegate.

To further exemplify the OpenId Connect authentication, consider the following
example:

C#

builder.Services.AddAuthentication(OpenIdConnectDefaults.AuthenticationSchem
e)
 .AddKeycloakOpenIdConnect(
 serviceName: "keycloak",
 realm: "api",
 options =>
 {
 options.ClientId = "StoreWeb";
 options.ResponseType =
OpenIdConnectResponseType.Code;
 options.Scope.Add("store:all");
 });

OpenId Connect authentication example

using System.IdentityModel.Tokens.Jwt;

using AspireApp.Web;
using AspireApp.Web.Components;

using Microsoft.AspNetCore.Authentication.Cookies;
using Microsoft.AspNetCore.Authentication.OpenIdConnect;
using Microsoft.IdentityModel.Protocols.OpenIdConnect;

var builder = WebApplication.CreateBuilder(args);

// Add service defaults & Aspire client integrations.
builder.AddServiceDefaults();

// Add services to the container.
builder.Services.AddRazorComponents()
 .AddInteractiveServerComponents();

builder.Services.AddOutputCache();

https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.aspirekeycloakextensions.addkeycloakopenidconnect

builder.Services.AddHttpContextAccessor()
 .AddTransient<AuthorizationHandler>();

builder.Services.AddHttpClient<WeatherApiClient>(client =>
 {
 // This URL uses "https+http://" to indicate HTTPS is preferred over
HTTP.
 // Learn more about service discovery scheme resolution at
https://aka.ms/dotnet/sdschemes.
 client.BaseAddress = new("https+http://apiservice");
 })
 .AddHttpMessageHandler<AuthorizationHandler>();

var oidcScheme = OpenIdConnectDefaults.AuthenticationScheme;

builder.Services.AddAuthentication(oidcScheme)
 .AddKeycloakOpenIdConnect("keycloak", realm: "WeatherShop",
oidcScheme, options =>
 {
 options.ClientId = "WeatherWeb";
 options.ResponseType = OpenIdConnectResponseType.Code;
 options.Scope.Add("weather:all");
 options.RequireHttpsMetadata = false;
 options.TokenValidationParameters.NameClaimType =
JwtRegisteredClaimNames.Name;
 options.SaveTokens = true;
 options.SignInScheme =
CookieAuthenticationDefaults.AuthenticationScheme;
 })

.AddCookie(CookieAuthenticationDefaults.AuthenticationScheme);

builder.Services.AddCascadingAuthenticationState();

var app = builder.Build();

if (!app.Environment.IsDevelopment())
{
 app.UseExceptionHandler("/Error", createScopeForErrors: true);
 // The default HSTS value is 30 days. You may want to change this for
production scenarios, see https://aka.ms/aspnetcore-hsts.
 app.UseHsts();
}

app.UseHttpsRedirection();

app.UseAntiforgery();

app.UseOutputCache();

app.MapStaticAssets();

app.MapRazorComponents<App>()
 .AddInteractiveServerRenderMode();

The preceding ASP.NET Core Blazor Program class:

Adds the HttpContextAccessor to the DI container with the
AddHttpContextAccessor API.
Adds a custom AuthorizationHandler as a transient service to the DI container with
the AddTransient<TService>(IServiceCollection) API.
Adds an HttpClient to the WeatherApiClient service with the
AddHttpClient<TClient>(IServiceCollection) API and configuring it's base address
with service discovery semantics that resolves to the apiservice .

Chains a call to the AddHttpMessageHandler API to add a
AuthorizationHandler to the HttpClient pipeline.

Adds authentication services to the DI container with the AddAuthentication API
passing int the OpenId Connect default authentication scheme.
Calls AddKeycloakOpenIdConnect and configures the serviceName as keycloak ,
the realm as WeatherShop , and the options object with various settings.
Adds cascading authentication state to the Blazor app with the
AddCascadingAuthenticationState API.

The final callout is the MapLoginAndLogout extension method that adds login and logout
routes to the Blazor app. This is defined as follows:

C#

app.MapDefaultEndpoints();
app.MapLoginAndLogout();

app.Run();

using Microsoft.AspNetCore.Authentication.Cookies;
using Microsoft.AspNetCore.Authentication.OpenIdConnect;
using Microsoft.AspNetCore.Authentication;
using Microsoft.AspNetCore.Http.HttpResults;

namespace AspireApp.Web;

internal static class LoginLogoutEndpointRouteBuilderExtensions
{
 internal static IEndpointConventionBuilder MapLoginAndLogout(
 this IEndpointRouteBuilder endpoints)
 {
 var group = endpoints.MapGroup("authentication");

 group.MapGet(pattern: "/login", OnLogin).AllowAnonymous();
 group.MapPost(pattern: "/logout", OnLogout);

 return group;
 }

https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.httpservicecollectionextensions.addhttpcontextaccessor
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.servicecollectionserviceextensions.addtransient#microsoft-extensions-dependencyinjection-servicecollectionserviceextensions-addtransient-1(microsoft-extensions-dependencyinjection-iservicecollection)
https://learn.microsoft.com/en-us/dotnet/api/system.net.http.httpclient
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.httpclientfactoryservicecollectionextensions.addhttpclient#microsoft-extensions-dependencyinjection-httpclientfactoryservicecollectionextensions-addhttpclient-1(microsoft-extensions-dependencyinjection-iservicecollection)
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.httpclientbuilderextensions.addhttpmessagehandler
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.authenticationservicecollectionextensions.addauthentication
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.aspirekeycloakextensions.addkeycloakopenidconnect
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.cascadingauthenticationstateservicecollectionextensions.addcascadingauthenticationstate

The preceding code:

Maps a group for the authentication route and maps two endpoints for the login
and logout routes:

Maps a GET request to the /login route that's handler is the OnLogin method—
this is an anonymous endpoint.
Maps a GET request to the /logout route that's handler is the OnLogout
method.

The AuthorizationHandler is a custom handler that adds the Bearer token to the
HttpClient request. The handler is defined as follows:

C#

 static ChallengeHttpResult OnLogin() =>
 TypedResults.Challenge(properties: new AuthenticationProperties
 {
 RedirectUri = "/"
 });

 static SignOutHttpResult OnLogout() =>
 TypedResults.SignOut(properties: new AuthenticationProperties
 {
 RedirectUri = "/"
 },
 [
 CookieAuthenticationDefaults.AuthenticationScheme,
 OpenIdConnectDefaults.AuthenticationScheme
]);
}

using Microsoft.AspNetCore.Authentication;
using System.Net.Http.Headers;

namespace AspireApp.Web;

public class AuthorizationHandler(IHttpContextAccessor httpContextAccessor)
 : DelegatingHandler
{
 protected override async Task<HttpResponseMessage> SendAsync(
 HttpRequestMessage request, CancellationToken cancellationToken)
 {
 var httpContext = httpContextAccessor.HttpContext ??
 throw new InvalidOperationException("""
 No HttpContext available from the IHttpContextAccessor.
 """);

 var accessToken = await httpContext.GetTokenAsync("access_token");

The preceding code:

Is a subclass of the DelegatingHandler class.
Injects the IHttpContextAccessor service in the primary constructor.
Overrides the SendAsync method to add the Bearer token to the HttpClient
request:

The access_token is retrieved from the HttpContext and added to the
Authorization header.

To help visualize the auth flow, consider the following sequence diagram:

For a complete working sample, see .NET Aspire playground: Keycloak integration .

Keycloak
.NET Aspire playground: Keycloak integration
.NET Aspire integrations
.NET Aspire GitHub repo

 if (!string.IsNullOrWhiteSpace(accessToken))
 {
 request.Headers.Authorization = new
AuthenticationHeaderValue("Bearer", accessToken);
 }

 return await base.SendAsync(request, cancellationToken);
 }
}



See also

https://learn.microsoft.com/en-us/dotnet/api/system.net.http.delegatinghandler
https://github.com/dotnet/aspire/tree/01ed51919f8df692ececce51048a140615dc759d/playground/keycloak
https://github.com/dotnet/aspire/tree/01ed51919f8df692ececce51048a140615dc759d/playground/keycloak
https://www.keycloak.org/
https://www.keycloak.org/
https://github.com/dotnet/aspire/tree/01ed51919f8df692ececce51048a140615dc759d/playground/keycloak
https://github.com/dotnet/aspire/tree/01ed51919f8df692ececce51048a140615dc759d/playground/keycloak
https://github.com/dotnet/aspire
https://github.com/dotnet/aspire
https://learn.microsoft.com/en-us/dotnet/aspire/docs/authentication/media/auth-flow-diagram.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/authentication/media/auth-flow-diagram.png#lightbox

.NET Aspire Milvus database integration
Article • 02/14/2025

Includes: Hosting integration and Client integration

Milvus is an open-source vector database system that efficiently stores, indexes, and
searches large-scale vector data. It's commonly used in machine learning, artificial
intelligence, and data science applications.

Vector data encodes information as mathematical vectors, which are arrays of numbers
or coordinates. Machine learning and AI systems often use vectors to represent
unstructured objects like images, text, audio, or video. Each dimension in the vector
describes a specific characteristic of the object. By comparing them, systems can classify,
search, and identify clusters of objects.

In this article, you learn how to use the .NET Aspire Milvus database integration. The
.NET Aspire Milvus database integration enables you to connect to existing Milvus
databases or create new instances with the milvusdb/milvus container image .

The Milvus database hosting integration models the server as the MilvusServerResource
type and the database as the MilvusDatabaseResource type. To access these types and
APIs, add the 📦 Aspire.Hosting.Milvus NuGet package in the app host project.

.NET CLI

For more information, see dotnet add package or Manage package dependencies in
.NET applications.

In your app host project, call AddMilvus to add and return a Milvus resource builder.
Chain a call to the returned resource builder to AddDatabase, to add a Milvus database
resource.

Hosting integration

.NET CLI

dotnet add package Aspire.Hosting.Milvus

Add Milvus server and database resources

https://milvus.io/
https://milvus.io/
https://hub.docker.com/r/milvusdb/milvus
https://hub.docker.com/r/milvusdb/milvus
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.milvus.milvusserverresource
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.milvusdatabaseresource
https://www.nuget.org/packages/Aspire.Hosting.Milvus
https://www.nuget.org/packages/Aspire.Hosting.Milvus
https://learn.microsoft.com/en-us/dotnet/core/tools/dotnet-add-package
https://learn.microsoft.com/en-us/dotnet/core/tools/dependencies
https://learn.microsoft.com/en-us/dotnet/core/tools/dependencies
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.milvusbuilderextensions.addmilvus
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.milvusbuilderextensions.adddatabase

C#

When .NET Aspire adds a container image to the app host, as shown in the preceding
example with the milvusdb/milvus image, it creates a new Milvus instance on your local
machine. A reference to your Milvus resource builder (the milvus variable) is used to
add a database. The database is named milvusdb and then added to the
ExampleProject .

The WithReference method configures a connection in the ExampleProject named
milvusdb .

The Milvus resource includes default credentials with a username of root and the
password Milvus . Milvus supports configuration-based default passwords by using the
environment variable COMMON_SECURITY_DEFAULTROOTPASSWORD . To change the default
password in the container, pass an apiKey parameter when calling the AddMilvus
hosting API:

var builder = DistributedApplication.CreateBuilder(args);

var milvus = builder.AddMilvus("milvus")
 .WithLifetime(ContainerLifetime.Persistent);

var milvusdb = milvus.AddDatabase("milvusdb");

builder.AddProject<Projects.ExampleProject>()
 .WithReference(milvusdb)
 .WaitFor(milvusdb);

// After adding all resources, run the app...

７ Note

The Milvus container can be slow to start, so it's best to use a persistent lifetime to
avoid unnecessary restarts. For more information, see Container resource lifetime.

 Tip

If you'd rather connect to an existing Milvus server, call AddConnectionString
instead. For more information, see Reference existing resources.

Handling credentials and passing other parameters for
the Milvus resource

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.resourcebuilderextensions.withreference
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.parameterresourcebuilderextensions.addconnectionstring

C#

The preceding code gets a parameter to pass to the AddMilvus API, and internally
assigns the parameter to the COMMON_SECURITY_DEFAULTROOTPASSWORD environment
variable of the Milvus container. The apiKey parameter is usually specified as a user
secret:

JSON

For more information, see External parameters.

To add a data volume to the Milvus service resource, call the WithDataVolume method
on the Milvus resource:

C#

The data volume is used to persist the Milvus data outside the lifecycle of its container.
The data volume is mounted at the /var/lib/milvus path in the SQL Server container

var apiKey = builder.AddParameter("apiKey", secret: true);

var milvus = builder.AddMilvus("milvus", apiKey);

var myService = builder.AddProject<Projects.ExampleProject>()
 .WithReference(milvus);

{
 "Parameters": {
 "apiKey": "Non-default-P@ssw0rd"
 }
}

Add a Milvus resource with a data volume

var builder = DistributedApplication.CreateBuilder(args);

var milvus = builder.AddMilvus("milvus")
 .WithDataVolume();

var milvusdb = milvus.AddDatabase("milvusdb");

builder.AddProject<Projects.ExampleProject>()
 .WithReference(milvusdb)
 .WaitFor(milvusdb);

// After adding all resources, run the app...

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.milvusbuilderextensions.withdatavolume

and when a name parameter isn't provided, the name is generated at random. For more
information on data volumes and details on why they're preferred over bind mounts,
see Docker docs: Volumes .

To add a data bind mount to the Milvus resource, call the WithDataBindMount method:

C#

Data bind mounts rely on the host machine's filesystem to persist the Milvus data across
container restarts. The data bind mount is mounted at the C:\Milvus\Data on Windows
(or /Milvus/Data on Unix) path on the host machine in the Milvus container. For more
information on data bind mounts, see Docker docs: Bind mounts .

Attu is a graphical user interface (GUI) and management tool designed to interact
with Milvus and its databases. It includes rich visualization features that can help you
investigate and understand your vector data.

Add a Milvus resource with a data bind mount

var builder = DistributedApplication.CreateBuilder(args);

var milvus = builder.AddMilvus("milvus")
 .WithDataBindMount(source: @"C:\Milvus\Data");

var milvusdb = milvus.AddDatabase("milvusdb");

builder.AddProject<Projects.ExampleProject>()
 .WithReference(milvusdb)
 .WaitFor(milvusdb);

// After adding all resources, run the app...

） Important

Data bind mounts have limited functionality compared to volumes , which
offer better performance, portability, and security, making them more suitable for
production environments. However, bind mounts allow direct access and
modification of files on the host system, ideal for development and testing where
real-time changes are needed.

Create an Attu resource

https://docs.docker.com/engine/storage/volumes
https://docs.docker.com/engine/storage/volumes
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.milvusbuilderextensions.withdatabindmount
https://docs.docker.com/engine/storage/bind-mounts
https://docs.docker.com/engine/storage/bind-mounts
https://zilliz.com/attu
https://zilliz.com/attu
https://docs.docker.com/engine/storage/bind-mounts/
https://docs.docker.com/engine/storage/bind-mounts/
https://docs.docker.com/engine/storage/volumes/
https://docs.docker.com/engine/storage/volumes/

If you want to use Attu to manage Milvus in your .NET Aspire solution, call the WithAttu
extension method on your Milvus resource. The method creates a container from the
zilliz/attu image :

C#

When you debug the .NET Aspire solution, you'll see an Attu container listed in the
solution's resources. Select the resource's endpoint to open the GUI and start managing
databases.

To get started with the .NET Aspire Milvus client integration, install the 📦
Aspire.Milvus.Client NuGet package in the client-consuming project, that is, the
project for the application that uses the Milvus database client. The Milvus client
integration registers a Milvus.Client.MilvusClient instance that you can use to interact
with Milvus databases.

.NET CLI

In the Program.cs file of your client-consuming project, call the AddMilvusClient
extension method on any IHostApplicationBuilder to register a MilvusClient for use

var builder = DistributedApplication.CreateBuilder(args);

var milvus = builder.AddMilvus("milvus")
 .WithAttu()
 .WithLifetime(ContainerLifetime.Persistent);

var milvusdb = milvus.AddDatabase("milvusdb");

builder.AddProject<Projects.ExampleProject>()
 .WithReference(milvusdb)
 .WaitFor(milvusdb);

// After adding all resources, run the app...

Client integration (Preview)

.NET CLI

dotnet add package Aspire.Milvus.Client

Add a Milvus client

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.milvusbuilderextensions.withattu
https://hub.docker.com/r/zilliz/attu
https://hub.docker.com/r/zilliz/attu
https://www.nuget.org/packages/Aspire.Milvus.Client
https://www.nuget.org/packages/Aspire.Milvus.Client
https://www.nuget.org/packages/Aspire.Milvus.Client
https://github.com/milvus-io/milvus-sdk-csharp
https://github.com/milvus-io/milvus-sdk-csharp
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.aspiremilvusextensions.addmilvusclient
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.ihostapplicationbuilder

through the dependency injection container. The method takes a connection name
parameter.

C#

You can then retrieve the MilvusClient instance using dependency injection. For
example, to retrieve the connection from an example service:

C#

For more information on dependency injection, see .NET dependency injection.

There might be situations where you want to register multiple MilvusClient instances
with different connection names. To register keyed Milvus clients, call the
AddKeyedMilvusClient method:

C#

builder.AddMilvusClient("milvusdb");

 Tip

The connectionName parameter must match the name used when adding the Milvus
database resource in the app host project. In other words, when you call
AddDatabase and provide a name of milvusdb that same name should be used
when calling AddMilvusClient . For more information, see Add a Milvus server
resource and database resource.

public class ExampleService(MilvusClient client)
{
 // Use the Milvus Client...
}

Add a keyed Milvus client

builder.AddKeyedMilvusClient(name: "mainDb");
builder.AddKeyedMilvusClient(name: "loggingDb");

） Important

https://learn.microsoft.com/en-us/dotnet/core/extensions/dependency-injection
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.aspiremilvusextensions.addkeyedmilvusclient

Then you can retrieve the MilvusClient instances using dependency injection. For
example, to retrieve the connection from an example service:

C#

For more information on keyed services, see .NET dependency injection: Keyed services.

The .NET Aspire Milvus client integration provides multiple options to configure the
connection to Milvus based on the requirements and conventions of your project.

When using a connection string from the ConnectionStrings configuration section, you
can provide the name of the connection string when calling builder.AddMilvusClient() :

C#

And then the connection string will be retrieved from the ConnectionStrings
configuration section:

When using keyed services, it's expected that your Milvus resource configured two
named databases, one for the mainDb and one for the loggingDb .

public class ExampleService(
 [FromKeyedServices("mainDb")] MilvusClient mainDbClient,
 [FromKeyedServices("loggingDb")] MilvusClient loggingDbClient)
{
 // Use clients...
}

Configuration

 Tip

The default use is root and the default password is Milvus . To configure a different
password in the Milvus container, see Handling credentials and passing other
parameters for the Milvus resource. Use the following techniques to configure
consuming client apps in your .NET Aspire solution with the same password or
other settings.

Use a connection string

builder.AddMilvusClient("milvus");

https://learn.microsoft.com/en-us/dotnet/core/extensions/dependency-injection#keyed-services

JSON

By default the MilvusClient uses the gRPC API endpoint.

The .NET Aspire Milvus client integration supports Microsoft.Extensions.Configuration. It
loads the MilvusClientSettings from configuration by using the Aspire:Milvus:Client
key. The following snippet is an example of a appsettings.json that configures some of
the options:

JSON

For the complete Milvus client integration JSON schema, see
Aspire.Milvus.Client/ConfigurationSchema.json .

Also you can pass the Action<MilvusSettings> configureSettings delegate to set up
some or all the options inline, for example to set the API key from code:

C#

{
 "ConnectionStrings": {
 "milvus": "Endpoint=http://localhost:19530/;Key=root:Non-default-
P@ssw0rd"
 }
}

Use configuration providers

{
 "Aspire": {
 "Milvus": {
 "Client": {
 "Endpoint": "http://localhost:19530/",
 "Database": "milvusdb",
 "Key": "root:Non-default-P@ssw0rd",
 "DisableHealthChecks": false
 }
 }
 }
}

Use inline delegates

builder.AddMilvusClient(
 "milvus",

https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration
https://learn.microsoft.com/en-us/dotnet/api/aspire.milvus.client.milvusclientsettings
https://github.com/dotnet/aspire/blob/v9.1.0/src/Components/Aspire.Milvus.Client/ConfigurationSchema.json
https://github.com/dotnet/aspire/blob/v9.1.0/src/Components/Aspire.Milvus.Client/ConfigurationSchema.json

By default, .NET Aspire integrations enable health checks for all services. For more
information, see .NET Aspire integrations overview.

The .NET Aspire Milvus database integration:

Adds the health check when MilvusClientSettings.DisableHealthChecks is false ,
which attempts to connect to the Milvus server.
Uses the configured client to perform a HealthAsync . If the result is healthy, the
health check is considered healthy, otherwise it's unhealthy. Likewise, if there's an
exception, the health check is considered unhealthy with the error propagating
through the health check failure.

.NET Aspire integrations automatically set up Logging, Tracing, and Metrics
configurations, which are sometimes known as the pillars of observability. For more
information about integration observability and telemetry, see .NET Aspire integrations
overview. Depending on the backing service, some integrations may only support some
of these features. For example, some integrations support logging and tracing, but not
metrics. Telemetry features can also be disabled using the techniques presented in the
Configuration section.

The .NET Aspire Milvus database integration uses standard .NET logging, and you'll see
log entries from the following category:

Milvus.Client

The .NET Aspire Milvus database integration doesn't currently emit tracing activities
because they are not supported by the Milvus.Client library.

 static settings => settings.Key = "root:Non-default-P@ssw0rd");

Client integration health checks

Observability and telemetry

Logging

Tracing

Metrics

https://learn.microsoft.com/en-us/dotnet/api/aspire.milvus.client.milvusclientsettings.disablehealthchecks#aspire-milvus-client-milvusclientsettings-disablehealthchecks

The .NET Aspire Milvus database integration doesn't currently emit metrics because they
are not supported by the Milvus.Client library.

Milvus
Milvus GitHub repo
Milvus .NET SDK
.NET Aspire integrations
.NET Aspire GitHub repo

See also

https://milvus.io/
https://milvus.io/
https://github.com/milvus-io/milvus
https://github.com/milvus-io/milvus
https://github.com/milvus-io/milvus-sdk-csharp
https://github.com/milvus-io/milvus-sdk-csharp
https://github.com/dotnet/aspire
https://github.com/dotnet/aspire

.NET Aspire MongoDB database
integration
Article • 02/25/2025

Includes: Hosting integration and Client integration

MongoDB is a NoSQL database that provides high performance, high availability, and
easy scalability. The .NET Aspire MongoDB integration enables you to connect to
existing MongoDB instances (including MongoDB Atlas) or create new instances from
.NET with the docker.io/library/mongo container image

The MongoDB server hosting integration models the server as the
MongoDBServerResource type and the database as the MongoDBDatabaseResource
type. To access these types and APIs, add the 📦 Aspire.Hosting.MongoDB NuGet
package in the app host project.

.NET CLI

For more information, see dotnet add package or Manage package dependencies in
.NET applications.

In your app host project, call AddMongoDB to add and return a MongoDB server
resource builder. Chain a call to the returned resource builder to AddDatabase, to add a
MongoDB database resource.

C#

Hosting integration

.NET CLI

dotnet add package Aspire.Hosting.MongoDB

Add MongoDB server resource and database resource

var builder = DistributedApplication.CreateBuilder(args);

var mongo = builder.AddMongoDB("mongo")
 .WithLifetime(ContainerLifetime.Persistent);

https://www.mongodb.com/
https://www.mongodb.com/
https://mdb.link/atlas
https://mdb.link/atlas
https://hub.docker.com/_/mongo
https://hub.docker.com/_/mongo
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.mongodbserverresource
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.mongodbdatabaseresource
https://www.nuget.org/packages/Aspire.Hosting.MongoDB
https://www.nuget.org/packages/Aspire.Hosting.MongoDB
https://learn.microsoft.com/en-us/dotnet/core/tools/dotnet-add-package
https://learn.microsoft.com/en-us/dotnet/core/tools/dependencies
https://learn.microsoft.com/en-us/dotnet/core/tools/dependencies
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.mongodbbuilderextensions.addmongodb
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.mongodbbuilderextensions.adddatabase

When .NET Aspire adds a container image to the app host, as shown in the preceding
example with the docker.io/library/mongo image, it creates a new MongoDB instance
on your local machine. A reference to your MongoDB server resource builder (the mongo
variable) is used to add a database. The database is named mongodb and then added to
the ExampleProject . The MongoDB server resource includes default credentials:

MONGO_INITDB_ROOT_USERNAME : A value of admin .
MONGO_INITDB_ROOT_PASSWORD : Random password generated using the
CreateDefaultPasswordParameter method.

When the app host runs, the password is stored in the app host's secret store. It's added
to the Parameters section, for example:

JSON

The name of the parameter is mongo-password , but really it's just formatting the resource
name with a -password suffix. For more information, see Safe storage of app secrets in
development in ASP.NET Core and Add MongoDB server resource with parameters.

The WithReference method configures a connection in the ExampleProject named
mongodb and the WaitFor instructs the app host to not start the dependant service until
the mongodb resource is ready.

var mongodb = mongo.AddDatabase("mongodb");

builder.AddProject<Projects.ExampleProject>()
 .WithReference(mongodb)
 .WaitFor(mongodb);

// After adding all resources, run the app...

７ Note

The MongoDB container can be slow to start, so it's best to use a persistent lifetime
to avoid unnecessary restarts. For more information, see Container resource
lifetime.

{
 "Parameters:mongo-password": "<THE_GENERATED_PASSWORD>"
}

 Tip

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.parameterresourcebuilderextensions.createdefaultpasswordparameter
https://learn.microsoft.com/en-us/aspnet/core/security/app-secrets
https://learn.microsoft.com/en-us/aspnet/core/security/app-secrets
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.resourcebuilderextensions.withreference
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.resourcebuilderextensions.waitfor

To add a data volume to the MongoDB server resource, call the WithDataVolume
method on the MongoDB server resource:

C#

The data volume is used to persist the MongoDB server data outside the lifecycle of its
container. The data volume is mounted at the /data/db path in the MongoDB server
container and when a name parameter isn't provided, the name is generated at random.
For more information on data volumes and details on why they're preferred over bind
mounts, see Docker docs: Volumes .

To add a data bind mount to the MongoDB server resource, call the
WithDataBindMount method:

C#

If you'd rather connect to an existing MongoDB server, call AddConnectionString
instead. For more information, see 㔀唀䠀䤀䠀䨀䠀兆唀䠀̀䠀嬀䰀嘀圀䰀儀䨀͕唀䠀嘀刀堀兆唀䠀嘀 ᄝ

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.mongodbbuilderextensions.withdatavolume
https://docs.docker.com/engine/storage/volumes
https://docs.docker.com/engine/storage/volumes
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.mongodbbuilderextensions.withdatabindmount
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.parameterresourcebuilderextensions.addconnectionstring

Data bind mounts rely on the host machine's filesystem to persist the MongoDB server
data across container restarts. The data bind mount is mounted at the C:\MongoDB\Data
on Windows (or /MongoDB/Data on Unix) path on the host machine in the MongoDB
server container. For more information on data bind mounts, see Docker docs: Bind
mounts .

To add an initialization folder data bind mount to the MongoDB server resource, call the
WithInitBindMount method:

C#

var mongo = builder.AddMongoDB("mongo")
 .WithDataBindMount(@"C:\MongoDB\Data");

var mongodb = mongo.AddDatabase("mongodb");

builder.AddProject<Projects.ExampleProject>()
 .WithReference(mongodb)
 .WaitFor(mongodb);

// After adding all resources, run the app...

） Important

Data bind mounts have limited functionality compared to volumes , which
offer better performance, portability, and security, making them more suitable for
production environments. However, bind mounts allow direct access and
modification of files on the host system, ideal for development and testing where
real-time changes are needed.

Add MongoDB server resource with initialization data
bind mount

var builder = DistributedApplication.CreateBuilder(args);

var mongo = builder.AddMongoDB("mongo")
 .WithInitBindMount(@"C:\MongoDB\Init");

var mongodb = mongo.AddDatabase("mongodb");

builder.AddProject<Projects.ExampleProject>()
 .WithReference(mongodb)
 .WaitFor(mongodb);

// After adding all resources, run the app...

https://docs.docker.com/engine/storage/bind-mounts
https://docs.docker.com/engine/storage/bind-mounts
https://docs.docker.com/engine/storage/bind-mounts
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.mongodbbuilderextensions.withinitbindmount
https://docs.docker.com/engine/storage/bind-mounts/
https://docs.docker.com/engine/storage/bind-mounts/
https://docs.docker.com/engine/storage/volumes/
https://docs.docker.com/engine/storage/volumes/

The initialization data bind mount is used to initialize the MongoDB server with data.
The initialization data bind mount is mounted at the C:\MongoDB\Init on Windows (or
/MongoDB/Init on Unix) path on the host machine in the MongoDB server container and
maps to the /docker-entrypoint-initdb.d path in the MongoDB server container.
MongoDB executes the scripts found in this folder, which is useful for loading data into
the database.

When you want to explicitly provide the password used by the container image, you can
provide these credentials as parameters. Consider the following alternative example:

C#

For more information on providing parameters, see External parameters.

MongoDB Express is a web-based MongoDB admin user interface. To add a MongoDB
Express resource that corresponds to the docker.io/library/mongo-express container
image , call the WithMongoExpress method on the MongoDB server resource:

C#

Add MongoDB server resource with parameters

var builder = DistributedApplication.CreateBuilder(args);

var username = builder.AddParameter("username");
var password = builder.AddParameter("password", secret: true);

var mongo = builder.AddMongoDB("mongo", username, password);
var mongodb = mongo.AddDatabase("mongodb");

builder.AddProject<Projects.ExampleProject>()
 .WithReference(mongodb)
 .WaitFor(mongodb);

// After adding all resources, run the app...

Add MongoDB Express resource

var builder = DistributedApplication.CreateBuilder(args);

var mongo = builder.AddMongoDB("mongo")
 .WithMongoExpress();

var mongodb = mongo.AddDatabase("mongodb");

builder.AddProject<Projects.ExampleProject>()

https://github.com/mongo-express/mongo-express
https://github.com/mongo-express/mongo-express
https://hub.docker.com/_/mongo-express/
https://hub.docker.com/_/mongo-express/
https://hub.docker.com/_/mongo-express/
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.mongodbbuilderextensions.withmongoexpress

The preceding code adds a MongoDB Express resource that is configured to connect to
the MongoDB server resource. The default credentials are:

ME_CONFIG_MONGODB_SERVER : The name assigned to the parent
MongoDBServerResource , in this case it would be mongo .
ME_CONFIG_BASICAUTH : A value of false .
ME_CONFIG_MONGODB_PORT : Assigned from the primary endpoint's target port of the
parent MongoDBServerResource .
ME_CONFIG_MONGODB_ADMINUSERNAME : The same username as configured in the parent
MongoDBServerResource .
ME_CONFIG_MONGODB_ADMINPASSWORD : The same password as configured in the parent
MongoDBServerResource .

Additionally, the WithMongoExpress API exposes an optional configureContainer
parameter of type Action<IResourceBuilder<MongoExpressContainerResource>> that you
use to configure the MongoDB Express container resource.

The MongoDB hosting integration automatically adds a health check for the MongoDB
server resource. The health check verifies that the MongoDB server resource is running
and that a connection can be established to it.

The hosting integration relies on the 📦 AspNetCore.HealthChecks.MongoDb NuGet
package.

To get started with the .NET Aspire MongoDB client integration, install the 📦
Aspire.MongoDB.Driver NuGet package in the client-consuming project, that is, the

 .WithReference(mongodb)
 .WaitFor(mongodb);

// After adding all resources, run the app...

 Tip

To configure the host port for the MongoExpressContainerResource chain a call to
the WithHostPort API and provide the desired port number.

Hosting integration health checks

Client integration

https://www.nuget.org/packages/AspNetCore.HealthChecks.MongoDb
https://www.nuget.org/packages/AspNetCore.HealthChecks.MongoDb
https://www.nuget.org/packages/Aspire.MongoDB.Driver
https://www.nuget.org/packages/Aspire.MongoDB.Driver
https://www.nuget.org/packages/Aspire.MongoDB.Driver
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.mongodb.mongoexpresscontainerresource
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.mongodbbuilderextensions.withhostport

project for the application that uses the MongoDB client. The MongoDB client
integration registers a IMongoClient instance that you can use to interact with the
MongoDB server resource. If your app host adds MongoDB database resources, the
IMongoDatabase instance is also registered.

.NET CLI

In the Program.cs file of your client-consuming project, call the AddMongoDBClient
extension method on any IHostApplicationBuilder to register a IMongoClient for use via
the dependency injection container. The method takes a connection name parameter.

C#

.NET CLI

dotnet add package Aspire.MongoDB.Driver

） Important

The Aspire.MongoDB.Driver NuGet package depends on the MongoDB.Driver NuGet
package. With the release of version 3.0.0 of MongoDB.Driver , a binary breaking
change was introduced. To address this, a new client integration package,
Aspire.MongoDB.Driver.v3 , was created. The original Aspire.MongoDB.Driver
package continues to reference MongoDB.Driver version 2.30.0, ensuring
compatibility with previous versions of the RabbitMQ client integration. The new
Aspire.MongoDB.Driver.v3 package references MongoDB.Driver version 3.0.0. In a
future version of .NET Aspire, the Aspire.MongoDB.Driver will be updated to version
3.x and the Aspire.MongoDB.Driver.v3 package will be deprecated. For more
information, see Upgrade to version 3.0 .

Add MongoDB client

builder.AddMongoDBClient(connectionName: "mongodb");

 Tip

The connectionName parameter must match the name used when adding the
MongoDB server resource (or the database resource when provided) in the app

https://mongodb.github.io/mongo-csharp-driver/3.0.0/api/MongoDB.Driver/MongoDB.Driver.IMongoClient.html
https://mongodb.github.io/mongo-csharp-driver/3.0.0/api/MongoDB.Driver/MongoDB.Driver.IMongoClient.html
https://mongodb.github.io/mongo-csharp-driver/3.0.0/api/MongoDB.Driver/MongoDB.Driver.IMongoDatabase.html
https://mongodb.github.io/mongo-csharp-driver/3.0.0/api/MongoDB.Driver/MongoDB.Driver.IMongoDatabase.html
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.aspiremongodbdriverextensions.addmongodbclient
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.ihostapplicationbuilder
https://www.mongodb.com/docs/drivers/csharp/v3.0/upgrade/v3/
https://www.mongodb.com/docs/drivers/csharp/v3.0/upgrade/v3/

You can then retrieve the IMongoClient instance using dependency injection. For
example, to retrieve the client from an example service:

C#

The IMongoClient is used to interact with the MongoDB server resource. It can be used
to create databases that aren't already known to the app host project. When you define
a MongoDB database resource in your app host, you could instead require that the
dependency injection container provides an IMongoDatabase instance. For more
information on dependency injection, see .NET dependency injection.

There might be situations where you want to register multiple IMongoDatabase instances
with different connection names. To register keyed MongoDB clients, call the
AddKeyedMongoDBClient method:

C#

Then you can retrieve the IMongoDatabase instances using dependency injection. For
example, to retrieve the connection from an example service:

C#

host project. In other words, when you call AddDatabase and provide a name of
mongodb that same name should be used when calling AddMongoDBClient . For more
information, see Add MongoDB server resource and database resource.

public class ExampleService(IMongoClient client)
{
 // Use client...
}

Add keyed MongoDB client

builder.AddKeyedMongoDBClient(name: "mainDb");
builder.AddKeyedMongoDBClient(name: "loggingDb");

） Important

When using keyed services, it's expected that your MongoDB resource configured
two named databases, one for the mainDb and one for the loggingDb .

https://learn.microsoft.com/en-us/dotnet/core/extensions/dependency-injection
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.aspiremongodbdriverextensions.addkeyedmongodbclient

For more information on keyed services, see .NET dependency injection: Keyed services.

The .NET Aspire MongoDB database integration provides multiple configuration
approaches and options to meet the requirements and conventions of your project.

When using a connection string from the ConnectionStrings configuration section, you
can provide the name of the connection string when calling
builder.AddMongoDBClient() :

C#

The connection string is retrieved from the ConnectionStrings configuration section.
Consider the following MongoDB example JSON configuration:

JSON

Alternatively, consider the following MongoDB Atlas example JSON configuration:

JSON

public class ExampleService(
 [FromKeyedServices("mainDb")] IMongoDatabase mainDatabase,
 [FromKeyedServices("loggingDb")] IMongoDatabase loggingDatabase)
{
 // Use databases...
}

Configuration

Use a connection string

builder.AddMongoDBClient("mongo");

{
 "ConnectionStrings": {
 "mongo": "mongodb://server:port/test",
 }
}

{
 "ConnectionStrings": {
 "mongo": "mongodb+srv://username:password@server.mongodb.net/",
 }
}

https://learn.microsoft.com/en-us/dotnet/core/extensions/dependency-injection#keyed-services

For more information on how to format this connection string, see MongoDB:
ConnectionString documentation .

The .NET Aspire MongoDB integration supports Microsoft.Extensions.Configuration. It
loads the MongoDBSettings from configuration by using the Aspire:MongoDB:Driver
key. The following snippet is an example of a appsettings.json file that configures some
of the options:

JSON

You can also pass the Action<MongoDBSettings> delegate to set up some or all the
options inline:

C#

Here are the configurable options with corresponding default values:

Name Description

ConnectionString The connection string of the MongoDB database database to connect to.

Use configuration providers

{
 "Aspire": {
 "MongoDB": {
 "Driver": {
 "ConnectionString": "mongodb://server:port/test",
 "DisableHealthChecks": false,
 "HealthCheckTimeout": 10000,
 "DisableTracing": false
 },
 }
 }

Use inline configurations

builder.AddMongoDBClient("mongodb",
 static settings => settings.ConnectionString =
"mongodb://server:port/test");

Configuration options

ﾉ Expand table

https://www.mongodb.com/docs/v3.0/reference/connection-string
https://www.mongodb.com/docs/v3.0/reference/connection-string
https://www.mongodb.com/docs/v3.0/reference/connection-string
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration
https://learn.microsoft.com/en-us/dotnet/api/aspire.mongodb.driver.mongodbsettings

Name Description

DisableHealthChecks A boolean value that indicates whether the database health check is
disabled or not.

HealthCheckTimeout An int? value that indicates the MongoDB health check timeout in
milliseconds.

DisableTracing A boolean value that indicates whether the OpenTelemetry tracing is
disabled or not.

By default, .NET Aspire client integrations have health checks enabled for all services.
Similarly, many .NET Aspire hosting integrations also enable health check endpoints. For
more information, see:

.NET app health checks in C#
Health checks in ASP.NET Core

By default, the .NET Aspire MongoDB client integration handles the following scenarios:

Adds a health check when enabled that verifies that a connection can be made
commands can be run against the MongoDB database within a certain amount of
time.
Integrates with the /health HTTP endpoint, which specifies all registered health
checks must pass for app to be considered ready to accept traffic

.NET Aspire integrations automatically set up Logging, Tracing, and Metrics
configurations, which are sometimes known as the pillars of observability. For more
information about integration observability and telemetry, see .NET Aspire integrations
overview. Depending on the backing service, some integrations may only support some
of these features. For example, some integrations support logging and tracing, but not
metrics. Telemetry features can also be disabled using the techniques presented in the
Configuration section.

The .NET Aspire MongoDB database integration uses standard .NET logging, and you
see log entries from the following categories:

Client integration health checks

Observability and telemetry

Logging

https://learn.microsoft.com/en-us/dotnet/core/diagnostics/diagnostic-health-checks
https://learn.microsoft.com/en-us/aspnet/core/host-and-deploy/health-checks

MongoDB[.*] : Any log entries from the MongoDB namespace.

The .NET Aspire MongoDB database integration emits the following Tracing activities
using OpenTelemetry:

MongoDB.Driver.Core.Extensions.DiagnosticSources

The .NET Aspire MongoDB database integration doesn't currently expose any
OpenTelemetry metrics.

MongoDB database
.NET Aspire integrations
.NET Aspire GitHub repo

Tracing

Metrics

See also

https://www.mongodb.com/docs/drivers/csharp/current/quick-start
https://www.mongodb.com/docs/drivers/csharp/current/quick-start
https://github.com/dotnet/aspire
https://github.com/dotnet/aspire

.NET Aspire MySQL integration
Article • 02/07/2025

Includes: Hosting integration and Client integration

MySQL is an open-source Relational Database Management System (RDBMS) that
uses Structured Query Language (SQL) to manage and manipulate data. It's employed in
a many different environments, from small projects to large-scale enterprise systems
and it's a popular choice to host data that underpins microservices in a cloud-native
application. The .NET Aspire MySQL database integration enables you to connect to
existing MySQL databases or create new instances from .NET with the mysql container
image .

The MySQL hosting integration models the server as the MySqlServerResource type and
the database as the MySqlDatabaseResource type. To access these types and APIs, add
the 📦 Aspire.Hosting.MySql NuGet package in the app host project.

.NET CLI

For more information, see dotnet add package or Manage package dependencies in
.NET applications.

In your app host project, call AddMySql to add and return a MySQL resource builder.
Chain a call to the returned resource builder to AddDatabase, to add a MySQL database
resource.

C#

Hosting integration

.NET CLI

dotnet add package Aspire.Hosting.MySql

Add MySQL server resource and database resource

var builder = DistributedApplication.CreateBuilder(args);

var mysql = builder.AddMySql("mysql")
 .WithLifetime(ContainerLifetime.Persistent);

https://www.mysql.com/
https://www.mysql.com/
https://hub.docker.com/_/mysql
https://hub.docker.com/_/mysql
https://hub.docker.com/_/mysql
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.mysqlserverresource
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.mysqldatabaseresource
https://www.nuget.org/packages/Aspire.Hosting.MySql
https://www.nuget.org/packages/Aspire.Hosting.MySql
https://learn.microsoft.com/en-us/dotnet/core/tools/dotnet-add-package
https://learn.microsoft.com/en-us/dotnet/core/tools/dependencies
https://learn.microsoft.com/en-us/dotnet/core/tools/dependencies
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.mysqlbuilderextensions.addmysql
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.mysqlbuilderextensions.adddatabase

When .NET Aspire adds a container image to the app host, as shown in the preceding
example with the mysql image, it creates a new MySQL instance on your local machine.
A reference to your MySQL resource builder (the mysql variable) is used to add a
database. The database is named mysqldb and then added to the ExampleProject . The
MySQL resource includes default credentials with a username of root and a random
password generated using the CreateDefaultPasswordParameter method.

When the app host runs, the password is stored in the app host's secret store. It's added
to the Parameters section, for example:

JSON

The name of the parameter is mysql-password , but really it's just formatting the resource
name with a -password suffix. For more information, see Safe storage of app secrets in
development in ASP.NET Core and Add MySQL resource with parameters.

The WithReference method configures a connection in the ExampleProject named
mysqldb .

var mysqldb = mysql.AddDatabase("mysqldb");

var myService = builder.AddProject<Projects.ExampleProject>()
 .WithReference(mysqldb)
 .WaitFor(mysqldb);

// After adding all resources, run the app...

７ Note

The SQL Server container is slow to start, so it's best to use a persistent lifetime to
avoid unnecessary restarts. For more information, see Container resource lifetime.

{
 "Parameters:mysql-password": "<THE_GENERATED_PASSWORD>"
}

 Tip

If you'd rather connect to an existing MySQL server, call AddConnectionString
instead. For more information, see Reference existing resources.

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.parameterresourcebuilderextensions.createdefaultpasswordparameter
https://learn.microsoft.com/en-us/aspnet/core/security/app-secrets
https://learn.microsoft.com/en-us/aspnet/core/security/app-secrets
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.resourcebuilderextensions.withreference
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.parameterresourcebuilderextensions.addconnectionstring

To add a data volume to the SQL Server resource, call the WithDataVolume method on
the SQL Server resource:

C#

The data volume is used to persist the MySQL server data outside the lifecycle of its
container. The data volume is mounted at the /var/lib/mysql path in the SQL Server
container and when a name parameter isn't provided, the name is generated at random.
For more information on data volumes and details on why they're preferred over bind
mounts, see Docker docs: Volumes .

To add a data bind mount to the MySQL resource, call the WithDataBindMount method:

C#

Add a MySQL resource with a data volume

var builder = DistributedApplication.CreateBuilder(args);

var mysql = builder.AddMySql("mysql")
 .WithDataVolume();

var mysqldb = mysql.AddDatabase("mysqldb");

builder.AddProject<Projects.ExampleProject>()
 .WithReference(mysqldb)
 .WaitFor(mysqldb);

// After adding all resources, run the app...

２ Warning

The password is stored in the data volume. When using a data volume and if the
password changes, it will not work until you delete the volume.

Add a MySQL resource with a data bind mount

var builder = DistributedApplication.CreateBuilder(args);

var mysql = builder.AddMySql("mysql")
 .WithDataBindMount(source: @"C:\MySql\Data");

var db = sql.AddDatabase("mysqldb");

builder.AddProject<Projects.ExampleProject>()
 .WithReference(mysqldb)

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.mysqlbuilderextensions.withdatavolume
https://docs.docker.com/engine/storage/volumes
https://docs.docker.com/engine/storage/volumes
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.mysqlbuilderextensions.withdatabindmount

Data bind mounts rely on the host machine's filesystem to persist the MySQL data
across container restarts. The data bind mount is mounted at the C:\MySql\Data on
Windows (or /MySql/Data on Unix) path on the host machine in the MySQL container.
For more information on data bind mounts, see Docker docs: Bind mounts .

When you want to provide a root MySQL password explicitly, you can pass it as a
parameter. Consider the following alternative example:

C#

For more information, see External parameters.

phpMyAdmin is a popular web-based administration tool for MySQL. You can use it
to browse and modify MySQL objects such as databases, tables, views, and indexes. To
use phpMyAdmin within your .NET Aspire solution, call the WithPhpMyAdmin method.

 .WaitFor(mysqldb);

// After adding all resources, run the app...

） Important

Data bind mounts have limited functionality compared to volumes , which
offer better performance, portability, and security, making them more suitable for
production environments. However, bind mounts allow direct access and
modification of files on the host system, ideal for development and testing where
real-time changes are needed.

Add MySQL resource with parameters

var password = builder.AddParameter("password", secret: true);

var mysql = builder.AddMySql("mysql", password)
 .WithLifetime(ContainerLifetime.Persistent);

var mysqldb = mysql.AddDatabase("mysqldb");

var myService = builder.AddProject<Projects.ExampleProject>()
 .WithReference(mysqldb)
 .WaitFor(mysqldb);

Add a PhpMyAdmin resource

https://docs.docker.com/engine/storage/bind-mounts
https://docs.docker.com/engine/storage/bind-mounts
https://www.phpmyadmin.net/
https://www.phpmyadmin.net/
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.mysqlbuilderextensions.withphpmyadmin
https://docs.docker.com/engine/storage/bind-mounts/
https://docs.docker.com/engine/storage/bind-mounts/
https://docs.docker.com/engine/storage/volumes/
https://docs.docker.com/engine/storage/volumes/

This method adds a new container resource to the solution that hosts phpMyAdmin and
connects it to the MySQL container:

C#

When you run the solution, the .NET Aspire dashboard displays the phpMyAdmin
resources with an endpoint. Select the link to the endpoint to view phpMyAdmin in a
new browser tab.

The MySQL hosting integration automatically adds a health check for the MySQL
resource. The health check verifies that the MySQL server is running and that a
connection can be established to it.

The hosting integration relies on the 📦 AspNetCore.HealthChecks.MySql NuGet
package.

To get started with the .NET Aspire MySQL database integration, install the 📦
Aspire.MySqlConnector NuGet package in the client-consuming project, that is, the
project for the application that uses the MySQL client. The MySQL client integration
registers a MySqlConnector.MySqlDataSource instance that you can use to interact with
the MySQL server.

.NET CLI

var builder = DistributedApplication.CreateBuilder(args);

var mysql = builder.AddMySql("mysql")
 .WithPhpMyAdmin();

var db = sql.AddDatabase("mysqldb");

builder.AddProject<Projects.ExampleProject>()
 .WithReference(mysqldb)
 .WaitFor(mysqldb);

// After adding all resources, run the app...

Hosting integration health checks

Client integration

.NET CLI

https://www.nuget.org/packages/AspNetCore.HealthChecks.MySql
https://www.nuget.org/packages/AspNetCore.HealthChecks.MySql
https://www.nuget.org/packages/Aspire.MySqlConnector
https://www.nuget.org/packages/Aspire.MySqlConnector
https://www.nuget.org/packages/Aspire.MySqlConnector

For more information, see dotnet add package or Manage package dependencies in
.NET applications.

In the Program.cs file of your client-consuming project, call the AddMySqlDataSource
extension method to register a MySqlDataSource for use via the dependency injection
container. The method takes a connectionName parameter.

C#

You can then retrieve the MySqlConnector.MySqlDataSource instance using dependency
injection. For example, to retrieve the data source from an example service:

C#

For more information on dependency injection, see .NET dependency injection.

There might be situations where you want to register multiple MySqlDataSource
instances with different connection names. To register keyed MySQL data sources, call

dotnet add package Aspire.MySqlConnector

Add a MySQL data source

builder.AddMySqlDataSource(connectionName: "mysqldb");

 Tip

The connectionName parameter must match the name used when adding the
MySQL database resource in the app host project. In other words, when you call
AddDatabase and provide a name of mysqldb that same name should be used when
calling AddMySqlDataSource . For more information, see Add MySQL server resource
and database resource.

public class ExampleService(MySqlDataSource dataSource)
{
 // Use dataSource...
}

Add keyed MySQL data source

https://learn.microsoft.com/en-us/dotnet/core/tools/dotnet-add-package
https://learn.microsoft.com/en-us/dotnet/core/tools/dependencies
https://learn.microsoft.com/en-us/dotnet/core/tools/dependencies
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.aspiremysqlconnectorextensions.addmysqldatasource
https://learn.microsoft.com/en-us/dotnet/core/extensions/dependency-injection

the AddKeyedMySqlDataSource method:

C#

Then you can retrieve the MySqlDatSource instances using dependency injection. For
example, to retrieve the connection from an example service:

C#

For more information on keyed services, see .NET dependency injection: Keyed services.

The .NET Aspire MySQL database integration provides multiple options to configure the
connection based on the requirements and conventions of your project.

When using a connection string from the ConnectionStrings configuration section, you
can provide the name of the connection string when calling AddMySqlDataSource
method:

C#

builder.AddKeyedMySqlDataSource(name: "mainDb");
builder.AddKeyedMySqlDataSource(name: "loggingDb");

） Important

When using keyed services, it's expected that your MySQL resource configured two
named databases, one for the mainDb and one for the loggingDb .

public class ExampleService(
 [FromKeyedServices("mainDb")] MySqlDataSource mainDbConnection,
 [FromKeyedServices("loggingDb")] MySqlDataSource loggingDbConnection)
{
 // Use connections...
}

Configuration

Use a connection string

builder.AddMySqlDataSource(connectionName: "mysql");

https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.aspiremysqlconnectorextensions.addkeyedmysqldatasource
https://learn.microsoft.com/en-us/dotnet/core/extensions/dependency-injection#keyed-services
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.aspiremysqlconnectorextensions.addmysqldatasource

Then the connection string is retrieved from the ConnectionStrings configuration
section:

JSON

For more information on how to format this connection string, see MySqlConnector:
ConnectionString documentation .

The .NET Aspire MySQL database integration supports
Microsoft.Extensions.Configuration. It loads the MySqlConnectorSettings from
configuration by using the Aspire:MySqlConnector key. The following snippet is an
example of a appsettings.json file that configures some of the options:

JSON

For the complete MySQL integration JSON schema, see
Aspire.MySqlConnector/ConfigurationSchema.json .

Also you can pass the Action<MySqlConnectorSettings> delegate to set up some or all
the options inline, for example to disable health checks from code:

C#

{
 "ConnectionStrings": {
 "mysql": "Server=mysql;Database=mysqldb"
 }
}

Use configuration providers

{
 "Aspire": {
 "MySqlConnector": {
 "ConnectionString": "YOUR_CONNECTIONSTRING",
 "DisableHealthChecks": true,
 "DisableTracing": true
 }
 }
}

Use inline delegates

builder.AddMySqlDataSource(
 "mysql",

https://mysqlconnector.net/connection-options/
https://mysqlconnector.net/connection-options/
https://mysqlconnector.net/connection-options/
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration
https://learn.microsoft.com/en-us/dotnet/api/aspire.mysqlconnector.mysqlconnectorsettings
https://github.com/dotnet/aspire/blob/main/src/Components/Aspire.MySqlConnector/ConfigurationSchema.json
https://github.com/dotnet/aspire/blob/main/src/Components/Aspire.MySqlConnector/ConfigurationSchema.json

By default, .NET Aspire integrations enable health checks for all services. For more
information, see .NET Aspire integrations overview.

The .NET Aspire MySQL database integration:

Adds the health check when MySqlConnectorSettings.DisableHealthChecks is
false , which verifies that a connection can be made and commands can be run
against the MySQL database.
Integrates with the /health HTTP endpoint, which specifies all registered health
checks must pass for app to be considered ready to accept traffic.

.NET Aspire integrations automatically set up Logging, Tracing, and Metrics
configurations, which are sometimes known as the pillars of observability. For more
information about integration observability and telemetry, see .NET Aspire integrations
overview. Depending on the backing service, some integrations may only support some
of these features. For example, some integrations support logging and tracing, but not
metrics. Telemetry features can also be disabled using the techniques presented in the
Configuration section.

The .NET Aspire MySQL integration uses the following log categories:

MySqlConnector.ConnectionPool

MySqlConnector.MySqlBulkCopy

MySqlConnector.MySqlCommand

MySqlConnector.MySqlConnection

MySqlConnector.MySqlDataSource

The .NET Aspire MySQL integration emits the following tracing activities using
OpenTelemetry:

MySqlConnector

 static settings => settings.DisableHealthChecks = true);

Client integration health checks

Observability and telemetry

Logging

Tracing

https://learn.microsoft.com/en-us/dotnet/api/aspire.mysqlconnector.mysqlconnectorsettings.disablehealthchecks#aspire-mysqlconnector-mysqlconnectorsettings-disablehealthchecks

The .NET Aspire MySQL integration will emit the following metrics using OpenTelemetry:

MySqlConnector
db.client.connections.create_time

db.client.connections.use_time

db.client.connections.wait_time

db.client.connections.idle.max

db.client.connections.idle.min

db.client.connections.max

db.client.connections.pending_requests

db.client.connections.timeouts

db.client.connections.usage

MySQL database
.NET Aspire database containers sample
.NET Aspire integrations
.NET Aspire GitHub repo

Metrics

See also

https://mysqlconnector.net/
https://mysqlconnector.net/
https://learn.microsoft.com/en-us/samples/dotnet/aspire-samples/aspire-database-containers/
https://github.com/dotnet/aspire
https://github.com/dotnet/aspire

.NET Aspire NATS integration
Article • 02/25/2025

Includes: Hosting integration and Client integration

NATS is a high-performance, secure, distributed messaging system. The .NET Aspire
NATS integration enables you to connect to existing NATS instances, or create new
instances from .NET with the docker.io/library/nats container image .

NATS hosting integration for .NET Aspire models a NATS server as the
NatsServerResource type. To access this type, install the 📦 Aspire.Hosting.Nats
NuGet package in the app host project, then add it with the builder.

.NET CLI

For more information, see dotnet add package or Manage package dependencies in
.NET applications.

In your app host project, call AddNats on the builder instance to add a NATS server
resource:

C#

Hosting integration

.NET CLI

dotnet add package Aspire.Hosting.Nats

Add NATS server resource

var builder = DistributedApplication.CreateBuilder(args);

var nats = builder.AddNats("nats");

builder.AddProject<Projects.ExampleProject>()
 .WithReference(nats);

// After adding all resources, run the app...

https://nats.io/
https://nats.io/
https://hub.docker.com/_/nats
https://hub.docker.com/_/nats
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.natsserverresource
https://www.nuget.org/packages/Aspire.Hosting.Nats
https://www.nuget.org/packages/Aspire.Hosting.Nats
https://learn.microsoft.com/en-us/dotnet/core/tools/dotnet-add-package
https://learn.microsoft.com/en-us/dotnet/core/tools/dependencies
https://learn.microsoft.com/en-us/dotnet/core/tools/dependencies
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.natsbuilderextensions.addnats

When .NET Aspire adds a container image to the app host, as shown in the preceding
example with the docker.io/library/nats image, it creates a new NATS server instance
on your local machine. A reference to your NATS server (the nats variable) is added to
the ExampleProject .

The WithReference method configures a connection in the ExampleProject named
"nats" . For more information, see Container resource lifecycle.

To add the NATS JetStream to the NATS server resource, call the WithJetStream
method:

C#

The NATS JetStream functionality provides a built-in persistence engine called JetStream
which enables messages to be stored and replayed at a later time.

When you want to explicitly provide the username and password, you can provide those
as parameters. Consider the following alternative example:

C#

 Tip

If you'd rather connect to an existing NATS server, call AddConnectionString
instead. For more information, see Reference existing resources.

Add NATS server resource with JetStream

var builder = DistributedApplication.CreateBuilder(args);

var nats = builder.AddNats("nats");
 .WithJetStream();

builder.AddProject<Projects.ExampleProject>()
 .WithReference(nats);

// After adding all resources, run the app...

Add NATS server resource with authentication
parameters

var builder = DistributedApplication.CreateBuilder(args);

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.resourcebuilderextensions.withreference
https://docs.nats.io/nats-concepts/jetstream
https://docs.nats.io/nats-concepts/jetstream
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.natsbuilderextensions.withjetstream
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.parameterresourcebuilderextensions.addconnectionstring

For more information, see External parameters.

To add a data volume to the NATS server resource, call the WithDataVolume method on
the NATS server resource:

C#

The data volume is used to persist the NATS server data outside the lifecycle of its
container. The data volume is mounted at the /var/lib/nats path in the NATS server
container. A name is generated at random unless you provide a set the name parameter.
For more information on data volumes and details on why they're preferred over bind
mounts, see Docker docs: Volumes .

To add a data bind mount to the NATS server resource, call the WithDataBindMount
method:

C#

var username = builder.AddParameter("username");
var password = builder.AddParameter("password", secret: true);

var nats = builder.AddNats(
 name: "nats",
 userName: username,
 password: password);

builder.AddProject<Projects.ExampleProject>()
 .WithReference(nats);

// After adding all resources, run the app...

Add NATS server resource with data volume

var builder = DistributedApplication.CreateBuilder(args);

var nats = builder.AddNats("nats");
 .WithDataVolume(isReadOnly: false);

builder.AddProject<Projects.ExampleProject>()
 .WithReference(nats);

// After adding all resources, run the app...

Add NATS server resource with data bind mount

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.natsbuilderextensions.withdatavolume
https://docs.docker.com/engine/storage/volumes
https://docs.docker.com/engine/storage/volumes
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.natsbuilderextensions.withdatabindmount

Data bind mounts rely on the host machine's filesystem to persist the NATS server data
across container restarts. The data bind mount is mounted at the C:\NATS\Data on
Windows (or /NATS/Data on Unix) path on the host machine in the NATS server
container. For more information on data bind mounts, see Docker docs: Bind mounts .

The NATS hosting integration automatically adds a health check for the NATS server
resource. The health check verifies that the NATS server is running and that a connection
can be established to it.

The hosting integration relies on the 📦 AspNetCore.HealthChecks.Nats NuGet
package.

To get started with the .NET Aspire NATS client integration, install the 📦
Aspire.NATS.Net NuGet package in the client-consuming project, that is, the project
for the application that uses the NATS client. The NATS client integration registers an
INatsConnection instance that you can use to interact with NATS.

var builder = DistributedApplication.CreateBuilder(args);

var nats = builder.AddNats("nats");
 .WithDataBindMount(
 source: @"C:\NATS\Data",
 isReadOnly: false);

builder.AddProject<Projects.ExampleProject>()
 .WithReference(nats);

// After adding all resources, run the app...

） Important

Data bind mounts have limited functionality compared to volumes , which
offer better performance, portability, and security, making them more suitable for
production environments. However, bind mounts allow direct access and
modification of files on the host system, ideal for development and testing where
real-time changes are needed.

Hosting integration health checks

Client integration

https://docs.docker.com/engine/storage/bind-mounts
https://docs.docker.com/engine/storage/bind-mounts
https://www.nuget.org/packages/AspNetCore.HealthChecks.Nats
https://www.nuget.org/packages/AspNetCore.HealthChecks.Nats
https://www.nuget.org/packages/Aspire.NATS.Net
https://www.nuget.org/packages/Aspire.NATS.Net
https://www.nuget.org/packages/Aspire.NATS.Net
https://nats-io.github.io/nats.net/api/NATS.Client.Core.INatsConnection.html
https://nats-io.github.io/nats.net/api/NATS.Client.Core.INatsConnection.html
https://docs.docker.com/engine/storage/bind-mounts/
https://docs.docker.com/engine/storage/bind-mounts/
https://docs.docker.com/engine/storage/volumes/
https://docs.docker.com/engine/storage/volumes/

.NET CLI

In the Program.cs file of your client-consuming project, call the AddNatsClient extension
method on any IHostApplicationBuilder to register an INatsConnection for use via the
dependency injection container. The method takes a connection name parameter.

C#

You can then retrieve the INatsConnection instance using dependency injection. For
example, to retrieve the client from a service:

C#

For more information on dependency injection, see .NET dependency injection.

There might be situations where you want to register multiple INatsConnection
instances with different connection names. To register keyed NATS clients, call the
AddKeyedNatsClient method:

.NET CLI

dotnet add package Aspire.NATS.Net

Add NATS client

builder.AddNatsClient(connectionName: "nats");

 Tip

The connectionName parameter must match the name used when adding the NATS
server resource in the app host project. For more information, see Add NATS server
resource.

public class ExampleService(INatsConnection connection)
{
 // Use connection...
}

Add keyed NATS client

https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.aspirenatsclientextensions.addnatsclient
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.ihostapplicationbuilder
https://learn.microsoft.com/en-us/dotnet/core/extensions/dependency-injection
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.aspirenatsclientextensions.addkeyednatsclient

C#

Then you can retrieve the IConnection instances using dependency injection. For
example, to retrieve the connection from an example service:

C#

For more information on keyed services, see .NET dependency injection: Keyed services.

The .NET Aspire NATS integration provides multiple options to configure the NATS
connection based on the requirements and conventions of your project.

Provide the name of the connection string when you call builder.AddNatsClient :

C#

The connection string is retrieved from the ConnectionStrings configuration section:

JSON

See the ConnectionString documentation for more information on how to format this
connection string.

builder.AddKeyedNatsClient(name: "chat");
builder.AddKeyedNatsClient(name: "queue");

public class ExampleService(
 [FromKeyedServices("chat")] INatsConnection chatConnection,
 [FromKeyedServices("queue")] INatsConnection queueConnection)
{
 // Use connections...
}

Configuration

Use a connection string

builder.AddNatsClient(connectionName: "nats");

{
 "ConnectionStrings": {
 "nats": "nats://nats:4222"
 }
}

https://learn.microsoft.com/en-us/dotnet/core/extensions/dependency-injection#keyed-services
https://docs.nats.io/using-nats/developer/connecting#nats-url
https://docs.nats.io/using-nats/developer/connecting#nats-url

The .NET Aspire NATS integration supports Microsoft.Extensions.Configuration. It loads
the NatsClientSettings from configuration by using the Aspire:Nats:Client key. The
following snippet is an example of a appsettings.json file that configures some of the
options:

JSON

For the complete NATS client integration JSON schema, see
Aspire.NATS.Net/ConfigurationSchema.json .

Pass the Action<NatsClientSettings> configureSettings delegate to set up some or all
the options inline, for example to disable health checks from code:

C#

NATS isn't part of the .NET Aspire deployment manifest. It's recommended you set up a
secure production NATS server outside of .NET Aspire.

By default, .NET Aspire integrations enable health checks for all services. For more
information, see .NET Aspire integrations overview.

Use configuration providers

{
 "Aspire": {
 "Nats": {
 "Client": {
 "ConnectionString": "nats://nats:4222",
 "DisableHealthChecks": true,
 "DisableTracing": true
 }
 }
 }
}

Use inline delegates

builder.AddNatsClient(
 "nats",
 static settings => settings.DisableHealthChecks = true);

NATS in the .NET Aspire manifest

Client integration health checks

https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration
https://learn.microsoft.com/en-us/dotnet/api/aspire.nats.net.natsclientsettings
https://github.com/dotnet/aspire/blob/v9.1.0/src/Components/Aspire.NATS.Net/ConfigurationSchema.json
https://github.com/dotnet/aspire/blob/v9.1.0/src/Components/Aspire.NATS.Net/ConfigurationSchema.json

The .NET Aspire NATS integration handles the following:

Integrates with the /health HTTP endpoint, which specifies all registered health
checks must pass for app to be considered ready to accept traffic.

.NET Aspire integrations automatically set up Logging, Tracing, and Metrics
configurations, which are sometimes known as the pillars of observability. For more
information about integration observability and telemetry, see .NET Aspire integrations
overview. Depending on the backing service, some integrations may only support some
of these features. For example, some integrations support logging and tracing, but not
metrics. Telemetry features can also be disabled using the techniques presented in the
Configuration section.

The .NET Aspire NATS integration uses the following log categories:

NATS

The .NET Aspire NATS integration emits the following tracing activities:

NATS.Net

NATS.Net quickstart
.NET Aspire integrations
.NET Aspire GitHub repo

Observability and telemetry

Logging

Tracing

See also

https://nats-io.github.io/nats.net/documentation/intro.html?tabs=core-nats
https://nats-io.github.io/nats.net/documentation/intro.html?tabs=core-nats
https://github.com/dotnet/aspire
https://github.com/dotnet/aspire

.NET Aspire Orleans integration
Article • 01/09/2025

Orleans has built-in support for .NET Aspire. .NET Aspire's application model lets you
describe the services, databases, and other resources and infrastructure in your app and
how they relate to each other. Orleans provides a straightforward way to build
distributed applications that are elastically scalable and fault-tolerant. You can use .NET
Aspire to configure and orchestrate Orleans and its dependencies, such as by providing
Orleans with cluster membership and storage.

Orleans is represented as a resource in .NET Aspire. Unlike other integrations, the
Orleans integration doesn't create a container and doesn't require a separate client
integration package. Instead you complete the Orleans configuration in the .NET Aspire
app host project.

The Orleans hosting integration models an Orleans service as the OrleansService type.
To access this type and APIs, add the 📦 Aspire.Hosting.Orleans NuGet package in the
app host project.

.NET CLI

For more information, see dotnet add package or Manage package dependencies in
.NET applications.

In your app host project, call AddOrleans to add and return an Orleans service resource
builder. The name provided to the Orleans resource is for diagnostic purposes. For most

７ Note

This integration requires Orleans version 8.1.0 or later.

Hosting integration

.NET CLI

dotnet add package Aspire.Hosting.Orleans

Add an Orleans resource

https://github.com/dotnet/orleans
https://github.com/dotnet/orleans
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.orleans.orleansservice
https://www.nuget.org/packages/Aspire.Hosting.Orleans
https://www.nuget.org/packages/Aspire.Hosting.Orleans
https://learn.microsoft.com/en-us/dotnet/core/tools/dotnet-add-package
https://learn.microsoft.com/en-us/dotnet/core/tools/dependencies
https://learn.microsoft.com/en-us/dotnet/core/tools/dependencies
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.orleansserviceextensions.addorleans

applications, a value of "default" suffices.

C#

In an Orleans app, the fundamental building block is a grain. Grains can have durable
states. You must store the durable state for a grain somewhere. In a .NET Aspire
application, Azure Blob Storage is one possible location.

Orleans hosts register themselves in a database and use that database to find each
other and form a cluster. They store which servers are members of which silos in a
database table. You can use either relational or NoSQL databases to store this
information. In a .NET Aspire application, a popular choice to store this table is Azure
Table Storage.

To configure Orleans with clustering and grain storage in Azure, install the 📦
Aspire.Hosting.Azure.Storage NuGet package in the app host project:

.NET CLI

In your app host project, after you call AddOrleans, configure the Orleans resource with
clustering and grain storage using the WithClustering and WithGrainStorage methods
respectively:

C#

var orleans = builder.AddOrleans("default")

Use Azure storage for clustering tables and grain storage

.NET CLI

dotnet add package Aspire.Hosting.Azure.Storage

// Add the resources which you will use for Orleans clustering and
// grain state storage.
var storage = builder.AddAzureStorage("storage").RunAsEmulator();
var clusteringTable = storage.AddTables("clustering");
var grainStorage = storage.AddBlobs("grain-state");

// Add the Orleans resource to the Aspire DistributedApplication
// builder, then configure it with Azure Table Storage for clustering
// and Azure Blob Storage for grain storage.
var orleans = builder.AddOrleans("default")

https://www.nuget.org/packages/Aspire.Hosting.Azure.Storage
https://www.nuget.org/packages/Aspire.Hosting.Azure.Storage
https://www.nuget.org/packages/Aspire.Hosting.Azure.Storage
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.orleansserviceextensions.addorleans
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.orleansserviceextensions.withclustering
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.orleansserviceextensions.withgrainstorage

The preceding code tells Orleans that any service referencing it must also reference the
clusteringTable resource.

Now you can add a new project, enrolled in .NET Aspire orchestration, to your solution
as an Orleans server. It will take part in the Orleans cluster as a silo with constituent
grains. Reference the Orleans resource from your server project using
WithReference(orleans) . When you reference the Orleans resource from your service,
those resources are also referenced:

C#

Orleans clients communicate with grains hosted on Orleans servers. In a .NET Aspire
app, for example, you might have a front-end Web site that calls grains in an Orleans
cluster. Reference the Orleans resource from your Orleans client using
WithReference(orleans.AsClient()) .

C#

 .WithClustering(clusteringTable)
 .WithGrainStorage("Default", grainStorage);

Add an Orleans server project in the app host

// Add your server project and reference your 'orleans' resource from it.
// It can join the Orleans cluster as a silo.
// This implicitly adds references to the required resources.
// In this case, that is the 'clusteringTable' resource declared earlier.
builder.AddProject<Projects.OrleansServer>("silo")
 .WithReference(orleans)
 .WithReplicas(3);

Add an Orleans client project in the app host

// Reference the Orleans resource as a client from the 'frontend'
// project so that it can connect to the Orleans cluster.
builder.AddProject<Projects.OrleansClient>("frontend")
 .WithReference(orleans.AsClient())
 .WithExternalHttpEndpoints()
 .WithReplicas(3);

Create the Orleans server project

Now that the app host project is completed, you can implement the Orleans server
project. Let's start by adding the necessary NuGet packages:

In the folder for the Orleans server project, run these commands:

.NET CLI

Next, in the Program.cs file of your Orleans server project, add the Azure Storage blob
and tables clients and then call UseOrleans.

C#

The following code is a complete example of an Orleans server project, including a grain
named CounterGrain :

C#

.NET CLI

dotnet add package Aspire.Azure.Data.Tables
dotnet add package Aspire.Azure.Storage.Blobs
dotnet add package Microsoft.Orleans.Server
dotnet add package Microsoft.Orleans.Persistence.AzureStorage
dotnet add package Microsoft.Orleans.Clustering.AzureStorage

var builder = WebApplication.CreateBuilder(args);

builder.AddServiceDefaults();
builder.AddKeyedAzureTableClient("clustering");
builder.AddKeyedAzureBlobClient("grain-state");
builder.UseOrleans();

using Orleans.Runtime;
using OrleansContracts;

var builder = WebApplication.CreateBuilder(args);

builder.AddServiceDefaults();
builder.AddKeyedAzureTableClient("clustering");
builder.AddKeyedAzureBlobClient("grain-state");
builder.UseOrleans();

var app = builder.Build();

app.MapGet("/", () => "OK");

await app.RunAsync();

https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.generichostextensions.useorleans

In the Orleans client project, add the same NuGet packages:

.NET CLI

Next, in the Program.cs file of your Orleans client project, add the Azure table storage
client and then call UseOrleansClient.

C#

The following code is a complete example of an Orleans client project. It calls the
CounterGrain grain defined in the Orleans server example above:

C#

public sealed class CounterGrain(
 [PersistentState("count")] IPersistentState<int> count) : ICounterGrain
{
 public ValueTask<int> Get()
 {
 return ValueTask.FromResult(count.State);
 }

 public async ValueTask<int> Increment()
 {
 var result = ++count.State;
 await count.WriteStateAsync();
 return result;
 }
}

Create an Orleans client project

.NET CLI

dotnet add package Aspire.Azure.Data.Tables
dotnet add package Aspire.Azure.Storage.Blobs
dotnet add package Microsoft.Orleans.Client
dotnet add package Microsoft.Orleans.Persistence.AzureStorage
dotnet add package Microsoft.Orleans.Clustering.AzureStorage

builder.AddKeyedAzureTableClient("clustering");
builder.UseOrleansClient();

using OrleansContracts;

var builder = WebApplication.CreateBuilder(args);

https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.orleansclientgenerichostextensions.useorleansclient

By convention, .NET Aspire solutions include a project for defining default configuration
and behavior for your service. This project is called the service defaults project and
templates create it with a name ending in ServiceDefaults. To configure Orleans for
OpenTelemetry in .NET Aspire, apply configuration to your service defaults project
following the Orleans observability guide.

Modify the ConfigureOpenTelemetry method to add the Orleans meters and tracing
instruments. The following code snippet shows the modified Extensions.cs file from a
service defaults project that includes metrics and traces from Orleans.

C#

builder.AddServiceDefaults();
builder.AddKeyedAzureTableClient("clustering");
builder.UseOrleansClient();

var app = builder.Build();

app.MapGet("/counter/{grainId}", async (IClusterClient client, string
grainId) =>
{
 var grain = client.GetGrain<ICounterGrain>(grainId);
 return await grain.Get();
});

app.MapPost("/counter/{grainId}", async (IClusterClient client, string
grainId) =>
{
 var grain = client.GetGrain<ICounterGrain>(grainId);
 return await grain.Increment();
});

app.UseFileServer();

await app.RunAsync();

Enabling OpenTelemetry

public static IHostApplicationBuilder ConfigureOpenTelemetry(this
IHostApplicationBuilder builder)
{
 builder.Logging.AddOpenTelemetry(logging =>
 {
 logging.IncludeFormattedMessage = true;
 logging.IncludeScopes = true;
 });

 builder.Services.AddOpenTelemetry()

https://learn.microsoft.com/en-us/dotnet/orleans/host/monitoring/

The Orleans Aspire integration supports a limited subset of Orleans providers today:

Clustering:
Redis
Azure Storage Tables

Persistence:
Redis
Azure Storage Tables
Azure Storage Blobs

Reminders:
Redis
Azure Storage Tables

Grain directory:
Redis
Azure Storage Tables

Streaming providers aren't supported as of Orleans version 8.1.0.

 .WithMetrics(metrics =>
 {
 metrics.AddAspNetCoreInstrumentation()
 .AddHttpClientInstrumentation()
 .AddRuntimeInstrumentation()
 .AddMeter("Microsoft.Orleans");
 })
 .WithTracing(tracing =>
 {
 tracing.AddSource("Microsoft.Orleans.Runtime");
 tracing.AddSource("Microsoft.Orleans.Application");

 tracing.AddAspNetCoreInstrumentation()
 .AddHttpClientInstrumentation();
 });

 builder.AddOpenTelemetryExporters();

 return builder;
}

Supported providers

Next steps
Microsoft Orleans documentation Explore the Orleans voting sample app

https://learn.microsoft.com/en-us/dotnet/orleans/
https://learn.microsoft.com/en-us/samples/dotnet/aspire-samples/orleans-voting-sample-app-on-aspire/

.NET Aspire PostgreSQL integration
Article • 02/07/2025

Includes: Hosting integration and Client integration

PostgreSQL is a powerful, open source object-relational database system with many
years of active development that has earned it a strong reputation for reliability, feature
robustness, and performance. The .NET Aspire PostgreSQL integration provides a way to
connect to existing PostgreSQL databases, or create new instances from .NET with the
docker.io/library/postgres container image .

The PostgreSQL hosting integration models various PostgreSQL resources as the
following types.

PostgresServerResource
PostgresDatabaseResource
PgAdminContainerResource
PgWebContainerResource

To access these types and APIs for expressing them as resources in your app host
project, install the 📦 Aspire.Hosting.PostgreSQL NuGet package:

.NET CLI

For more information, see dotnet add package or Manage package dependencies in
.NET applications.

In your app host project, call AddPostgres on the builder instance to add a PostgreSQL
server resource then call AddDatabase on the postgres instance to add a database
resource as shown in the following example:

C#

Hosting integration

.NET CLI

dotnet add package Aspire.Hosting.PostgreSQL

Add PostgreSQL server resource

https://www.postgresql.org/
https://www.postgresql.org/
https://hub.docker.com/_/postgres
https://hub.docker.com/_/postgres
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.postgresserverresource
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.postgresdatabaseresource
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.postgres.pgadmincontainerresource
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.postgres.pgwebcontainerresource
https://www.nuget.org/packages/Aspire.Hosting.PostgreSQL
https://www.nuget.org/packages/Aspire.Hosting.PostgreSQL
https://learn.microsoft.com/en-us/dotnet/core/tools/dotnet-add-package
https://learn.microsoft.com/en-us/dotnet/core/tools/dependencies
https://learn.microsoft.com/en-us/dotnet/core/tools/dependencies
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.postgresbuilderextensions.addpostgres
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.postgresbuilderextensions.adddatabase

When .NET Aspire adds a container image to the app host, as shown in the preceding
example with the docker.io/library/postgres image, it creates a new PostgreSQL server
instance on your local machine. A reference to your PostgreSQL server and your
PostgreSQL database instance (the postgresdb variable) are used to add a dependency
to the ExampleProject . The PostgreSQL server resource includes default credentials with
a username of "postgres" and randomly generated password using the
CreateDefaultPasswordParameter method.

The WithReference method configures a connection in the ExampleProject named
"messaging" . For more information, see Container resource lifecycle.

When adding PostgreSQL resources to the builder with the AddPostgres method, you
can chain calls to WithPgAdmin to add the dpage/pgadmin4 container. This container
is a cross-platform client for PostgreSQL databases, that serves a web-based admin
dashboard. Consider the following example:

C#

var builder = DistributedApplication.CreateBuilder(args);

var postgres = builder.AddPostgres("postgres");
var postgresdb = postgres.AddDatabase("postgresdb");

var exampleProject = builder.AddProject<Projects.ExampleProject>()
 .WithReference(postgresdb);

// After adding all resources, run the app...

 Tip

If you'd rather connect to an existing PostgreSQL server, call AddConnectionString
instead. For more information, see Reference existing resources.

Add PostgreSQL pgAdmin resource

var builder = DistributedApplication.CreateBuilder(args);

var postgres = builder.AddPostgres("postgres")
 .WithPgAdmin();

var postgresdb = postgres.AddDatabase("postgresdb");

var exampleProject = builder.AddProject<Projects.ExampleProject>()
 .WithReference(postgresdb);

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.parameterresourcebuilderextensions.createdefaultpasswordparameter
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.resourcebuilderextensions.withreference
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.postgresbuilderextensions.withpgadmin
https://www.pgadmin.org/
https://www.pgadmin.org/
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.parameterresourcebuilderextensions.addconnectionstring

The preceding code adds a container based on the docker.io/dpage/pgadmin4 image.
The container is used to manage the PostgreSQL server and database resources. The
WithPgAdmin method adds a container that serves a web-based admin dashboard for
PostgreSQL databases.

To configure the host port for the pgAdmin container, call the WithHostPort method on
the PostgreSQL server resource. The following example shows how to configure the host
port for the pgAdmin container:

C#

The preceding code adds and configures the host port for the pgAdmin container. The
host port is otherwise randomly assigned.

When adding PostgreSQL resources to the builder with the AddPostgres method, you
can chain calls to WithPgWeb to add the sosedoff/pgweb container. This container is
a cross-platform client for PostgreSQL databases, that serves a web-based admin
dashboard. Consider the following example:

C#

// After adding all resources, run the app...

Configure the pgAdmin host port

var builder = DistributedApplication.CreateBuilder(args);

var postgres = builder.AddPostgres("postgres")
 .WithPgAdmin(pgAdmin => pgAdmin.WithHostPort(5050));

var postgresdb = postgres.AddDatabase("postgresdb");

var exampleProject = builder.AddProject<Projects.ExampleProject>()
 .WithReference(postgresdb);

// After adding all resources, run the app...

Add PostgreSQL pgWeb resource

var builder = DistributedApplication.CreateBuilder(args);

var postgres = builder.AddPostgres("postgres")
 .WithPgWeb();

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.postgresbuilderextensions.withhostport
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.postgresbuilderextensions.withpgweb
https://sosedoff.github.io/pgweb/
https://sosedoff.github.io/pgweb/

The preceding code adds a container based on the docker.io/sosedoff/pgweb image. All
registered PostgresDatabaseResource instances are used to create a configuration file
per instance, and each config is bound to the pgweb container bookmark directory. For
more information, see PgWeb docs: Server connection bookmarks .

To configure the host port for the pgWeb container, call the WithHostPort method on
the PostgreSQL server resource. The following example shows how to configure the host
port for the pgAdmin container:

C#

The preceding code adds and configures the host port for the pgWeb container. The
host port is otherwise randomly assigned.

To add a data volume to the PostgreSQL server resource, call the WithDataVolume
method on the PostgreSQL server resource:

C#

var postgresdb = postgres.AddDatabase("postgresdb");

var exampleProject = builder.AddProject<Projects.ExampleProject>()
 .WithReference(postgresdb);

// After adding all resources, run the app...

Configure the pgWeb host port

var builder = DistributedApplication.CreateBuilder(args);

var postgres = builder.AddPostgres("postgres")
 .WithPgWeb(pgWeb => pgWeb.WithHostPort(5050));

var postgresdb = postgres.AddDatabase("postgresdb");

var exampleProject = builder.AddProject<Projects.ExampleProject>()
 .WithReference(postgresdb);

// After adding all resources, run the app...

Add PostgreSQL server resource with data volume

var builder = DistributedApplication.CreateBuilder(args);

var postgres = builder.AddPostgres("postgres")
 .WithDataVolume(isReadOnly: false);

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.postgresdatabaseresource
https://github.com/sosedoff/pgweb/wiki/Server-Connection-Bookmarks
https://github.com/sosedoff/pgweb/wiki/Server-Connection-Bookmarks
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.postgresbuilderextensions.withhostport
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.postgresbuilderextensions.withdatavolume

The data volume is used to persist the PostgreSQL server data outside the lifecycle of its
container. The data volume is mounted at the /var/lib/postgresql/data path in the
PostgreSQL server container and when a name parameter isn't provided, the name is
generated at random. For more information on data volumes and details on why they're
preferred over bind mounts, see Docker docs: Volumes .

To add a data bind mount to the PostgreSQL server resource, call the
WithDataBindMount method:

C#

Data bind mounts rely on the host machine's filesystem to persist the PostgreSQL server
data across container restarts. The data bind mount is mounted at the

var postgresdb = postgres.AddDatabase("postgresdb");

var exampleProject = builder.AddProject<Projects.ExampleProject>()
 .WithReference(postgresdb);

// After adding all resources, run the app...

Add PostgreSQL server resource with data bind mount

var builder = DistributedApplication.CreateBuilder(args);

var postgres = builder.AddPostgres("postgres")
 .WithDataBindMount(
 source: @"C:\PostgreSQL\Data",
 isReadOnly: false);

var postgresdb = postgres.AddDatabase("postgresdb");

var exampleProject = builder.AddProject<Projects.ExampleProject>()
 .WithReference(postgresdb);

// After adding all resources, run the app...

） Important

Data bind mounts have limited functionality compared to volumes , which
offer better performance, portability, and security, making them more suitable for
production environments. However, bind mounts allow direct access and
modification of files on the host system, ideal for development and testing where
real-time changes are needed.

https://docs.docker.com/engine/storage/volumes
https://docs.docker.com/engine/storage/volumes
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.postgresbuilderextensions.withdatabindmount
https://docs.docker.com/engine/storage/bind-mounts/
https://docs.docker.com/engine/storage/bind-mounts/
https://docs.docker.com/engine/storage/volumes/
https://docs.docker.com/engine/storage/volumes/

C:\PostgreSQL\Data on Windows (or /PostgreSQL/Data on Unix) path on the host
machine in the PostgreSQL server container. For more information on data bind mounts,
see Docker docs: Bind mounts .

To add an init bind mount to the PostgreSQL server resource, call the
WithInitBindMount method:

C#

The init bind mount relies on the host machine's filesystem to initialize the PostgreSQL
server database with the containers init folder. This folder is used for initialization,
running any executable shell scripts or .sql command files after the postgres-data folder
is created. The init bind mount is mounted at the C:\PostgreSQL\Init on Windows (or
/PostgreSQL/Init on Unix) path on the host machine in the PostgreSQL server
container.

When you want to explicitly provide the username and password used by the container
image, you can provide these credentials as parameters. Consider the following
alternative example:

C#

Add PostgreSQL server resource with init bind mount

var builder = DistributedApplication.CreateBuilder(args);

var postgres = builder.AddPostgres("postgres")
 .WithInitBindMount(@"C:\PostgreSQL\Init");

var postgresdb = postgres.AddDatabase("postgresdb");

var exampleProject = builder.AddProject<Projects.ExampleProject>()
 .WithReference(postgresdb);

// After adding all resources, run the app...

Add PostgreSQL server resource with parameters

var builder = DistributedApplication.CreateBuilder(args);

var username = builder.AddParameter("username", secret: true);
var password = builder.AddParameter("password", secret: true);

var postgres = builder.AddPostgres("postgres", username, password);
var postgresdb = postgres.AddDatabase("postgresdb");

https://docs.docker.com/engine/storage/bind-mounts
https://docs.docker.com/engine/storage/bind-mounts
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.postgresbuilderextensions.withinitbindmount

For more information on providing parameters, see External parameters.

The PostgreSQL hosting integration automatically adds a health check for the
PostgreSQL server resource. The health check verifies that the PostgreSQL server is
running and that a connection can be established to it.

The hosting integration relies on the 📦 AspNetCore.HealthChecks.Npgsql NuGet
package.

To get started with the .NET Aspire PostgreSQL client integration, install the 📦
Aspire.Npgsql NuGet package in the client-consuming project, that is, the project for
the application that uses the PostgreSQL client. The PostgreSQL client integration
registers an NpgsqlDataSource instance that you can use to interact with PostgreSQL.

.NET CLI

In the Program.cs file of your client-consuming project, call the AddNpgsqlDataSource
extension method on any IHostApplicationBuilder to register an NpgsqlDataSource for
use via the dependency injection container. The method takes a connection name
parameter.

C#

var exampleProject = builder.AddProject<Projects.ExampleProject>()
 .WithReference(postgresdb);

// After adding all resources, run the app...

Hosting integration health checks

Client integration

.NET CLI

dotnet add package Aspire.Npgsql

Add Npgsql client

builder.AddNpgsqlDataSource(connectionName: "postgresdb");

https://www.nuget.org/packages/AspNetCore.HealthChecks.Npgsql
https://www.nuget.org/packages/AspNetCore.HealthChecks.Npgsql
https://www.nuget.org/packages/Aspire.Npgsql
https://www.nuget.org/packages/Aspire.Npgsql
https://www.nuget.org/packages/Aspire.Npgsql
https://www.npgsql.org/doc/api/Npgsql.NpgsqlDataSource.html
https://www.npgsql.org/doc/api/Npgsql.NpgsqlDataSource.html
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.aspirepostgresqlnpgsqlextensions.addnpgsqldatasource
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.ihostapplicationbuilder

After adding NpgsqlDataSource to the builder, you can get the NpgsqlDataSource
instance using dependency injection. For example, to retrieve your data source object
from an example service define it as a constructor parameter and ensure the
ExampleService class is registered with the dependency injection container:

C#

For more information on dependency injection, see .NET dependency injection.

There might be situations where you want to register multiple NpgsqlDataSource
instances with different connection names. To register keyed Npgsql clients, call the
AddKeyedNpgsqlDataSource method:

C#

Then you can retrieve the NpgsqlDataSource instances using dependency injection. For
example, to retrieve the connection from an example service:

C#

 Tip

The connectionName parameter must match the name used when adding the
PostgreSQL server resource in the app host project. For more information, see Add
PostgreSQL server resource.

public class ExampleService(NpgsqlDataSource dataSource)
{
 // Use dataSource...
}

Add keyed Npgsql client

builder.AddKeyedNpgsqlDataSource(name: "chat");
builder.AddKeyedNpgsqlDataSource(name: "queue");

public class ExampleService(
 [FromKeyedServices("chat")] NpgsqlDataSource chatDataSource,
 [FromKeyedServices("queue")] NpgsqlDataSource queueDataSource)
{
 // Use data sources...
}

https://learn.microsoft.com/en-us/dotnet/core/extensions/dependency-injection
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.aspirepostgresqlnpgsqlextensions.addkeyednpgsqldatasource

For more information on keyed services, see .NET dependency injection: Keyed services.

The .NET Aspire PostgreSQL integration provides multiple configuration approaches and
options to meet the requirements and conventions of your project.

When using a connection string from the ConnectionStrings configuration section, you
can provide the name of the connection string when calling the AddNpgsqlDataSource
method:

C#

Then the connection string will be retrieved from the ConnectionStrings configuration
section:

JSON

For more information, see the ConnectionString .

The .NET Aspire PostgreSQL integration supports Microsoft.Extensions.Configuration. It
loads the NpgsqlSettings from appsettings.json or other configuration files by using the
Aspire:Npgsql key. Example appsettings.json that configures some of the options:

The following example shows an appsettings.json file that configures some of the
available options:

JSON

Configuration

Use a connection string

builder.AddNpgsqlDataSource("postgresdb");

{
 "ConnectionStrings": {
 "postgresdb": "Host=myserver;Database=postgresdb"
 }
}

Use configuration providers

{
 "Aspire": {

https://learn.microsoft.com/en-us/dotnet/core/extensions/dependency-injection#keyed-services
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.aspirepostgresqlnpgsqlextensions.addnpgsqldatasource
https://www.npgsql.org/doc/connection-string-parameters.html
https://www.npgsql.org/doc/connection-string-parameters.html
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration
https://learn.microsoft.com/en-us/dotnet/api/aspire.npgsql.npgsqlsettings

For the complete PostgreSQL client integration JSON schema, see
Aspire.Npgsql/ConfigurationSchema.json .

You can also pass the Action<NpgsqlSettings> configureSettings delegate to set up
some or all the options inline, for example to disable health checks:

C#

By default, .NET Aspire client integrations have health checks enabled for all services.
Similarly, many .NET Aspire hosting integrations also enable health check endpoints. For
more information, see:

.NET app health checks in C#
Health checks in ASP.NET Core

Adds the NpgSqlHealthCheck , which verifies that commands can be successfully
executed against the underlying Postgres database.
Integrates with the /health HTTP endpoint, which specifies all registered health
checks must pass for app to be considered ready to accept traffic

.NET Aspire integrations automatically set up Logging, Tracing, and Metrics
configurations, which are sometimes known as the pillars of observability. For more
information about integration observability and telemetry, see .NET Aspire integrations
overview. Depending on the backing service, some integrations may only support some

 "Npgsql": {
 "ConnectionString": "Host=myserver;Database=postgresdb",
 "DisableHealthChecks": false,
 "DisableTracing": true,
 "DisableMetrics": false
 }
 }
}

Use inline delegates

builder.AddNpgsqlDataSource(
 "postgresdb",
 static settings => settings.DisableHealthChecks = true);

Client integration health checks

Observability and telemetry

https://github.com/dotnet/aspire/blob/v9.1.0/src/Components/Aspire.Npgsql/ConfigurationSchema.json
https://github.com/dotnet/aspire/blob/v9.1.0/src/Components/Aspire.Npgsql/ConfigurationSchema.json
https://learn.microsoft.com/en-us/dotnet/core/diagnostics/diagnostic-health-checks
https://learn.microsoft.com/en-us/aspnet/core/host-and-deploy/health-checks
https://github.com/Xabaril/AspNetCore.Diagnostics.HealthChecks/blob/master/src/HealthChecks.NpgSql/NpgSqlHealthCheck.cs
https://github.com/Xabaril/AspNetCore.Diagnostics.HealthChecks/blob/master/src/HealthChecks.NpgSql/NpgSqlHealthCheck.cs

of these features. For example, some integrations support logging and tracing, but not
metrics. Telemetry features can also be disabled using the techniques presented in the
Configuration section.

The .NET Aspire PostgreSQL integration uses the following log categories:

Npgsql.Connection

Npgsql.Command

Npgsql.Transaction

Npgsql.Copy

Npgsql.Replication

Npgsql.Exception

The .NET Aspire PostgreSQL integration will emit the following tracing activities using
OpenTelemetry:

Npgsql

The .NET Aspire PostgreSQL integration will emit the following metrics using
OpenTelemetry:

Npgsql:
ec_Npgsql_bytes_written_per_second

ec_Npgsql_bytes_read_per_second

ec_Npgsql_commands_per_second

ec_Npgsql_total_commands

ec_Npgsql_current_commands

ec_Npgsql_failed_commands

ec_Npgsql_prepared_commands_ratio

ec_Npgsql_connection_pools

ec_Npgsql_multiplexing_average_commands_per_batch

ec_Npgsql_multiplexing_average_write_time_per_batch

Logging

Tracing

Metrics

PostgreSQL docs
.NET Aspire Azure PostgreSQL integration
.NET Aspire integrations
.NET Aspire GitHub repo

See also

https://www.npgsql.org/doc/api/Npgsql.html
https://www.npgsql.org/doc/api/Npgsql.html
https://github.com/dotnet/aspire
https://github.com/dotnet/aspire

.NET Aspire Qdrant integration
Article • 01/18/2025

Includes: Hosting integration and Client integration

Qdrant is an open-source vector similarity search engine that efficiently stores,
indexes, and searches large-scale vector data. It's commonly used in machine learning,
artificial intelligence, and data science applications.

Vector data encodes information as mathematical vectors, which are arrays of numbers
or coordinates. Machine learning and AI systems often use vectors to represent
unstructured objects like images, text, audio, or video. Each dimension in the vector
describes a specific characteristic of the object. By comparing them, systems can classify,
search, and identify clusters of objects.

In this article, you learn how to use the .NET Aspire Qdrant integration. The .NET Aspire
Qdrant integration enables you to connect to existing Qdrant databases or create new
instances with the qdrant/qdrant container image .

The Qdrant hosting integration models the server as the QdrantServerResource type. To
access this type and APIs, add the 📦 Aspire.Hosting.Qdrant NuGet package in the
app host project.

.NET CLI

For more information, see dotnet add package or Manage package dependencies in
.NET applications.

In your app host project, call AddQdrant to add and return a Qdrant resource builder.

C#

Hosting integration

.NET CLI

dotnet add package Aspire.Hosting.Qdrant

Add Qdrant resource

https://qdrant.tech/
https://qdrant.tech/
https://hub.docker.com/r/qdrant/qdrant
https://hub.docker.com/r/qdrant/qdrant
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.qdrantserverresource
https://www.nuget.org/packages/Aspire.Hosting.Qdrant
https://www.nuget.org/packages/Aspire.Hosting.Qdrant
https://learn.microsoft.com/en-us/dotnet/core/tools/dotnet-add-package
https://learn.microsoft.com/en-us/dotnet/core/tools/dependencies
https://learn.microsoft.com/en-us/dotnet/core/tools/dependencies
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.qdrantbuilderextensions.addqdrant

When .NET Aspire adds a container image to the app host, as shown in the preceding
example with the qdrant/qdrant image, it creates a new Qdrant instance on your local
machine. The resource is named qdrant and then added to the ExampleProject .

The WithReference method configures a connection in the ExampleProject named
qdrant .

To connect to Qdrant a client must pass the right API key. In the above code, when .NET
Aspire adds a Qdrant resource to your solution, it sets the API key to a random string. If

var builder = DistributedApplication.CreateBuilder(args);

var qdrant = builder.AddQdrant("qdrant")
 .WithLifetime(ContainerLifetime.Persistent);

builder.AddProject<Projects.ExampleProject>()
 .WithReference(qdrant)
 .WaitFor(qdrant);

// After adding all resources, run the app...

７ Note

The Qdrant container can be slow to start, so it's best to use a persistent lifetime to
avoid unnecessary restarts. For more information, see Container resource lifetime.

 Tip

If you'd rather connect to an existing Qdrant server, call AddConnectionString
instead. For more information, see Reference existing resources.

 Tip

The qdrant/qdrant container image includes a web UI that you can use to explore
your vectors and administer the database. To access this tool, start your .NET Aspire
solution and then, in the .NET Aspire dashboard, select the endpoint for the Qdrant
resource. In your browser's address bar, append /dashboard and press Enter .

Handling API keys and passing other parameters for the
Qdrant resource

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.resourcebuilderextensions.withreference
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.parameterresourcebuilderextensions.addconnectionstring

you want to use a specific API key instead, you can pass it as an apiKey parameter:

C#

Qdrant supports configuration-based default API keys by using the environment
variable QDRANT__SERVICE__API_KEY .

The preceding code gets a parameter to pass to the AddQdrant API, and internally
assigns the parameter to the QDRANT__SERVICE__API_KEY environment variable of the
Qdrant container. The apiKey parameter is usually specified as a user secret:

JSON

For more information, see External parameters.

To add a data volume to the Qdrant resource, call the WithDataVolume extension
method:

C#

var apiKey = builder.AddParameter("apiKey", secret: true);

var qdrant = builder.AddQdrant("qdrant", apiKey);

builder.AddProject<Projects.ExampleProject>()
 .WithReference(qdrant);

{
 "Parameters": {
 "apiKey": "Non-default-P@ssw0rd"
 }
}

Add Qdrant resource with data volume

var builder = DistributedApplication.CreateBuilder(args);

var qdrant = builder.AddQdrant("qdrant")
 .WithLifetime(ContainerLifetime.Persistent)
 .WithDataVolume();

builder.AddProject<Projects.ExampleProject>()
 .WithReference(qdrant)
 .WaitFor(qdrant);

// After adding all resources, run the app...

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.qdrantbuilderextensions.withdatavolume

The data volume is used to persist the Qdrant data outside the lifecycle of its container.
The data volume is mounted at the /qdrant/storage path in the Qdrant container and
when a name parameter isn't provided, the name is generated at random. For more
information on data volumes and details on why they're preferred over bind mounts,
see Docker docs: Volumes .

To add a data bind mount to the Qdrant resource, call the WithDataBindMount method:

C#

Data bind mounts rely on the host machine's filesystem to persist the Qdrant data
across container restarts. The data bind mount is mounted at the C:\Qdrant\Data folder
on Windows (or /Qdrant/Data on Unix) on the host machine in the Qdrant container. For
more information on data bind mounts, see Docker docs: Bind mounts .

The Qdrant hosting integration automatically adds a health check for the Qdrant
resource. The health check verifies that Qdrant is running and that a connection can be
established to it.

Add Qdrant resource with data bind mount

var builder = DistributedApplication.CreateBuilder(args);

var qdrant = builder.AddQdrant("qdrant")
 .WithLifetime(ContainerLifetime.Persistent)
 .WithDataBindMount(source: @"C:\Qdrant\Data");

builder.AddProject<Projects.ExampleProject>()
 .WithReference(qdrant)
 .WaitFor(qdrant);

// After adding all resources, run the app...

） Important

Data bind mounts have limited functionality compared to volumes , which
offer better performance, portability, and security, making them more suitable for
production environments. However, bind mounts allow direct access and
modification of files on the host system, ideal for development and testing where
real-time changes are needed.

Hosting integration health checks

https://docs.docker.com/engine/storage/volumes
https://docs.docker.com/engine/storage/volumes
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.qdrantbuilderextensions.withdatabindmount
https://docs.docker.com/engine/storage/bind-mounts
https://docs.docker.com/engine/storage/bind-mounts
https://docs.docker.com/engine/storage/bind-mounts/
https://docs.docker.com/engine/storage/bind-mounts/
https://docs.docker.com/engine/storage/volumes/
https://docs.docker.com/engine/storage/volumes/

To get started with the .NET Aspire Qdrant client integration, install the 📦
Aspire.Qdrant.Client NuGet package in the client-consuming project, that is, the
project for the application that uses the Qdrant client. The Qdrant client integration
registers a Qdrant.Client.QdrantClient instance that you can use to interact with
Qdrant vector data.

.NET CLI

In the Program.cs file of your client-consuming project, call the AddQdrantClient
extension method on any IHostApplicationBuilder to register a QdrantClient for use
through the dependency injection container. The method takes a connection name
parameter.

C#

You can then retrieve the QdrantClient instance using dependency injection. For
example, to retrieve the connection from an example service:

C#

Client integration

.NET CLI

dotnet add package Aspire.Qdrant.Client

Add a Qdrant client

builder.AddQdrantClient("qdrant");

 Tip

The connectionName parameter must match the name used when adding the
Qdrant resource in the app host project. In other words, when you call AddQdrant
and provide a name of qdrant that same name should be used when calling
AddQdrantClient . For more information, see Add Qdrant resource.

public class ExampleService(QdrantClient client)
{

https://www.nuget.org/packages/Aspire.Qdrant.Client
https://www.nuget.org/packages/Aspire.Qdrant.Client
https://www.nuget.org/packages/Aspire.Qdrant.Client
https://github.com/qdrant/qdrant-dotnet/
https://github.com/qdrant/qdrant-dotnet/
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.aspireqdrantextensions.addqdrantclient
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.ihostapplicationbuilder

For more information on dependency injection, see .NET dependency injection.

There might be situations where you want to register multiple QdrantClient instances
with different connection names. To register keyed Qdrant clients, call the
AddKeyedQdrantClient method:

C#

Then you can retrieve the QdrantClient instances using dependency injection. For
example, to retrieve the connections from an example service:

C#

For more information on keyed services, see .NET dependency injection: Keyed services.

The .NET Aspire Qdrant client integration provides multiple options to configure the
connection to Qdrant based on the requirements and conventions of your project.

When using a connection string from the ConnectionStrings configuration section, you
can provide the name of the connection string when calling builder.AddQdrantClient() :

C#

 // Use client...
}

Add keyed Qdrant client

builder.AddKeyedQdrantClient(name: "mainQdrant");
builder.AddKeyedQdrantClient(name: "loggingQdrant");

public class ExampleService(
 [FromKeyedServices("mainQdrant")] QdrantClient mainQdrantClient,
 [FromKeyedServices("loggingQdrant")] QdrantClient loggingQdrantClient)
{
 // Use clients...
}

Configuration

Use a connection string

https://learn.microsoft.com/en-us/dotnet/core/extensions/dependency-injection
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.aspireqdrantextensions.addkeyedqdrantclient
https://learn.microsoft.com/en-us/dotnet/core/extensions/dependency-injection#keyed-services

Then .NET Aspire retrieves the connection string from the ConnectionStrings
configuration section:

JSON

By default the QdrantClient uses the gRPC API endpoint.

The .NET Aspire Qdrant client integration supports Microsoft.Extensions.Configuration. It
loads the QdrantClientSettings from configuration by using the Aspire:Qdrant:Client
key. The following is an example of an appsettings.json that configures some of the
options:

JSON

For the complete Qdrant client integration JSON schema, see
Aspire.Qdrant.Client/ConfigurationSchema.json .

You can also pass the Action<QdrantClientSettings> configureSettings delegate to set
up some or all the options inline, for example to set the API key from code:

C#

builder.AddQdrantClient("qdrant");

{
 "ConnectionStrings": {
 "qdrant": "Endpoint=http://localhost:6334;Key=123456!@#$%"
 }
}

Use configuration providers

{
 "Aspire": {
 "Qdrant": {
 "Client": {
 "Endpoint": "http://localhost:6334/",
 "Key": "123456!@#$%"
 }
 }
 }
}

Use inline delegates

https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration
https://learn.microsoft.com/en-us/dotnet/api/aspire.qdrant.client.qdrantclientsettings
https://github.com/dotnet/aspire/blob/v9.1.0/src/Components/Aspire.Qdrant.Client/ConfigurationSchema.json
https://github.com/dotnet/aspire/blob/v9.1.0/src/Components/Aspire.Qdrant.Client/ConfigurationSchema.json

By default, .NET Aspire integrations enable health checks for all services. For more
information, see .NET Aspire integrations overview.

.NET Aspire integrations automatically set up Logging, Tracing, and Metrics
configurations, which are sometimes known as the pillars of observability. For more
information about integration observability and telemetry, see .NET Aspire integrations
overview. Depending on the backing service, some integrations may only support some
of these features. For example, some integrations support logging and tracing, but not
metrics. Telemetry features can also be disabled using the techniques presented in the
Configuration section.

The .NET Aspire Qdrant integration uses standard .NET logging, and you'll see log
entries from the following category:

Qdrant.Client

The .NET Aspire Qdrant integration doesn't currently emit tracing activities because they
are not supported by the Qdrant.Client library.

The .NET Aspire Qdrant integration doesn't currently emit metrics because they are not
supported by the Qdrant.Client library.

Qdrant

builder.AddQdrantClient(
 "qdrant",
 settings => settings.Key = "12345!@#$%");

Client integration health checks

Observability and telemetry

Logging

Tracing

Metrics

See also

https://qdrant.tech/
https://qdrant.tech/

Qdrant documentation
Qdrant GitHub repo
Qdrant .NET SDK
.NET Aspire integrations
.NET Aspire GitHub repo

https://qdrant.tech/documentation/quickstart/
https://qdrant.tech/documentation/quickstart/
https://github.com/qdrant/qdrant
https://github.com/qdrant/qdrant
https://github.com/qdrant/qdrant-dotnet
https://github.com/qdrant/qdrant-dotnet
https://github.com/dotnet/aspire
https://github.com/dotnet/aspire

.NET Aspire RabbitMQ integration
Article • 02/25/2025

Includes: Hosting integration and Client integration

RabbitMQ is a reliable messaging and streaming broker, which is easy to deploy on
cloud environments, on-premises, and on your local machine. The .NET Aspire
RabbitMQ integration enables you to connect to existing RabbitMQ instances, or create
new instances from .NET with the docker.io/library/rabbitmq container image .

The RabbitMQ hosting integration models a RabbitMQ server as the
RabbitMQServerResource type. To access this type and its APIs add the 📦
Aspire.Hosting.RabbitMQ NuGet package in the app host project.

.NET CLI

For more information, see dotnet add package or Manage package dependencies in
.NET applications.

In your app host project, call AddRabbitMQ on the builder instance to add a RabbitMQ
server resource:

C#

Hosting integration

.NET CLI

dotnet add package Aspire.Hosting.RabbitMQ

Add RabbitMQ server resource

var builder = DistributedApplication.CreateBuilder(args);

var rabbitmq = builder.AddRabbitMQ("messaging");

builder.AddProject<Projects.ExampleProject>()
 .WithReference(rabbitmq);

// After adding all resources, run the app...

https://www.rabbitmq.com/
https://www.rabbitmq.com/
https://hub.docker.com/_/rabbitmq
https://hub.docker.com/_/rabbitmq
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.rabbitmqserverresource
https://www.nuget.org/packages/Aspire.Hosting.RabbitMQ
https://www.nuget.org/packages/Aspire.Hosting.RabbitMQ
https://www.nuget.org/packages/Aspire.Hosting.RabbitMQ
https://learn.microsoft.com/en-us/dotnet/core/tools/dotnet-add-package
https://learn.microsoft.com/en-us/dotnet/core/tools/dependencies
https://learn.microsoft.com/en-us/dotnet/core/tools/dependencies
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.rabbitmqbuilderextensions.addrabbitmq

When .NET Aspire adds a container image to the app host, as shown in the preceding
example with the docker.io/library/rabbitmq image, it creates a new RabbitMQ server
instance on your local machine. A reference to your RabbitMQ server (the rabbitmq
variable) is added to the ExampleProject . The RabbitMQ server resource includes default
credentials with a username of "guest" and randomly generated password using the
CreateDefaultPasswordParameter method.

The WithReference method configures a connection in the ExampleProject named
"messaging" . For more information, see Container resource lifecycle.

To add the RabbitMQ management plugin to the RabbitMQ server resource, call the
WithManagementPlugin method:

C#

The RabbitMQ management plugin provides an HTTP-based API for management and
monitoring of your RabbitMQ server. .NET Aspire adds another container image
docker.io/library/rabbitmq-management to the app host that runs the management
plugin.

To add a data volume to the RabbitMQ server resource, call the WithDataVolume
method on the RabbitMQ server resource:

 Tip

If you'd rather connect to an existing RabbitMQ server, call AddConnectionString
instead. For more information, see Reference existing resources.

Add RabbitMQ server resource with management plugin

var builder = DistributedApplication.CreateBuilder(args);

var rabbitmq = builder.AddRabbitMQ("messaging")
 .WithManagementPlugin();

builder.AddProject<Projects.ExampleProject>()
 .WithReference(rabbitmq);

// After adding all resources, run the app...

Add RabbitMQ server resource with data volume

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.parameterresourcebuilderextensions.createdefaultpasswordparameter
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.resourcebuilderextensions.withreference
https://www.rabbitmq.com/docs/management
https://www.rabbitmq.com/docs/management
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.rabbitmqbuilderextensions.withmanagementplugin
https://hub.docker.com/_/rabbitmq
https://hub.docker.com/_/rabbitmq
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.rabbitmqbuilderextensions.withdatavolume
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.parameterresourcebuilderextensions.addconnectionstring

C#

The data volume is used to persist the RabbitMQ server data outside the lifecycle of its
container. The data volume is mounted at the /var/lib/rabbitmq path in the RabbitMQ
server container and when a name parameter isn't provided, the name is generated at
random. For more information on data volumes and details on why they're preferred
over bind mounts, see Docker docs: Volumes .

To add a data bind mount to the RabbitMQ server resource, call the
WithDataBindMount method:

C#

var builder = DistributedApplication.CreateBuilder(args);

var rabbitmq = builder.AddRabbitMQ("messaging")
 .WithDataVolume(isReadOnly: false);

builder.AddProject<Projects.ExampleProject>()
 .WithReference(rabbitmq);

// After adding all resources, run the app...

Add RabbitMQ server resource with data bind mount

var builder = DistributedApplication.CreateBuilder(args);

var rabbitmq = builder.AddRabbitMQ("messaging")
 .WithDataBindMount(
 source: @"C:\RabbitMQ\Data",
 isReadOnly: false);

builder.AddProject<Projects.ExampleProject>()
 .WithReference(rabbitmq);

// After adding all resources, run the app...

） Important

Data bind mounts have limited functionality compared to volumes , which
offer better performance, portability, and security, making them more suitable for
production environments. However, bind mounts allow direct access and
modification of files on the host system, ideal for development and testing where
real-time changes are needed.

https://docs.docker.com/engine/storage/volumes
https://docs.docker.com/engine/storage/volumes
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.rabbitmqbuilderextensions.withdatabindmount
https://docs.docker.com/engine/storage/bind-mounts/
https://docs.docker.com/engine/storage/bind-mounts/
https://docs.docker.com/engine/storage/volumes/
https://docs.docker.com/engine/storage/volumes/

Data bind mounts rely on the host machine's filesystem to persist the RabbitMQ server
data across container restarts. The data bind mount is mounted at the C:\RabbitMQ\Data
on Windows (or /RabbitMQ/Data on Unix) path on the host machine in the RabbitMQ
server container. For more information on data bind mounts, see Docker docs: Bind
mounts .

When you want to explicitly provide the username and password used by the container
image, you can provide these credentials as parameters. Consider the following
alternative example:

C#

For more information on providing parameters, see External parameters.

The RabbitMQ hosting integration automatically adds a health check for the RabbitMQ
server resource. The health check verifies that the RabbitMQ server is running and that a
connection can be established to it.

The hosting integration relies on the 📦 AspNetCore.HealthChecks.Rabbitmq NuGet
package.

To get started with the .NET Aspire RabbitMQ client integration, install the 📦
Aspire.RabbitMQ.Client NuGet package in the client-consuming project, that is, the
project for the application that uses the RabbitMQ client. The RabbitMQ client

Add RabbitMQ server resource with parameters

var builder = DistributedApplication.CreateBuilder(args);

var username = builder.AddParameter("username", secret: true);
var password = builder.AddParameter("password", secret: true);

var rabbitmq = builder.AddRabbitMQ("messaging", username, password);

builder.AddProject<Projects.ExampleProject>()
 .WithReference(rabbitmq);

// After adding all resources, run the app...

Hosting integration health checks

Client integration

https://docs.docker.com/engine/storage/bind-mounts
https://docs.docker.com/engine/storage/bind-mounts
https://docs.docker.com/engine/storage/bind-mounts
https://www.nuget.org/packages/AspNetCore.HealthChecks.Rabbitmq
https://www.nuget.org/packages/AspNetCore.HealthChecks.Rabbitmq
https://www.nuget.org/packages/Aspire.RabbitMQ.Client
https://www.nuget.org/packages/Aspire.RabbitMQ.Client
https://www.nuget.org/packages/Aspire.RabbitMQ.Client

integration registers an IConnection instance that you can use to interact with
RabbitMQ.

.NET CLI

In the Program.cs file of your client-consuming project, call the AddRabbitMQClient
extension method on any IHostApplicationBuilder to register an IConnection for use via
the dependency injection container. The method takes a connection name parameter.

C#

.NET CLI

dotnet add package Aspire.RabbitMQ.Client

） Important

The Aspire.RabbitMQ.Client NuGet package depends on the RabbitMQ.Client
NuGet package. With the release of version 7.0.0 of RabbitMQ.Client , a binary
breaking change was introduced. To address this, a new client integration package,
Aspire.RabbitMQ.Client.v7 , was created. The original Aspire.RabbitMQ.Client
package continues to reference RabbitMQ.Client version 6.8.1, ensuring
compatibility with previous versions of the RabbitMQ client integration. The new
Aspire.RabbitMQ.Client.v7 package references RabbitMQ.Client version 7.0.0. In a
future version of .NET Aspire, the Aspire.RabbitMQ.Client will be updated to
version 7.x and the Aspire.RabbitMQ.Client.v7 package will be deprecated. For
more information, see Migrating to RabbitMQ .NET Client 7.x .

Add RabbitMQ client

builder.AddRabbitMQClient(connectionName: "messaging");

 Tip

The connectionName parameter must match the name used when adding the
RabbitMQ server resource in the app host project. For more information, see Add
RabbitMQ server resource.

https://rabbitmq.github.io/rabbitmq-dotnet-client/api/RabbitMQ.Client.IConnection.html
https://rabbitmq.github.io/rabbitmq-dotnet-client/api/RabbitMQ.Client.IConnection.html
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.aspirerabbitmqextensions.addrabbitmqclient
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.ihostapplicationbuilder
https://github.com/rabbitmq/rabbitmq-dotnet-client/blob/main/v7-MIGRATION.md
https://github.com/rabbitmq/rabbitmq-dotnet-client/blob/main/v7-MIGRATION.md

You can then retrieve the IConnection instance using dependency injection. For
example, to retrieve the connection from an example service:

C#

For more information on dependency injection, see .NET dependency injection.

There might be situations where you want to register multiple IConnection instances
with different connection names. To register keyed RabbitMQ clients, call the
AddKeyedRabbitMQClient method:

C#

Then you can retrieve the IConnection instances using dependency injection. For
example, to retrieve the connection from an example service:

C#

For more information on keyed services, see .NET dependency injection: Keyed services.

The .NET Aspire RabbitMQ integration provides multiple options to configure the
connection based on the requirements and conventions of your project.

public class ExampleService(IConnection connection)
{
 // Use connection...
}

Add keyed RabbitMQ client

builder.AddKeyedRabbitMQClient(name: "chat");
builder.AddKeyedRabbitMQClient(name: "queue");

public class ExampleService(
 [FromKeyedServices("chat")] IConnection chatConnection,
 [FromKeyedServices("queue")] IConnection queueConnection)
{
 // Use connections...
}

Configuration

Use a connection string

https://learn.microsoft.com/en-us/dotnet/core/extensions/dependency-injection
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.aspirerabbitmqextensions.addkeyedrabbitmqclient
https://learn.microsoft.com/en-us/dotnet/core/extensions/dependency-injection#keyed-services

https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.aspirerabbitmqextensions.addrabbitmqclient
https://www.rabbitmq.com/uri-spec.html
https://www.rabbitmq.com/uri-spec.html
https://www.rabbitmq.com/uri-spec.html
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration
https://learn.microsoft.com/en-us/dotnet/api/aspire.rabbitmq.client.rabbitmqclientsettings

For the complete RabbitMQ client integration JSON schema, see
Aspire.RabbitMQ.Client/ConfigurationSchema.json .

Also you can pass the Action<RabbitMQClientSettings> configureSettings delegate to
set up some or all the options inline, for example to disable health checks from code:

C#

You can also set up the IConnectionFactory using the Action<IConnectionFactory>
configureConnectionFactory delegate parameter of the AddRabbitMQClient method. For
example to set the client provided name for connections:

C#

By default, .NET Aspire integrations enable health checks for all services. For more
information, see .NET Aspire integrations overview.

The .NET Aspire RabbitMQ integration:

Adds the health check when RabbitMQClientSettings.DisableHealthChecks is
false , which attempts to connect to and create a channel on the RabbitMQ server.
Integrates with the /health HTTP endpoint, which specifies all registered health
checks must pass for app to be considered ready to accept traffic.

.NET Aspire integrations automatically set up Logging, Tracing, and Metrics
configurations, which are sometimes known as the pillars of observability. For more
information about integration observability and telemetry, see .NET Aspire integrations

Use inline delegates

builder.AddRabbitMQClient(
 "messaging",
 static settings => settings.DisableHealthChecks = true);

builder.AddRabbitMQClient(
 "messaging",
 configureConnectionFactory:
 static factory => factory.ClientProvidedName = "MyApp");

Client integration health checks

Observability and telemetry

https://github.com/dotnet/aspire/blob/v9.1.0/src/Components/Aspire.RabbitMQ.Client/ConfigurationSchema.json
https://github.com/dotnet/aspire/blob/v9.1.0/src/Components/Aspire.RabbitMQ.Client/ConfigurationSchema.json
https://rabbitmq.github.io/rabbitmq-dotnet-client/api/RabbitMQ.Client.IConnectionFactory.html
https://rabbitmq.github.io/rabbitmq-dotnet-client/api/RabbitMQ.Client.IConnectionFactory.html
https://learn.microsoft.com/en-us/dotnet/api/aspire.rabbitmq.client.rabbitmqclientsettings.disablehealthchecks#aspire-rabbitmq-client-rabbitmqclientsettings-disablehealthchecks

overview. Depending on the backing service, some integrations might only support
some of these features. For example, some integrations support logging and tracing, but
not metrics. Telemetry features can also be disabled using the techniques presented in
the Configuration section.

The .NET Aspire RabbitMQ integration uses the following log categories:

RabbitMQ.Client

The .NET Aspire RabbitMQ integration emits the following tracing activities using
OpenTelemetry:

Aspire.RabbitMQ.Client

The .NET Aspire RabbitMQ integration currently doesn't support metrics by default.

Send messages with RabbitMQ in .NET Aspire
RabbitMQ .NET Client docs
.NET Aspire integrations
.NET Aspire GitHub repo

Logging

Tracing

Metrics

See also

https://learn.microsoft.com/en-us/training/modules/send-messages-rabbitmq-dotnet-aspire-app
https://rabbitmq.github.io/rabbitmq-dotnet-client
https://rabbitmq.github.io/rabbitmq-dotnet-client
https://github.com/dotnet/aspire
https://github.com/dotnet/aspire

Stack Exchange Redis® caching
overview
Article • 02/11/2025

With .NET Aspire, there are several ways to use caching in your applications. One
popular option is to use Stack Exchange Redis , which is a high-performance data store
that can be used to store frequently accessed data. This article provides an overview of
Stack Exchange Redis caching and links to resources that help you use it in your
applications.

To use multiple Redis caching integrations in your application, see Tutorial: Implement
caching with .NET Aspire integrations. If you're interested in using the Redis Cache for
Azure, see Tutorial: Deploy a .NET Aspire project with a Redis Cache to Azure.

The Redis serialization protocol (RESP) is a binary-safe protocol that Redis uses to
communicate with clients. RESP is a simple, text-based protocol that is easy to
implement and efficient to parse. RESP is used to send commands to Redis and receive
responses from Redis. RESP is designed to be fast and efficient, making it well-suited for
use in high-performance applications. For more information, see Redis serialization
protocol specification .

In addition to Redis itself, there are two well-maintained implementations of RESP for
.NET:

Garnet : Garnet is a remote cache-store from Microsoft Research that offers
strong performance (throughput and latency), scalability, storage, recovery, cluster
sharding, key migration, and replication features. Garnet can work with existing
Redis clients.
Valkey : A flexible distributed key-value datastore that supports both caching and
beyond caching workloads.

.NET Aspire lets you easily choose either the Redis, Garnet, or Valkey RESP protocol in
your applications based on your requirements. All of the .NET Aspire Redis client
integrations can be used with either the Redis, Garnet, or Valkey RESP protocol.

*

Redis serialization protocol (RESP)

Caching

https://stackexchange.github.io/StackExchange.Redis
https://stackexchange.github.io/StackExchange.Redis
https://redis.io/docs/latest/develop/reference/protocol-spec/
https://redis.io/docs/latest/develop/reference/protocol-spec/
https://redis.io/docs/latest/develop/reference/protocol-spec/
https://github.com/microsoft/Garnet
https://github.com/microsoft/Garnet
https://github.com/valkey-io/valkey
https://github.com/valkey-io/valkey

Caching is a technique used to store frequently accessed data in memory. This helps to
reduce the time it takes to retrieve the data from the original source, such as a database
or a web service. Caching can significantly improve the performance of an application by
reducing the number of requests made to the original source. To access the Redis
IConnectionMultiplexer object, you use the 📦 Aspire.StackExchange.Redis NuGet
package:

Distributed caching is a type of caching that stores data across multiple servers. This
allows the data to be shared between multiple instances of an application, which can
help to improve scalability and performance. Distributed caching can be used to store a
wide variety of data, such as session state, user profiles, and frequently accessed data. To
use Redis distributed caching in your application (the IDistributedCache interface), use
the 📦 Aspire.StackExchange.Redis.DistributedCaching NuGet package:

Output caching is a type of caching that stores the output of a web page or API
response. This allows the response to be served directly from the cache, rather than
generating it from scratch each time. Output caching can help to improve the
performance of a web application by reducing the time it takes to generate a response.
To use declarative Redis output caching with either the OutputCacheAttribute or the
CacheOutput method in your application, use the [📦
Aspire.StackExchange.Redis.OutputCaching]

(https://www.nuget.org/packages/Aspire.StackExchange.Redis.OutputCaching) NuGet
package:

.NET Aspire Stack Exchange Redis integration

.NET Aspire Stack Exchange Redis integration (Garnet)

.NET Aspire Stack Exchange Redis integration (Valkey)

Distributed caching

.NET Aspire Stack Exchange Redis distributed caching integration

.NET Aspire Stack Exchange Redis distributed caching integration (Garnet)

.NET Aspire Stack Exchange Redis distributed caching integration (Valkey)

Output caching

https://stackexchange.github.io/StackExchange.Redis/Basics.html
https://stackexchange.github.io/StackExchange.Redis/Basics.html
https://www.nuget.org/packages/Aspire.StackExchange.Redis
https://www.nuget.org/packages/Aspire.StackExchange.Redis
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.caching.distributed.idistributedcache
https://www.nuget.org/packages/Aspire.StackExchange.Redis.DistributedCaching
https://www.nuget.org/packages/Aspire.StackExchange.Redis.DistributedCaching
https://learn.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.outputcaching.outputcacheattribute
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.outputcacheconventionbuilderextensions.cacheoutput

Caching in .NET
Overview of Caching in ASP.NET Core
Distributed caching in .NET
Distributed caching in ASP.NET Core
Output caching middleware in ASP.NET Core

*: Redis is a registered trademark of Redis Ltd. Any rights therein are reserved to Redis
Ltd. Any use by Microsoft is for referential purposes only and does not indicate any
sponsorship, endorsement or affiliation between Redis and Microsoft. Return to top?

.NET Aspire Stack Exchange Redis output caching integration

.NET Aspire Stack Exchange Redis output caching integration (Garnet)

.NET Aspire Stack Exchange Redis output caching integration (Valkey)

See also

https://learn.microsoft.com/en-us/dotnet/core/extensions/caching
https://learn.microsoft.com/en-us/aspnet/core/performance/caching/overview
https://learn.microsoft.com/en-us/dotnet/core/extensions/caching#distributed-caching
https://learn.microsoft.com/en-us/aspnet/core/performance/caching/distributed
https://learn.microsoft.com/en-us/aspnet/core/performance/caching/output

.NET Aspire Redis® integration
Article • 02/11/2025

Includes: Hosting integration and Client integration

Redis is the world's fastest data platform for caching, vector search, and NoSQL
databases. The .NET Aspire Redis integration enables you to connect to existing Redis
instances, or create new instances from .NET with the docker.io/library/redis container
image .

The Redis hosting integration models a Redis resource as the RedisResource type. To
access this type and APIs for expressing them as resources in your app host project, add
the 📦 Aspire.Hosting.Redis NuGet package:

.NET CLI

For more information, see dotnet add package or Manage package dependencies in
.NET applications.

In your app host project, call AddRedis on the builder instance to add a Redis resource:

C#

*

Hosting integration

.NET CLI

dotnet add package Aspire.Hosting.Redis

Add Redis resource

var builder = DistributedApplication.CreateBuilder(args);

var cache = builder.AddRedis("cache");

builder.AddProject<Projects.ExampleProject>()
 .WithReference(cache);

// After adding all resources, run the app...

https://redis.io/
https://redis.io/
https://hub.docker.com/_/redis/
https://hub.docker.com/_/redis/
https://hub.docker.com/_/redis/
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.redisresource
https://www.nuget.org/packages/Aspire.Hosting.Redis
https://www.nuget.org/packages/Aspire.Hosting.Redis
https://learn.microsoft.com/en-us/dotnet/core/tools/dotnet-add-package
https://learn.microsoft.com/en-us/dotnet/core/tools/dependencies
https://learn.microsoft.com/en-us/dotnet/core/tools/dependencies
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.redisbuilderextensions.addredis

When .NET Aspire adds a container image to the app host, as shown in the preceding
example with the docker.io/Redis/Redis image, it creates a new Redis instance on your
local machine. A reference to your Redis resource (the cache variable) is added to the
ExampleProject .

The WithReference method configures a connection in the ExampleProject named
"cache" . For more information, see Container resource lifecycle.

To add the Redis Insights to the Redis resource, call the WithRedisInsight method:

C#

Redis Insights is a free graphical interface for analyzing Redis data across all operating
systems and Redis deployments with the help of our AI assistant, Redis Copilot. .NET
Aspire adds another container image docker.io/redis/redisinsight to the app host that
runs the commander app.

 Tip

If you'd rather connect to an existing Redis instance, call AddConnectionString
instead. For more information, see Reference existing resources.

Add Redis resource with Redis Insights

var builder = DistributedApplication.CreateBuilder(args);

var cache = builder.AddRedis("cache")
 .WithRedisInsight();

builder.AddProject<Projects.ExampleProject>()
 .WithReference(cache);

// After adding all resources, run the app...

７ Note

To configure the host port for the RedisInsightResource chain a call to the
WithHostPort API and provide the desired port number.

Add Redis resource with Redis Commander

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.resourcebuilderextensions.withreference
https://redis.io/insight/
https://redis.io/insight/
https://hub.docker.com/r/redis/redisinsight
https://hub.docker.com/r/redis/redisinsight
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.parameterresourcebuilderextensions.addconnectionstring

To add the Redis Commander to the Redis resource, call the WithRedisCommander
method:

C#

Redis Commander is a Node.js web application used to view, edit, and manage a Redis
Database. .NET Aspire adds another container image docker.io/rediscommander/redis-
commander to the app host that runs the commander app.

To add a data volume to the Redis resource, call the WithDataVolume method on the
Redis resource:

C#

The data volume is used to persist the Redis data outside the lifecycle of its container.
The data volume is mounted at the /data path in the Redis container and when a name
parameter isn't provided, the name is generated at random. For more information on

var builder = DistributedApplication.CreateBuilder(args);

var cache = builder.AddRedis("cache")
 .WithRedisCommander();

builder.AddProject<Projects.ExampleProject>()
 .WithReference(cache);

// After adding all resources, run the app...

 Tip

To configure the host port for the RedisCommanderResource chain a call to the
WithHostPort API and provide the desired port number.

Add Redis resource with data volume

var builder = DistributedApplication.CreateBuilder(args);

var cache = builder.AddRedis("cache")
 .WithDataVolume(isReadOnly: false);

builder.AddProject<Projects.ExampleProject>()
 .WithReference(cache);

// After adding all resources, run the app...

https://joeferner.github.io/redis-commander/
https://joeferner.github.io/redis-commander/
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.redisbuilderextensions.withrediscommander
https://hub.docker.com/r/rediscommander/redis-commander
https://hub.docker.com/r/rediscommander/redis-commander
https://hub.docker.com/r/rediscommander/redis-commander
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.redisbuilderextensions.withdatavolume
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.redis.rediscommanderresource
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.redisbuilderextensions.withhostport

data volumes and details on why they're preferred over bind mounts, see Docker docs:
Volumes .

To add a data bind mount to the Redis resource, call the WithDataBindMount method:

C#

Data bind mounts rely on the host machine's filesystem to persist the Redis data across
container restarts. The data bind mount is mounted at the C:\Redis\Data on Windows
(or /Redis/Data on Unix) path on the host machine in the Redis container. For more
information on data bind mounts, see Docker docs: Bind mounts .

To add persistence to the Redis resource, call the WithPersistence method with either
the data volume or data bind mount:

C#

Add Redis resource with data bind mount

var builder = DistributedApplication.CreateBuilder(args);

var cache = builder.AddRedis("cache")
 .WithDataBindMount(
 source: @"C:\Redis\Data",
 isReadOnly: false);

builder.AddProject<Projects.ExampleProject>()
 .WithReference(cache);

// After adding all resources, run the app...

） Important

Data bind mounts have limited functionality compared to volumes , which
offer better performance, portability, and security, making them more suitable for
production environments. However, bind mounts allow direct access and
modification of files on the host system, ideal for development and testing where
real-time changes are needed.

Add Redis resource with persistence

var builder = DistributedApplication.CreateBuilder(args);

var cache = builder.AddRedis("cache")

https://docs.docker.com/engine/storage/volumes
https://docs.docker.com/engine/storage/volumes
https://docs.docker.com/engine/storage/volumes
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.redisbuilderextensions.withdatabindmount
https://docs.docker.com/engine/storage/bind-mounts
https://docs.docker.com/engine/storage/bind-mounts
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.redisbuilderextensions.withpersistence
https://docs.docker.com/engine/storage/bind-mounts/
https://docs.docker.com/engine/storage/bind-mounts/
https://docs.docker.com/engine/storage/volumes/
https://docs.docker.com/engine/storage/volumes/

The preceding code adds persistence to the Redis resource by taking snapshots of the
Redis data at a specified interval and threshold. The interval is time between snapshot
exports and the keysChangedThreshold is the number of key change operations required
to trigger a snapshot. For more information on persistence, see Redis docs:
Persistence .

The Redis hosting integration automatically adds a health check for the appropriate
resource type. The health check verifies that the server is running and that a connection
can be established to it.

The hosting integration relies on the 📦 AspNetCore.HealthChecks.Redis NuGet
package.

To get started with the .NET Aspire Stack Exchange Redis client integration, install the
📦 Aspire.StackExchange.Redis NuGet package in the client-consuming project, that
is, the project for the application that uses the Redis client. The Redis client integration
registers an IConnectionMultiplexer instance that you can use to interact with Redis.

.NET CLI

 .WithDataVolume()
 .WithPersistence(
 interval: TimeSpan.FromMinutes(5),
 keysChangedThreshold: 100);

builder.AddProject<Projects.ExampleProject>()
 .WithReference(cache);

// After adding all resources, run the app...

Hosting integration health checks

Client integration

.NET CLI

dotnet add package Aspire.StackExchange.Redis

Add Redis client

https://redis.io/topics/persistence
https://redis.io/topics/persistence
https://redis.io/topics/persistence
https://www.nuget.org/packages/AspNetCore.HealthChecks.Redis
https://www.nuget.org/packages/AspNetCore.HealthChecks.Redis
https://www.nuget.org/packages/Aspire.StackExchange.Redis
https://www.nuget.org/packages/Aspire.StackExchange.Redis
https://stackexchange.github.io/StackExchange.Redis/Basics
https://stackexchange.github.io/StackExchange.Redis/Basics

In the Program.cs file of your client-consuming project, call the AddRedisClient
extension method on any IHostApplicationBuilder to register an IConnectionMultiplexer
for use via the dependency injection container. The method takes a connection name
parameter.

C#

You can then retrieve the IConnection instance using dependency injection. For
example, to retrieve the connection from an example service:

C#

For more information on dependency injection, see .NET dependency injection.

There might be situations where you want to register multiple IConnectionMultiplexer
instances with different connection names. To register keyed Redis clients, call the
AddKeyedRedisClient method:

C#

Then you can retrieve the IConnectionMultiplexer instances using dependency
injection. For example, to retrieve the connection from an example service:

C#

builder.AddRedisClient(connectionName: "cache");

 Tip

The connectionName parameter must match the name used when adding the Redis
resource in the app host project. For more information, see Add Redis resource.

public class ExampleService(IConnectionMultiplexer connectionMux)
{
 // Use connection multiplexer...
}

Add keyed Redis client

builder.AddKeyedRedisClient(name: "chat");
builder.AddKeyedRedisClient(name: "queue");

https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.aspireredisextensions.addredisclient
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.ihostapplicationbuilder
https://learn.microsoft.com/en-us/dotnet/core/extensions/dependency-injection
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.aspireredisextensions.addkeyedredisclient

For more information on keyed services, see .NET dependency injection: Keyed services.

The .NET Aspire Stack Exchange Redis client integration provides multiple options to
configure the Redis connection based on the requirements and conventions of your
project.

When using a connection string from the ConnectionStrings configuration section, you
can provide the name of the connection string when calling AddRedis:

C#

Then the connection string will be retrieved from the ConnectionStrings configuration
section:

JSON

For more information on how to format this connection string, see the Stack Exchange
Redis configuration docs .

The .NET Aspire Stack Exchange Redis integration supports
Microsoft.Extensions.Configuration. It loads the StackExchangeRedisSettings from

public class ExampleService(
 [FromKeyedServices("chat")] IConnectionMultiplexer chatConnectionMux,
 [FromKeyedServices("queue")] IConnectionMultiplexer queueConnectionMux)
{
 // Use connections...
}

Configuration

Use a connection string

builder.AddRedis("cache");

{
 "ConnectionStrings": {
 "cache": "localhost:6379"
 }
}

Use configuration providers

https://learn.microsoft.com/en-us/dotnet/core/extensions/dependency-injection#keyed-services
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.redisbuilderextensions.addredis
https://stackexchange.github.io/StackExchange.Redis/Configuration.html#basic-configuration-strings
https://stackexchange.github.io/StackExchange.Redis/Configuration.html#basic-configuration-strings
https://stackexchange.github.io/StackExchange.Redis/Configuration.html#basic-configuration-strings
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration
https://learn.microsoft.com/en-us/dotnet/api/aspire.stackexchange.redis.stackexchangeredissettings

configuration by using the Aspire:StackExchange:Redis key. Example appsettings.json
that configures some of the options:

JSON

For the complete Redis client integration JSON schema, see
Aspire.StackExchange.Redis/ConfigurationSchema.json .

You can also pass the Action<StackExchangeRedisSettings> delegate to set up some or
all the options inline, for example to configure DisableTracing :

C#

By default, .NET Aspire client integrations have health checks enabled for all services.
Similarly, many .NET Aspire hosting integrations also enable health check endpoints. For
more information, see:

.NET app health checks in C#
Health checks in ASP.NET Core

The .NET Aspire Stack Exchange Redis integration handles the following:

{
 "Aspire": {
 "StackExchange": {
 "Redis": {
 "ConfigurationOptions": {
 "ConnectTimeout": 3000,
 "ConnectRetry": 2
 },
 "DisableHealthChecks": true,
 "DisableTracing": false
 }
 }
 }
}

Use inline delegates

builder.AddRedisClient(
 "cache",
 static settings => settings.DisableTracing = true);

Client integration health checks

https://github.com/dotnet/aspire/blob/v9.1.0/src/Components/Aspire.StackExchange.Redis/ConfigurationSchema.json
https://github.com/dotnet/aspire/blob/v9.1.0/src/Components/Aspire.StackExchange.Redis/ConfigurationSchema.json
https://learn.microsoft.com/en-us/dotnet/core/diagnostics/diagnostic-health-checks
https://learn.microsoft.com/en-us/aspnet/core/host-and-deploy/health-checks

Adds the health check when StackExchangeRedisSettings.DisableHealthChecks is
false , which attempts to connect to the container instance.
Integrates with the /health HTTP endpoint, which specifies all registered health
checks must pass for app to be considered ready to accept traffic.

.NET Aspire integrations automatically set up Logging, Tracing, and Metrics
configurations, which are sometimes known as the pillars of observability. For more
information about integration observability and telemetry, see .NET Aspire integrations
overview. Depending on the backing service, some integrations may only support some
of these features. For example, some integrations support logging and tracing, but not
metrics. Telemetry features can also be disabled using the techniques presented in the
Configuration section.

The .NET Aspire Stack Exchange Redis integration uses the following log categories:

Aspire.StackExchange.Redis

The .NET Aspire Stack Exchange Redis integration will emit the following tracing
activities using OpenTelemetry:

OpenTelemetry.Instrumentation.StackExchangeRedis

The .NET Aspire Stack Exchange Redis integration currently doesn't support metrics by
default due to limitations with the StackExchange.Redis library.

Stack Exchange Redis docs
.NET Aspire integrations
.NET Aspire GitHub repo

*: Redis is a registered trademark of Redis Ltd. Any rights therein are reserved to Redis
Ltd. Any use by Microsoft is for referential purposes only and does not indicate any

Observability and telemetry

Logging

Tracing

Metrics

See also

https://learn.microsoft.com/en-us/dotnet/api/aspire.stackexchange.redis.stackexchangeredissettings.disablehealthchecks#aspire-stackexchange-redis-stackexchangeredissettings-disablehealthchecks
https://stackexchange.github.io/StackExchange.Redis/
https://stackexchange.github.io/StackExchange.Redis/
https://github.com/dotnet/aspire
https://github.com/dotnet/aspire

sponsorship, endorsement or affiliation between Redis and Microsoft. Return to top?

.NET Aspire Redis® distributed caching
integration
Article • 02/11/2025

Includes: Hosting integration and Client integration

Learn how to use the .NET Aspire Redis distributed caching integration. The
Aspire.StackExchange.Redis.DistributedCaching library is used to register an
IDistributedCache provider backed by a

https://stackexchange.github.io/StackExchange.Redis/Basics
https://stackexchange.github.io/StackExchange.Redis/Basics
https://redis.io/
https://redis.io/
https://hub.docker.com/_/redis/
https://hub.docker.com/_/redis/
https://hub.docker.com/_/redis/
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.redisresource
https://www.nuget.org/packages/Aspire.Hosting.Redis
https://www.nuget.org/packages/Aspire.Hosting.Redis
https://learn.microsoft.com/en-us/dotnet/core/tools/dotnet-add-package
https://learn.microsoft.com/en-us/dotnet/core/tools/dependencies
https://learn.microsoft.com/en-us/dotnet/core/tools/dependencies
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.redisbuilderextensions.addredis

When .NET Aspire adds a container image to the app host, as shown in the preceding
example with the docker.io/Redis/Redis image, it creates a new Redis instance on your
local machine. A reference to your Redis resource (the cache variable) is added to the
ExampleProject .

The WithReference method configures a connection in the ExampleProject named
"cache" . For more information, see Container resource lifecycle.

To add the Redis Insights to the Redis resource, call the WithRedisInsight method:

C#

Redis Insights is a free graphical interface for analyzing Redis data across all operating
systems and Redis deployments with the help of our AI assistant, Redis Copilot. .NET
Aspire adds another container image docker.io/redis/redisinsight to the app host that
runs the commander app.

 Tip

If you'd rather connect to an existing Redis instance, call AddConnectionString
instead. For more information, see Reference existing resources.

Add Redis resource with Redis Insights

var builder = DistributedApplication.CreateBuilder(args);

var cache = builder.AddRedis("cache")
 .WithRedisInsight();

builder.AddProject<Projects.ExampleProject>()
 .WithReference(cache);

// After adding all resources, run the app...

７ Note

To configure the host port for the RedisInsightResource chain a call to the
WithHostPort API and provide the desired port number.

Add Redis resource with Redis Commander

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.resourcebuilderextensions.withreference
https://redis.io/insight/
https://redis.io/insight/
https://hub.docker.com/r/redis/redisinsight
https://hub.docker.com/r/redis/redisinsight
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.parameterresourcebuilderextensions.addconnectionstring

To add the Redis Commander to the Redis resource, call the WithRedisCommander
method:

C#

Redis Commander is a Node.js web application used to view, edit, and manage a Redis
Database. .NET Aspire adds another container image docker.io/rediscommander/redis-
commander to the app host that runs the commander app.

To add a data volume to the Redis resource, call the WithDataVolume method on the
Redis resource:

C#

The data volume is used to persist the Redis data outside the lifecycle of its container.
The data volume is mounted at the /data path in the Redis container and when a name
parameter isn't provided, the name is generated at random. For more information on

var builder = DistributedApplication.CreateBuilder(args);

var cache = builder.AddRedis("cache")
 .WithRedisCommander();

builder.AddProject<Projects.ExampleProject>()
 .WithReference(cache);

// After adding all resources, run the app...

 Tip

To configure the host port for the RedisCommanderResource chain a call to the
WithHostPort API and provide the desired port number.

Add Redis resource with data volume

var builder = DistributedApplication.CreateBuilder(args);

var cache = builder.AddRedis("cache")
 .WithDataVolume(isReadOnly: false);

builder.AddProject<Projects.ExampleProject>()
 .WithReference(cache);

// After adding all resources, run the app...

https://joeferner.github.io/redis-commander/
https://joeferner.github.io/redis-commander/
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.redisbuilderextensions.withrediscommander
https://hub.docker.com/r/rediscommander/redis-commander
https://hub.docker.com/r/rediscommander/redis-commander
https://hub.docker.com/r/rediscommander/redis-commander
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.redisbuilderextensions.withdatavolume
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.redis.rediscommanderresource
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.redisbuilderextensions.withhostport

data volumes and details on why they're preferred over bind mounts, see Docker docs:
Volumes .

To add a data bind mount to the Redis resource, call the WithDataBindMount method:

C#

Data bind mounts rely on the host machine's filesystem to persist the Redis data across
container restarts. The data bind mount is mounted at the C:\Redis\Data on Windows
(or /Redis/Data on Unix) path on the host machine in the Redis container. For more
information on data bind mounts, see Docker docs: Bind mounts .

To add persistence to the Redis resource, call the WithPersistence method with either
the data volume or data bind mount:

C#

Add Redis resource with data bind mount

var builder = DistributedApplication.CreateBuilder(args);

var cache = builder.AddRedis("cache")
 .WithDataBindMount(
 source: @"C:\Redis\Data",
 isReadOnly: false);

builder.AddProject<Projects.ExampleProject>()
 .WithReference(cache);

// After adding all resources, run the app...

） Important

Data bind mounts have limited functionality compared to volumes , which
offer better performance, portability, and security, making them more suitable for
production environments. However, bind mounts allow direct access and
modification of files on the host system, ideal for development and testing where
real-time changes are needed.

Add Redis resource with persistence

var builder = DistributedApplication.CreateBuilder(args);

var cache = builder.AddRedis("cache")

https://docs.docker.com/engine/storage/volumes
https://docs.docker.com/engine/storage/volumes
https://docs.docker.com/engine/storage/volumes
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.redisbuilderextensions.withdatabindmount
https://docs.docker.com/engine/storage/bind-mounts
https://docs.docker.com/engine/storage/bind-mounts
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.redisbuilderextensions.withpersistence
https://docs.docker.com/engine/storage/bind-mounts/
https://docs.docker.com/engine/storage/bind-mounts/
https://docs.docker.com/engine/storage/volumes/
https://docs.docker.com/engine/storage/volumes/

The preceding code adds persistence to the Redis resource by taking snapshots of the
Redis data at a specified interval and threshold. The interval is time between snapshot
exports and the keysChangedThreshold is the number of key change operations required
to trigger a snapshot. For more information on persistence, see Redis docs:
Persistence .

The Redis hosting integration automatically adds a health check for the appropriate
resource type. The health check verifies that the server is running and that a connection
can be established to it.

The hosting integration relies on the 📦 AspNetCore.HealthChecks.Redis NuGet
package.

To get started with the .NET Aspire Redis distributed caching integration, install the 📦
Aspire.StackExchange.Redis.DistributedCaching NuGet package in the client-
consuming project, i.e., the project for the application that uses the Redis distributed
caching client. The Redis client integration registers an IDistributedCache instance that
you can use to interact with Redis.

.NET CLI

 .WithDataVolume()
 .WithPersistence(
 interval: TimeSpan.FromMinutes(5),
 keysChangedThreshold: 100);

builder.AddProject<Projects.ExampleProject>()
 .WithReference(cache);

// After adding all resources, run the app...

Hosting integration health checks

Client integration

.NET CLI

dotnet add package Aspire.StackExchange.Redis.DistributedCaching

Add Redis client

https://redis.io/topics/persistence
https://redis.io/topics/persistence
https://redis.io/topics/persistence
https://www.nuget.org/packages/AspNetCore.HealthChecks.Redis
https://www.nuget.org/packages/AspNetCore.HealthChecks.Redis
https://www.nuget.org/packages/Aspire.StackExchange.Redis.DistributedCaching
https://www.nuget.org/packages/Aspire.StackExchange.Redis.DistributedCaching
https://www.nuget.org/packages/Aspire.StackExchange.Redis.DistributedCaching
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.caching.distributed.idistributedcache

In the Program.cs file of your client-consuming project, call the
AddRedisDistributedCache extension to register the required services for distributed
caching and add a IDistributedCache for use via the dependency injection container.

C#

You can then retrieve the IDistributedCache instance using dependency injection. For
example, to retrieve the cache from a service:

C#

For more information on dependency injection, see .NET dependency injection.

There might be situations where you want to register multiple IDistributedCache
instances with different connection names. To register keyed Redis clients, call the
AddKeyedRedisDistributedCache method:

C#

Then you can retrieve the IDistributedCache instances using dependency injection. For
example, to retrieve the connection from an example service:

C#

builder.AddRedisDistributedCache(connectionName: "cache");

 Tip

The connectionName parameter must match the name used when adding the Redis
resource in the app host project. For more information, see Add Redis resource.

public class ExampleService(IDistributedCache cache)
{
 // Use cache...
}

Add keyed Redis client

builder.AddKeyedRedisDistributedCache(name: "chat");
builder.AddKeyedRedisDistributedCache(name: "product");

public class ExampleService(
 [FromKeyedServices("chat")] IDistributedCache chatCache,

https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.aspireredisdistributedcacheextensions.addredisdistributedcache
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.caching.distributed.idistributedcache
https://learn.microsoft.com/en-us/dotnet/core/extensions/dependency-injection
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.aspireredisdistributedcacheextensions.addkeyedredisdistributedcache

For more information on keyed services, see .NET dependency injection: Keyed services.

The .NET Aspire Redis distributed caching integration provides multiple options to
configure the Redis connection based on the requirements and conventions of your
project.

When using a connection string from the ConnectionStrings configuration section, you
can provide the name of the connection string when calling
builder.AddRedisDistributedCache :

C#

And then the connection string will be retrieved from the ConnectionStrings
configuration section:

JSON

For more information on how to format this connection string, see the Stack Exchange
Redis configuration docs .

The .NET Aspire Stack Exchange Redis distributed caching integration supports
Microsoft.Extensions.Configuration. It loads the StackExchangeRedisSettings from
configuration by using the Aspire:StackExchange:Redis key. Example appsettings.json
that configures some of the options:

 [FromKeyedServices("product")] IDistributedCache productCache)
{
 // Use caches...
}

Configuration

Use a connection string

builder.AddRedisDistributedCache("cache");

{
 "ConnectionStrings": {
 "cache": "localhost:6379"
 }
}

Use configuration providers

https://learn.microsoft.com/en-us/dotnet/core/extensions/dependency-injection#keyed-services
https://stackexchange.github.io/StackExchange.Redis/Configuration.html#basic-configuration-strings
https://stackexchange.github.io/StackExchange.Redis/Configuration.html#basic-configuration-strings
https://stackexchange.github.io/StackExchange.Redis/Configuration.html#basic-configuration-strings
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration
https://learn.microsoft.com/en-us/dotnet/api/aspire.stackexchange.redis.stackexchangeredissettings

JSON

For the complete Redis distributed caching client integration JSON schema, see
Aspire.StackExchange.Redis.DistributedCaching/ConfigurationSchema.json .

You can also pass the Action<StackExchangeRedisSettings> delegate to set up some or
all the options inline, for example to configure DisableTracing :

C#

You can also set up the ConfigurationOptions using the Action<ConfigurationOptions>
configureOptions delegate parameter of the AddRedisDistributedCache method. For
example to set the connection timeout:

C#

{
 "Aspire": {
 "StackExchange": {
 "Redis": {
 "ConfigurationOptions": {
 "ConnectTimeout": 3000,
 "ConnectRetry": 2
 },
 "DisableHealthChecks": true,
 "DisableTracing": false
 }
 }
 }
}

Use inline delegates

builder.AddRedisDistributedCache(
 "cache",
 settings => settings.DisableTracing = true);

builder.AddRedisDistributedCache(
 "cache",
 null,
 static options => options.ConnectTimeout = 3_000);

Client integration health checks

https://github.com/dotnet/aspire/blob/v9.1.0/src/Components/Aspire.StackExchange.Redis.DistributedCaching/ConfigurationSchema.json
https://github.com/dotnet/aspire/blob/v9.1.0/src/Components/Aspire.StackExchange.Redis.DistributedCaching/ConfigurationSchema.json
https://stackexchange.github.io/StackExchange.Redis/Configuration.html#configuration-options
https://stackexchange.github.io/StackExchange.Redis/Configuration.html#configuration-options

By default, .NET Aspire client integrations have health checks enabled for all services.
Similarly, many .NET Aspire hosting integrations also enable health check endpoints. For
more information, see:

.NET app health checks in C#
Health checks in ASP.NET Core

The .NET Aspire Redis distributed caching integration handles the following:

Adds the health check when StackExchangeRedisSettings.DisableHealthChecks is
false , which attempts to connect to the container instance.
Integrates with the /health HTTP endpoint, which specifies all registered health
checks must pass for app to be considered ready to accept traffic.

.NET Aspire integrations automatically set up Logging, Tracing, and Metrics
configurations, which are sometimes known as the pillars of observability. For more
information about integration observability and telemetry, see .NET Aspire integrations
overview. Depending on the backing service, some integrations may only support some
of these features. For example, some integrations support logging and tracing, but not
metrics. Telemetry features can also be disabled using the techniques presented in the
Configuration section.

The .NET Aspire Redis distributed caching integration uses the following Log categories:

Aspire.StackExchange.Redis

Microsoft.Extensions.Caching.StackExchangeRedis

The .NET Aspire Redis distributed caching integration will emit the following Tracing
activities using OpenTelemetry:

OpenTelemetry.Instrumentation.StackExchangeRedis

The .NET Aspire Redis Distributed caching integration currently doesn't support metrics
by default due to limitations with the StackExchange.Redis library.

Observability and telemetry

Logging

Tracing

Metrics

https://learn.microsoft.com/en-us/dotnet/core/diagnostics/diagnostic-health-checks
https://learn.microsoft.com/en-us/aspnet/core/host-and-deploy/health-checks
https://learn.microsoft.com/en-us/dotnet/api/aspire.stackexchange.redis.stackexchangeredissettings.disablehealthchecks#aspire-stackexchange-redis-stackexchangeredissettings-disablehealthchecks

Stack Exchange Redis docs
.NET Aspire integrations
.NET Aspire GitHub repo

*: Redis is a registered trademark of Redis Ltd. Any rights therein are reserved to Redis
Ltd. Any use by Microsoft is for referential purposes only and does not indicate any
sponsorship, endorsement or affiliation between Redis and Microsoft. Return to top?

See also

https://stackexchange.github.io/StackExchange.Redis/
https://stackexchange.github.io/StackExchange.Redis/
https://github.com/dotnet/aspire
https://github.com/dotnet/aspire

.NET Aspire Redis® output caching
integration
Article • 02/11/2025

Includes: Hosting integration and Client integration

Learn how to use the .NET Aspire Redis output caching integration. The
Aspire.StackExchange.Redis.OutputCaching client integration is used to register an
ASP.NET Core Output Caching provider backed by a Redis server with the
docker.io/library/redis container image .

The Redis hosting integration models a Redis resource as the RedisResource type. To
access this type and APIs for expressing them as resources in your app host project, add
the 📦 Aspire.Hosting.Redis NuGet package:

.NET CLI

For more information, see dotnet add package or Manage package dependencies in
.NET applications.

In your app host project, call AddRedis on the builder instance to add a Redis resource:

C#

*

Hosting integration

.NET CLI

dotnet add package Aspire.Hosting.Redis

Add Redis resource

var builder = DistributedApplication.CreateBuilder(args);

var cache = builder.AddRedis("cache");

builder.AddProject<Projects.ExampleProject>()
 .WithReference(cache);

// After adding all resources, run the app...

https://learn.microsoft.com/en-us/aspnet/core/performance/caching/output
https://redis.io/
https://redis.io/
https://hub.docker.com/_/redis/
https://hub.docker.com/_/redis/
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.redisresource
https://www.nuget.org/packages/Aspire.Hosting.Redis
https://www.nuget.org/packages/Aspire.Hosting.Redis
https://learn.microsoft.com/en-us/dotnet/core/tools/dotnet-add-package
https://learn.microsoft.com/en-us/dotnet/core/tools/dependencies
https://learn.microsoft.com/en-us/dotnet/core/tools/dependencies
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.redisbuilderextensions.addredis

When .NET Aspire adds a container image to the app host, as shown in the preceding
example with the docker.io/Redis/Redis image, it creates a new Redis instance on your
local machine. A reference to your Redis resource (the cache variable) is added to the
ExampleProject .

The WithReference method configures a connection in the ExampleProject named
"cache" . For more information, see Container resource lifecycle.

To add the Redis Insights to the Redis resource, call the WithRedisInsight method:

C#

Redis Insights is a free graphical interface for analyzing Redis data across all operating
systems and Redis deployments with the help of our AI assistant, Redis Copilot. .NET
Aspire adds another container image docker.io/redis/redisinsight to the app host that
runs the commander app.

 Tip

If you'd rather connect to an existing Redis instance, call AddConnectionString
instead. For more information, see Reference existing resources.

Add Redis resource with Redis Insights

var builder = DistributedApplication.CreateBuilder(args);

var cache = builder.AddRedis("cache")
 .WithRedisInsight();

builder.AddProject<Projects.ExampleProject>()
 .WithReference(cache);

// After adding all resources, run the app...

７ Note

To configure the host port for the RedisInsightResource chain a call to the
WithHostPort API and provide the desired port number.

Add Redis resource with Redis Commander

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.resourcebuilderextensions.withreference
https://redis.io/insight/
https://redis.io/insight/
https://hub.docker.com/r/redis/redisinsight
https://hub.docker.com/r/redis/redisinsight
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.parameterresourcebuilderextensions.addconnectionstring

To add the Redis Commander to the Redis resource, call the WithRedisCommander
method:

C#

Redis Commander is a Node.js web application used to view, edit, and manage a Redis
Database. .NET Aspire adds another container image docker.io/rediscommander/redis-
commander to the app host that runs the commander app.

To add a data volume to the Redis resource, call the WithDataVolume method on the
Redis resource:

C#

The data volume is used to persist the Redis data outside the lifecycle of its container.
The data volume is mounted at the /data path in the Redis container and when a name
parameter isn't provided, the name is generated at random. For more information on

var builder = DistributedApplication.CreateBuilder(args);

var cache = builder.AddRedis("cache")
 .WithRedisCommander();

builder.AddProject<Projects.ExampleProject>()
 .WithReference(cache);

// After adding all resources, run the app...

 Tip

To configure the host port for the RedisCommanderResource chain a call to the
WithHostPort API and provide the desired port number.

Add Redis resource with data volume

var builder = DistributedApplication.CreateBuilder(args);

var cache = builder.AddRedis("cache")
 .WithDataVolume(isReadOnly: false);

builder.AddProject<Projects.ExampleProject>()
 .WithReference(cache);

// After adding all resources, run the app...

https://joeferner.github.io/redis-commander/
https://joeferner.github.io/redis-commander/
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.redisbuilderextensions.withrediscommander
https://hub.docker.com/r/rediscommander/redis-commander
https://hub.docker.com/r/rediscommander/redis-commander
https://hub.docker.com/r/rediscommander/redis-commander
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.redisbuilderextensions.withdatavolume
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.redis.rediscommanderresource
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.redisbuilderextensions.withhostport

data volumes and details on why they're preferred over bind mounts, see Docker docs:
Volumes .

To add a data bind mount to the Redis resource, call the WithDataBindMount method:

C#

Data bind mounts rely on the host machine's filesystem to persist the Redis data across
container restarts. The data bind mount is mounted at the C:\Redis\Data on Windows
(or /Redis/Data on Unix) path on the host machine in the Redis container. For more
information on data bind mounts, see Docker docs: Bind mounts .

To add persistence to the Redis resource, call the WithPersistence method with either
the data volume or data bind mount:

C#

Add Redis resource with data bind mount

var builder = DistributedApplication.CreateBuilder(args);

var cache = builder.AddRedis("cache")
 .WithDataBindMount(
 source: @"C:\Redis\Data",
 isReadOnly: false);

builder.AddProject<Projects.ExampleProject>()
 .WithReference(cache);

// After adding all resources, run the app...

） Important

Data bind mounts have limited functionality compared to volumes , which
offer better performance, portability, and security, making them more suitable for
production environments. However, bind mounts allow direct access and
modification of files on the host system, ideal for development and testing where
real-time changes are needed.

Add Redis resource with persistence

var builder = DistributedApplication.CreateBuilder(args);

var cache = builder.AddRedis("cache")

https://docs.docker.com/engine/storage/volumes
https://docs.docker.com/engine/storage/volumes
https://docs.docker.com/engine/storage/volumes
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.redisbuilderextensions.withdatabindmount
https://docs.docker.com/engine/storage/bind-mounts
https://docs.docker.com/engine/storage/bind-mounts
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.redisbuilderextensions.withpersistence
https://docs.docker.com/engine/storage/bind-mounts/
https://docs.docker.com/engine/storage/bind-mounts/
https://docs.docker.com/engine/storage/volumes/
https://docs.docker.com/engine/storage/volumes/

The preceding code adds persistence to the Redis resource by taking snapshots of the
Redis data at a specified interval and threshold. The interval is time between snapshot
exports and the keysChangedThreshold is the number of key change operations required
to trigger a snapshot. For more information on persistence, see Redis docs:
Persistence .

The Redis hosting integration automatically adds a health check for the appropriate
resource type. The health check verifies that the server is running and that a connection
can be established to it.

The hosting integration relies on the 📦 AspNetCore.HealthChecks.Redis NuGet
package.

To get started with the .NET Aspire Stack Exchange Redis output caching client
integration, install the 📦 Aspire.StackExchange.Redis.OutputCaching NuGet package
in the client-consuming project, that is, the project for the application that uses the
output caching client. The Redis output caching client integration registers services
required for enabling CacheOutput method calls and [OutputCache] attribute usage to
rely on Redis as its caching mechanism.

.NET CLI

 .WithDataVolume()
 .WithPersistence(
 interval: TimeSpan.FromMinutes(5),
 keysChangedThreshold: 100);

builder.AddProject<Projects.ExampleProject>()
 .WithReference(cache);

// After adding all resources, run the app...

Hosting integration health checks

Client integration

.NET CLI

dotnet add package Aspire.StackExchange.Redis.OutputCaching

Add output caching

https://redis.io/topics/persistence
https://redis.io/topics/persistence
https://redis.io/topics/persistence
https://www.nuget.org/packages/AspNetCore.HealthChecks.Redis
https://www.nuget.org/packages/AspNetCore.HealthChecks.Redis
https://www.nuget.org/packages/Aspire.StackExchange.Redis.OutputCaching
https://www.nuget.org/packages/Aspire.StackExchange.Redis.OutputCaching
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.outputcacheconventionbuilderextensions.cacheoutput
https://learn.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.outputcaching.outputcacheattribute

In the Program.cs file of your client-consuming project, call the AddRedisOutputCache
extension method on any IHostApplicationBuilder to register the required services for
output caching.

C#

Add the middleware to the request processing pipeline by calling
UseOutputCache(IApplicationBuilder):

C#

For minimal API apps, configure an endpoint to do caching by calling CacheOutput, or
by applying the OutputCacheAttribute, as shown in the following examples:

C#

For apps with controllers, apply the [OutputCache] attribute to the action method. For
Razor Pages apps, apply the attribute to the Razor page class.

The .NET Aspire Stack Exchange Redis output caching integration provides multiple
options to configure the Redis connection based on the requirements and conventions
of your project.

builder.AddRedisOutputCache(connectionName: "cache");

 Tip

The connectionName parameter must match the name used when adding the Redis
resource in the app host project. For more information, see Add Redis resource.

var app = builder.Build();

app.UseOutputCache();

app.MapGet("/cached", () => "Hello world!")
 .CacheOutput();

app.MapGet(
 "/attribute",
 [OutputCache] () => "Hello world!");

Configuration

https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.aspireredisoutputcacheextensions.addredisoutputcache
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.ihostapplicationbuilder
https://learn.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.outputcacheapplicationbuilderextensions.useoutputcache#microsoft-aspnetcore-builder-outputcacheapplicationbuilderextensions-useoutputcache(microsoft-aspnetcore-builder-iapplicationbuilder)
https://learn.microsoft.com/en-us/aspnet/core/fundamentals/minimal-apis/overview
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.outputcacheconventionbuilderextensions.cacheoutput
https://learn.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.outputcaching.outputcacheattribute

When using a connection string from the ConnectionStrings configuration section, you
can provide the name of the connection string when calling AddRedisOutputCache:

C#

Then the connection string will be retrieved from the ConnectionStrings configuration
section:

JSON

For more information on how to format this connection string, see the Stack Exchange
Redis configuration docs .

The .NET Aspire Stack Exchange Redis output caching integration supports
Microsoft.Extensions.Configuration. It loads the StackExchangeRedisSettings from
configuration by using the Aspire:StackExchange:Redis key. Example appsettings.json
that configures some of the options:

JSON

Use a connection string

builder.AddRedisOutputCache(connectionName: "cache");

{
 "ConnectionStrings": {
 "cache": "localhost:6379"
 }
}

Use configuration providers

{
 "Aspire": {
 "StackExchange": {
 "Redis": {
 "ConfigurationOptions": {
 "ConnectTimeout": 3000,
 "ConnectRetry": 2
 },
 "DisableHealthChecks": true,
 "DisableTracing": false
 }
 }
 }
}

https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.aspireredisoutputcacheextensions.addredisoutputcache
https://stackexchange.github.io/StackExchange.Redis/Configuration.html#basic-configuration-strings
https://stackexchange.github.io/StackExchange.Redis/Configuration.html#basic-configuration-strings
https://stackexchange.github.io/StackExchange.Redis/Configuration.html#basic-configuration-strings
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration
https://learn.microsoft.com/en-us/dotnet/api/aspire.stackexchange.redis.stackexchangeredissettings

For the complete Redis output caching client integration JSON schema, see
Aspire.StackExchange.Redis.OutputCaching/ConfigurationSchema.json .

You can also pass the Action<StackExchangeRedisSettings> configurationSettings
delegate to set up some or all the options inline, for example to disable health checks
from code:

C#

You can also set up the ConfigurationOptions using the Action<ConfigurationOptions>
configureOptions delegate parameter of the AddRedisOutputCache method. For
example to set the connection timeout:

C#

By default, .NET Aspire client integrations have health checks enabled for all services.
Similarly, many .NET Aspire hosting integrations also enable health check endpoints. For
more information, see:

.NET app health checks in C#
Health checks in ASP.NET Core

The .NET Aspire Stack Exchange Redis output caching integration handles the following:

Adds the health check when StackExchangeRedisSettings.DisableHealthChecks is
false , which attempts to connect to the container instance.
Integrates with the /health HTTP endpoint, which specifies all registered health
checks must pass for app to be considered ready to accept traffic.

Use inline delegates

builder.AddRedisOutputCache(
 "cache",
 static settings => settings.DisableHealthChecks = true);

builder.AddRedisOutputCache(
 "cache",
 static settings => settings.ConnectTimeout = 3_000);

Client integration health checks

Observability and telemetry

https://github.com/dotnet/aspire/blob/v9.1.0/src/Components/Aspire.StackExchange.Redis.OutputCaching/ConfigurationSchema.json
https://github.com/dotnet/aspire/blob/v9.1.0/src/Components/Aspire.StackExchange.Redis.OutputCaching/ConfigurationSchema.json
https://stackexchange.github.io/StackExchange.Redis/Configuration.html#configuration-options
https://stackexchange.github.io/StackExchange.Redis/Configuration.html#configuration-options
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.aspireredisoutputcacheextensions.addredisoutputcache
https://learn.microsoft.com/en-us/dotnet/core/diagnostics/diagnostic-health-checks
https://learn.microsoft.com/en-us/aspnet/core/host-and-deploy/health-checks
https://learn.microsoft.com/en-us/dotnet/api/aspire.stackexchange.redis.stackexchangeredissettings.disablehealthchecks#aspire-stackexchange-redis-stackexchangeredissettings-disablehealthchecks

.NET Aspire integrations automatically set up Logging, Tracing, and Metrics
configurations, which are sometimes known as the pillars of observability. For more
information about integration observability and telemetry, see .NET Aspire integrations
overview. Depending on the backing service, some integrations may only support some
of these features. For example, some integrations support logging and tracing, but not
metrics. Telemetry features can also be disabled using the techniques presented in the
Configuration section.

The .NET Aspire Stack Exchange Redis output caching integration uses the following Log
categories:

Aspire.StackExchange.Redis

Microsoft.AspNetCore.OutputCaching.StackExchangeRedis

The .NET Aspire Stack Exchange Redis output caching integration will emit the following
Tracing activities using OpenTelemetry:

OpenTelemetry.Instrumentation.StackExchangeRedis

The .NET Aspire Stack Exchange Redis output caching integration currently doesn't
support metrics by default due to limitations with the StackExchange.Redis library.

Stack Exchange Redis docs
.NET Aspire integrations
.NET Aspire GitHub repo

*: Redis is a registered trademark of Redis Ltd. Any rights therein are reserved to Redis
Ltd. Any use by Microsoft is for referential purposes only and does not indicate any
sponsorship, endorsement or affiliation between Redis and Microsoft. Return to top?

Logging

Tracing

Metrics

See also

https://stackexchange.github.io/StackExchange.Redis/
https://stackexchange.github.io/StackExchange.Redis/
https://github.com/dotnet/aspire
https://github.com/dotnet/aspire

.NET Aspire Redis® integration
Article • 02/11/2025

Includes: Hosting integration and Client integration

Garnet is a a high-performance cache-store from Microsoft Research and complies
with the Redis serialization protocol (RESP). The .NET Aspire Redis integration enables
you to connect to existing Garnet instances, or create new instances from .NET with the
ghcr.io/microsoft/garnet container image .

The Garnet hosting integration models a Garnet resource as the GarnetResource type.
To access this type and APIs that allow you to add it to your 📦 Aspire.Hosting.Garnet
NuGet package in the app host project.

.NET CLI

For more information, see dotnet add package or Manage package dependencies in
.NET applications.

In your app host project, call AddGarnet on the builder instance to add a Garnet
resource:

C#

*

Hosting integration

.NET CLI

dotnet add package Aspire.Hosting.Garnet

Add Garnet resource

var builder = DistributedApplication.CreateBuilder(args);

var cache = builder.AddGarnet("cache");

builder.AddProject<Projects.ExampleProject>()
 .WithReference(cache);

// After adding all resources, run the app...

https://microsoft.github.io/garnet/
https://microsoft.github.io/garnet/
https://github.com/microsoft/garnet/pkgs/container/garnet
https://github.com/microsoft/garnet/pkgs/container/garnet
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.garnetresource
https://www.nuget.org/packages/Aspire.Hosting.Garnet
https://www.nuget.org/packages/Aspire.Hosting.Garnet
https://learn.microsoft.com/en-us/dotnet/core/tools/dotnet-add-package
https://learn.microsoft.com/en-us/dotnet/core/tools/dependencies
https://learn.microsoft.com/en-us/dotnet/core/tools/dependencies
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.garnetbuilderextensions.addgarnet

When .NET Aspire adds a container image to the app host, as shown in the preceding
example with the ghcr.io/microsoft/garnet image, it creates a new Garnet instance on
your local machine. A reference to your Garnet resource (the cache variable) is added to
the ExampleProject .

The WithReference method configures a connection in the ExampleProject named
"cache" . For more information, see Container resource lifecycle.

To add a data volume to the Garnet resource, call the AddGarnet method on the Garnet
resource:

C#

The data volume is used to persist the Garnet data outside the lifecycle of its container.
The data volume is mounted at the /data path in the Garnet container and when a name
parameter isn't provided, the name is generated at random. For more information on
data volumes and details on why they're preferred over bind mounts, see Docker docs:
Volumes .

To add a data bind mount to the Garnet resource, call the WithDataBindMount method:

C#

 Tip

If you'd rather connect to an existing Garnet instance, call AddConnectionString
instead. For more information, see Reference existing resources.

Add Garnet resource with data volume

var builder = DistributedApplication.CreateBuilder(args);

var cache = builder.AddGarnet("cache")
 .WithDataVolume(isReadOnly: false);

builder.AddProject<Projects.ExampleProject>()
 .WithReference(cache);

// After adding all resources, run the app...

Add Garnet resource with data bind mount

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.resourcebuilderextensions.withreference
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.garnetbuilderextensions.addgarnet
https://docs.docker.com/engine/storage/volumes
https://docs.docker.com/engine/storage/volumes
https://docs.docker.com/engine/storage/volumes
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.garnetbuilderextensions.withdatabindmount
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.parameterresourcebuilderextensions.addconnectionstring

Data bind mounts rely on the host machine's filesystem to persist the Garnet data across
container restarts. The data bind mount is mounted at the C:\Garnet\Data on Windows
(or /Garnet/Data on Unix) path on the host machine in the Garnet container. For more
information on data bind mounts, see Docker docs: Bind mounts .

To add persistence to the Garnet resource, call the WithPersistence method with either
the data volume or data bind mount:

C#

var builder = DistributedApplication.CreateBuilder(args);

var cache = builder.AddGarnet("cache")
 .WithDataBindMount(
 source: @"C:\Garnet\Data",
 isReadOnly: false);

builder.AddProject<Projects.ExampleProject>()
 .WithReference(cache);

// After adding all resources, run the app...

） Important

Data bind mounts have limited functionality compared to volumes , which
offer better performance, portability, and security, making them more suitable for
production environments. However, bind mounts allow direct access and
modification of files on the host system, ideal for development and testing where
real-time changes are needed.

Add Garnet resource with persistence

var builder = DistributedApplication.CreateBuilder(args);

var cache = builder.AddGarnet("cache")
 .WithDataVolume()
 .WithPersistence(
 interval: TimeSpan.FromMinutes(5),
 keysChangedThreshold: 100);

builder.AddProject<Projects.ExampleProject>()
 .WithReference(cache);

// After adding all resources, run the app...

https://docs.docker.com/engine/storage/bind-mounts
https://docs.docker.com/engine/storage/bind-mounts
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.garnetbuilderextensions.withpersistence
https://docs.docker.com/engine/storage/bind-mounts/
https://docs.docker.com/engine/storage/bind-mounts/
https://docs.docker.com/engine/storage/volumes/
https://docs.docker.com/engine/storage/volumes/

The preceding code adds persistence to the Redis resource by taking snapshots of the
Garnet data at a specified interval and threshold. The interval is time between
snapshot exports and the keysChangedThreshold is the number of key change operations
required to trigger a snapshot. For more information on persistence, see Redis docs:
Persistence .

The Redis hosting integration automatically adds a health check for the appropriate
resource type. The health check verifies that the server is running and that a connection
can be established to it.

The hosting integration relies on the 📦 AspNetCore.HealthChecks.Redis NuGet
package.

To get started with the .NET Aspire Stack Exchange Redis client integration, install the
📦 Aspire.StackExchange.Redis NuGet package in the client-consuming project, that
is, the project for the application that uses the Redis client. The Redis client integration
registers an IConnectionMultiplexer instance that you can use to interact with Redis.

.NET CLI

In the Program.cs file of your client-consuming project, call the AddRedisClient
extension method on any IHostApplicationBuilder to register an IConnectionMultiplexer
for use via the dependency injection container. The method takes a connection name
parameter.

C#

Hosting integration health checks

Client integration

.NET CLI

dotnet add package Aspire.StackExchange.Redis

Add Redis client

builder.AddRedisClient(connectionName: "cache");

https://redis.io/topics/persistence
https://redis.io/topics/persistence
https://redis.io/topics/persistence
https://www.nuget.org/packages/AspNetCore.HealthChecks.Redis
https://www.nuget.org/packages/AspNetCore.HealthChecks.Redis
https://www.nuget.org/packages/Aspire.StackExchange.Redis
https://www.nuget.org/packages/Aspire.StackExchange.Redis
https://stackexchange.github.io/StackExchange.Redis/Basics
https://stackexchange.github.io/StackExchange.Redis/Basics
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.aspireredisextensions.addredisclient
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.ihostapplicationbuilder

You can then retrieve the IConnection instance using dependency injection. For
example, to retrieve the connection from an example service:

C#

For more information on dependency injection, see .NET dependency injection.

There might be situations where you want to register multiple IConnectionMultiplexer
instances with different connection names. To register keyed Redis clients, call the
AddKeyedRedisClient method:

C#

Then you can retrieve the IConnectionMultiplexer instances using dependency
injection. For example, to retrieve the connection from an example service:

C#

For more information on keyed services, see .NET dependency injection: Keyed services.

 Tip

The connectionName parameter must match the name used when adding the Garnet
resource in the app host project. For more information, see Add Garnet resource.

public class ExampleService(IConnectionMultiplexer connectionMux)
{
 // Use connection multiplexer...
}

Add keyed Redis client

builder.AddKeyedRedisClient(name: "chat");
builder.AddKeyedRedisClient(name: "queue");

public class ExampleService(
 [FromKeyedServices("chat")] IConnectionMultiplexer chatConnectionMux,
 [FromKeyedServices("queue")] IConnectionMultiplexer queueConnectionMux)
{
 // Use connections...
}

Configuration

https://learn.microsoft.com/en-us/dotnet/core/extensions/dependency-injection
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.aspireredisextensions.addkeyedredisclient
https://learn.microsoft.com/en-us/dotnet/core/extensions/dependency-injection#keyed-services

The .NET Aspire Stack Exchange Redis client integration provides multiple options to
configure the Redis connection based on the requirements and conventions of your
project.

When using a connection string from the ConnectionStrings configuration section, you
can provide the name of the connection string when calling AddGarnet:

C#

Then the connection string will be retrieved from the ConnectionStrings configuration
section:

JSON

For more information on how to format this connection string, see the Stack Exchange
Redis configuration docs .

The .NET Aspire Stack Exchange Redis integration supports
Microsoft.Extensions.Configuration. It loads the StackExchangeRedisSettings from
configuration by using the Aspire:StackExchange:Redis key. Example appsettings.json
that configures some of the options:

JSON

Use a connection string

builder.AddGarnet("cache");

{
 "ConnectionStrings": {
 "cache": "localhost:6379"
 }
}

Use configuration providers

{
 "Aspire": {
 "StackExchange": {
 "Redis": {
 "ConfigurationOptions": {
 "ConnectTimeout": 3000,
 "ConnectRetry": 2
 },
 "DisableHealthChecks": true,

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.garnetbuilderextensions.addgarnet
https://stackexchange.github.io/StackExchange.Redis/Configuration.html#basic-configuration-strings
https://stackexchange.github.io/StackExchange.Redis/Configuration.html#basic-configuration-strings
https://stackexchange.github.io/StackExchange.Redis/Configuration.html#basic-configuration-strings
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration
https://learn.microsoft.com/en-us/dotnet/api/aspire.stackexchange.redis.stackexchangeredissettings

For the complete Redis client integration JSON schema, see
Aspire.StackExchange.Redis/ConfigurationSchema.json .

You can also pass the Action<StackExchangeRedisSettings> delegate to set up some or
all the options inline, for example to configure DisableTracing :

C#

By default, .NET Aspire client integrations have health checks enabled for all services.
Similarly, many .NET Aspire hosting integrations also enable health check endpoints. For
more information, see:

.NET app health checks in C#
Health checks in ASP.NET Core

The .NET Aspire Stack Exchange Redis integration handles the following:

Adds the health check when StackExchangeRedisSettings.DisableHealthChecks is
false , which attempts to connect to the container instance.
Integrates with the /health HTTP endpoint, which specifies all registered health
checks must pass for app to be considered ready to accept traffic.

.NET Aspire integrations automatically set up Logging, Tracing, and Metrics
configurations, which are sometimes known as the pillars of observability. For more
information about integration observability and telemetry, see .NET Aspire integrations
overview. Depending on the backing service, some integrations may only support some
of these features. For example, some integrations support logging and tracing, but not

 "DisableTracing": false
 }
 }
 }
}

Use inline delegates

builder.AddRedisClient(
 "cache",
 static settings => settings.DisableTracing = true);

Client integration health checks

Observability and telemetry

https://github.com/dotnet/aspire/blob/v9.1.0/src/Components/Aspire.StackExchange.Redis/ConfigurationSchema.json
https://github.com/dotnet/aspire/blob/v9.1.0/src/Components/Aspire.StackExchange.Redis/ConfigurationSchema.json
https://learn.microsoft.com/en-us/dotnet/core/diagnostics/diagnostic-health-checks
https://learn.microsoft.com/en-us/aspnet/core/host-and-deploy/health-checks
https://learn.microsoft.com/en-us/dotnet/api/aspire.stackexchange.redis.stackexchangeredissettings.disablehealthchecks#aspire-stackexchange-redis-stackexchangeredissettings-disablehealthchecks

metrics. Telemetry features can also be disabled using the techniques presented in the
Configuration section.

The .NET Aspire Stack Exchange Redis integration uses the following log categories:

Aspire.StackExchange.Redis

The .NET Aspire Stack Exchange Redis integration will emit the following tracing
activities using OpenTelemetry:

OpenTelemetry.Instrumentation.StackExchangeRedis

The .NET Aspire Stack Exchange Redis integration currently doesn't support metrics by
default due to limitations with the StackExchange.Redis library.

Stack Exchange Redis docs
.NET Aspire integrations
.NET Aspire GitHub repo

*: Redis is a registered trademark of Redis Ltd. Any rights therein are reserved to Redis
Ltd. Any use by Microsoft is for referential purposes only and does not indicate any
sponsorship, endorsement or affiliation between Redis and Microsoft. Return to top?

Logging

Tracing

Metrics

See also

https://stackexchange.github.io/StackExchange.Redis/
https://stackexchange.github.io/StackExchange.Redis/
https://github.com/dotnet/aspire
https://github.com/dotnet/aspire

.NET Aspire Redis® distributed caching
integration
Article • 02/11/2025

Includes: Hosting integration and Client integration

Learn how to use the .NET Aspire Redis distributed caching integration. The
Aspire.StackExchange.Redis.DistributedCaching library is used to register an
IDistributedCache provider backed by a Garnet server with the
ghcr.io/microsoft/garnet container image .

The Garnet hosting integration models a Garnet resource as the GarnetResource type.
To access this type and APIs that allow you to add it to your 📦 Aspire.Hosting.Garnet
NuGet package in the app host project.

.NET CLI

For more information, see dotnet add package or Manage package dependencies in
.NET applications.

In your app host project, call AddGarnet on the builder instance to add a Garnet
resource:

C#

*

Hosting integration

.NET CLI

dotnet add package Aspire.Hosting.Garnet

Add Garnet resource

var builder = DistributedApplication.CreateBuilder(args);

var cache = builder.AddGarnet("cache");

builder.AddProject<Projects.ExampleProject>()
 .WithReference(cache);

https://stackexchange.github.io/StackExchange.Redis/Basics
https://stackexchange.github.io/StackExchange.Redis/Basics
https://microsoft.github.io/garnet/
https://microsoft.github.io/garnet/
https://github.com/microsoft/garnet/pkgs/container/garnet
https://github.com/microsoft/garnet/pkgs/container/garnet
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.garnetresource
https://www.nuget.org/packages/Aspire.Hosting.Garnet
https://www.nuget.org/packages/Aspire.Hosting.Garnet
https://learn.microsoft.com/en-us/dotnet/core/tools/dotnet-add-package
https://learn.microsoft.com/en-us/dotnet/core/tools/dependencies
https://learn.microsoft.com/en-us/dotnet/core/tools/dependencies
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.garnetbuilderextensions.addgarnet

When .NET Aspire adds a container image to the app host, as shown in the preceding
example with the ghcr.io/microsoft/garnet image, it creates a new Garnet instance on
your local machine. A reference to your Garnet resource (the cache variable) is added to
the ExampleProject .

The WithReference method configures a connection in the ExampleProject named
"cache" . For more information, see Container resource lifecycle.

To add a data volume to the Garnet resource, call the AddGarnet method on the Garnet
resource:

C#

The data volume is used to persist the Garnet data outside the lifecycle of its container.
The data volume is mounted at the /data path in the Garnet container and when a name
parameter isn't provided, the name is generated at random. For more information on
data volumes and details on why they're preferred over bind mounts, see Docker docs:
Volumes .

To add a data bind mount to the Garnet resource, call the WithDataBindMount method:

// After adding all resources, run the app...

 Tip

If you'd rather connect to an existing Garnet instance, call AddConnectionString
instead. For more information, see Reference existing resources.

Add Garnet resource with data volume

var builder = DistributedApplication.CreateBuilder(args);

var cache = builder.AddGarnet("cache")
 .WithDataVolume(isReadOnly: false);

builder.AddProject<Projects.ExampleProject>()
 .WithReference(cache);

// After adding all resources, run the app...

Add Garnet resource with data bind mount

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.resourcebuilderextensions.withreference
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.garnetbuilderextensions.addgarnet
https://docs.docker.com/engine/storage/volumes
https://docs.docker.com/engine/storage/volumes
https://docs.docker.com/engine/storage/volumes
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.garnetbuilderextensions.withdatabindmount
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.parameterresourcebuilderextensions.addconnectionstring

C#

Data bind mounts rely on the host machine's filesystem to persist the Garnet data across
container restarts. The data bind mount is mounted at the C:\Garnet\Data on Windows
(or /Garnet/Data on Unix) path on the host machine in the Garnet container. For more
information on data bind mounts, see Docker docs: Bind mounts .

To add persistence to the Garnet resource, call the WithPersistence method with either
the data volume or data bind mount:

C#

var builder = DistributedApplication.CreateBuilder(args);

var cache = builder.AddGarnet("cache")
 .WithDataBindMount(
 source: @"C:\Garnet\Data",
 isReadOnly: false);

builder.AddProject<Projects.ExampleProject>()
 .WithReference(cache);

// After adding all resources, run the app...

） Important

Data bind mounts have limited functionality compared to volumes , which
offer better performance, portability, and security, making them more suitable for
production environments. However, bind mounts allow direct access and
modification of files on the host system, ideal for development and testing where
real-time changes are needed.

Add Garnet resource with persistence

var builder = DistributedApplication.CreateBuilder(args);

var cache = builder.AddGarnet("cache")
 .WithDataVolume()
 .WithPersistence(
 interval: TimeSpan.FromMinutes(5),
 keysChangedThreshold: 100);

builder.AddProject<Projects.ExampleProject>()
 .WithReference(cache);

https://docs.docker.com/engine/storage/bind-mounts
https://docs.docker.com/engine/storage/bind-mounts
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.garnetbuilderextensions.withpersistence
https://docs.docker.com/engine/storage/bind-mounts/
https://docs.docker.com/engine/storage/bind-mounts/
https://docs.docker.com/engine/storage/volumes/
https://docs.docker.com/engine/storage/volumes/

The preceding code adds persistence to the Redis resource by taking snapshots of the
Garnet data at a specified interval and threshold. The interval is time between
snapshot exports and the keysChangedThreshold is the number of key change operations
required to trigger a snapshot. For more information on persistence, see Redis docs:
Persistence .

The Redis hosting integration automatically adds a health check for the appropriate
resource type. The health check verifies that the server is running and that a connection
can be established to it.

The hosting integration relies on the 📦 AspNetCore.HealthChecks.Redis NuGet
package.

To get started with the .NET Aspire Redis distributed caching integration, install the 📦
Aspire.StackExchange.Redis.DistributedCaching NuGet package in the client-
consuming project, i.e., the project for the application that uses the Redis distributed
caching client. The Redis client integration registers an IDistributedCache instance that
you can use to interact with Redis.

.NET CLI

In the Program.cs file of your client-consuming project, call the
AddRedisDistributedCache extension to register the required services for distributed
caching and add a IDistributedCache for use via the dependency injection container.

C#

// After adding all resources, run the app...

Hosting integration health checks

Client integration

.NET CLI

dotnet add package Aspire.StackExchange.Redis.DistributedCaching

Add Redis client

https://redis.io/topics/persistence
https://redis.io/topics/persistence
https://redis.io/topics/persistence
https://www.nuget.org/packages/AspNetCore.HealthChecks.Redis
https://www.nuget.org/packages/AspNetCore.HealthChecks.Redis
https://www.nuget.org/packages/Aspire.StackExchange.Redis.DistributedCaching
https://www.nuget.org/packages/Aspire.StackExchange.Redis.DistributedCaching
https://www.nuget.org/packages/Aspire.StackExchange.Redis.DistributedCaching
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.caching.distributed.idistributedcache
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.aspireredisdistributedcacheextensions.addredisdistributedcache
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.caching.distributed.idistributedcache

You can then retrieve the IDistributedCache instance using dependency injection. For
example, to retrieve the cache from a service:

C#

For more information on dependency injection, see .NET dependency injection.

There might be situations where you want to register multiple IDistributedCache
instances with different connection names. To register keyed Redis clients, call the
AddKeyedRedisDistributedCache method:

C#

Then you can retrieve the IDistributedCache instances using dependency injection. For
example, to retrieve the connection from an example service:

C#

builder.AddRedisDistributedCache(connectionName: "cache");

 Tip

The connectionName parameter must match the name used when adding the Garnet
resource in the app host project. For more information, see Add Garnet resource.

public class ExampleService(IDistributedCache cache)
{
 // Use cache...
}

Add keyed Redis client

builder.AddKeyedRedisDistributedCache(name: "chat");
builder.AddKeyedRedisDistributedCache(name: "product");

public class ExampleService(
 [FromKeyedServices("chat")] IDistributedCache chatCache,
 [FromKeyedServices("product")] IDistributedCache productCache)
{
 // Use caches...
}

https://learn.microsoft.com/en-us/dotnet/core/extensions/dependency-injection
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.aspireredisdistributedcacheextensions.addkeyedredisdistributedcache

For more information on keyed services, see .NET dependency injection: Keyed services.

The .NET Aspire Redis distributed caching integration provides multiple options to
configure the Redis connection based on the requirements and conventions of your
project.

When using a connection string from the ConnectionStrings configuration section, you
can provide the name of the connection string when calling
builder.AddRedisDistributedCache :

C#

And then the connection string will be retrieved from the ConnectionStrings
configuration section:

JSON

For more information on how to format this connection string, see the Stack Exchange
Redis configuration docs .

The .NET Aspire Stack Exchange Redis distributed caching integration supports
Microsoft.Extensions.Configuration. It loads the StackExchangeRedisSettings from
configuration by using the Aspire:StackExchange:Redis key. Example appsettings.json
that configures some of the options:

JSON

Configuration

Use a connection string

builder.AddRedisDistributedCache("cache");

{
 "ConnectionStrings": {
 "cache": "localhost:6379"
 }
}

Use configuration providers

{
 "Aspire": {

https://learn.microsoft.com/en-us/dotnet/core/extensions/dependency-injection#keyed-services
https://stackexchange.github.io/StackExchange.Redis/Configuration.html#basic-configuration-strings
https://stackexchange.github.io/StackExchange.Redis/Configuration.html#basic-configuration-strings
https://stackexchange.github.io/StackExchange.Redis/Configuration.html#basic-configuration-strings
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration
https://learn.microsoft.com/en-us/dotnet/api/aspire.stackexchange.redis.stackexchangeredissettings

For the complete Redis distributed caching client integration JSON schema, see
Aspire.StackExchange.Redis.DistributedCaching/ConfigurationSchema.json .

You can also pass the Action<StackExchangeRedisSettings> delegate to set up some or
all the options inline, for example to configure DisableTracing :

C#

You can also set up the ConfigurationOptions using the Action<ConfigurationOptions>
configureOptions delegate parameter of the AddRedisDistributedCache method. For
example to set the connection timeout:

C#

By default, .NET Aspire client integrations have health checks enabled for all services.
Similarly, many .NET Aspire hosting integrations also enable health check endpoints. For
more information, see:

.NET app health checks in C#

 "StackExchange": {
 "Redis": {
 "ConfigurationOptions": {
 "ConnectTimeout": 3000,
 "ConnectRetry": 2
 },
 "DisableHealthChecks": true,
 "DisableTracing": false
 }
 }
 }
}

Use inline delegates

builder.AddRedisDistributedCache(
 "cache",
 settings => settings.DisableTracing = true);

builder.AddRedisDistributedCache(
 "cache",
 null,
 static options => options.ConnectTimeout = 3_000);

Client integration health checks

https://github.com/dotnet/aspire/blob/v9.1.0/src/Components/Aspire.StackExchange.Redis.DistributedCaching/ConfigurationSchema.json
https://github.com/dotnet/aspire/blob/v9.1.0/src/Components/Aspire.StackExchange.Redis.DistributedCaching/ConfigurationSchema.json
https://stackexchange.github.io/StackExchange.Redis/Configuration.html#configuration-options
https://stackexchange.github.io/StackExchange.Redis/Configuration.html#configuration-options
https://learn.microsoft.com/en-us/dotnet/core/diagnostics/diagnostic-health-checks

Health checks in ASP.NET Core

The .NET Aspire Redis distributed caching integration handles the following:

Adds the health check when StackExchangeRedisSettings.DisableHealthChecks is
false , which attempts to connect to the container instance.
Integrates with the /health HTTP endpoint, which specifies all registered health
checks must pass for app to be considered ready to accept traffic.

.NET Aspire integrations automatically set up Logging, Tracing, and Metrics
configurations, which are sometimes known as the pillars of observability. For more
information about integration observability and telemetry, see .NET Aspire integrations
overview. Depending on the backing service, some integrations may only support some
of these features. For example, some integrations support logging and tracing, but not

https://learn.microsoft.com/en-us/aspnet/core/host-and-deploy/health-checks
https://learn.microsoft.com/en-us/dotnet/api/aspire.stackexchange.redis.stackexchangeredissettings.disablehealthchecks#aspire-stackexchange-redis-stackexchangeredissettings-disablehealthchecks
https://stackexchange.github.io/StackExchange.Redis/
https://stackexchange.github.io/StackExchange.Redis/

.NET Aspire integrations

.NET Aspire GitHub repo

*: Redis is a registered trademark of Redis Ltd. Any rights therein are reserved to Redis
Ltd. Any use by Microsoft is for referential purposes only and does not indicate any
sponsorship, endorsement or affiliation between Redis and Microsoft. Return to top?

https://github.com/dotnet/aspire
https://github.com/dotnet/aspire

.NET Aspire Redis® output caching
integration
Article • 02/11/2025

Includes: Hosting integration and Client integration

Learn how to use the .NET Aspire Redis output caching integration. The
Aspire.StackExchange.Redis.OutputCaching client integration is used to register an
ASP.NET Core Output Caching provider backed by a Garnet server with the
ghcr.io/microsoft/garnet container image .

The Garnet hosting integration models a Garnet resource as the GarnetResource type.
To access this type and APIs that allow you to add it to your 📦 Aspire.Hosting.Garnet
NuGet package in the app host project.

.NET CLI

For more information, see dotnet add package or Manage package dependencies in
.NET applications.

In your app host project, call AddGarnet on the builder instance to add a Garnet
resource:

C#

*

Hosting integration

.NET CLI

dotnet add package Aspire.Hosting.Garnet

Add Garnet resource

var builder = DistributedApplication.CreateBuilder(args);

var cache = builder.AddGarnet("cache");

builder.AddProject<Projects.ExampleProject>()
 .WithReference(cache);

https://learn.microsoft.com/en-us/aspnet/core/performance/caching/output
https://microsoft.github.io/garnet/
https://microsoft.github.io/garnet/
https://github.com/microsoft/garnet/pkgs/container/garnet
https://github.com/microsoft/garnet/pkgs/container/garnet
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.garnetresource
https://www.nuget.org/packages/Aspire.Hosting.Garnet
https://www.nuget.org/packages/Aspire.Hosting.Garnet
https://learn.microsoft.com/en-us/dotnet/core/tools/dotnet-add-package
https://learn.microsoft.com/en-us/dotnet/core/tools/dependencies
https://learn.microsoft.com/en-us/dotnet/core/tools/dependencies
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.garnetbuilderextensions.addgarnet

When .NET Aspire adds a container image to the app host, as shown in the preceding
example with the ghcr.io/microsoft/garnet image, it creates a new Garnet instance on
your local machine. A reference to your Garnet resource (the cache variable) is added to
the ExampleProject .

The WithReference method configures a connection in the ExampleProject named
"cache" . For more information, see Container resource lifecycle.

To add a data volume to the Garnet resource, call the AddGarnet method on the Garnet
resource:

C#

The data volume is used to persist the Garnet data outside the lifecycle of its container.
The data volume is mounted at the /data path in the Garnet container and when a name
parameter isn't provided, the name is generated at random. For more information on
data volumes and details on why they're preferred over bind mounts, see Docker docs:
Volumes .

To add a data bind mount to the Garnet resource, call the WithDataBindMount method:

// After adding all resources, run the app...

 Tip

If you'd rather connect to an existing Garnet instance, call AddConnectionString
instead. For more information, see Reference existing resources.

Add Garnet resource with data volume

var builder = DistributedApplication.CreateBuilder(args);

var cache = builder.AddGarnet("cache")
 .WithDataVolume(isReadOnly: false);

builder.AddProject<Projects.ExampleProject>()
 .WithReference(cache);

// After adding all resources, run the app...

Add Garnet resource with data bind mount

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.resourcebuilderextensions.withreference
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.garnetbuilderextensions.addgarnet
https://docs.docker.com/engine/storage/volumes
https://docs.docker.com/engine/storage/volumes
https://docs.docker.com/engine/storage/volumes
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.garnetbuilderextensions.withdatabindmount
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.parameterresourcebuilderextensions.addconnectionstring

C#

Data bind mounts rely on the host machine's filesystem to persist the Garnet data across
container restarts. The data bind mount is mounted at the C:\Garnet\Data on Windows
(or /Garnet/Data on Unix) path on the host machine in the Garnet container. For more
information on data bind mounts, see Docker docs: Bind mounts .

To add persistence to the Garnet resource, call the WithPersistence method with either
the data volume or data bind mount:

C#

var builder = DistributedApplication.CreateBuilder(args);

var cache = builder.AddGarnet("cache")
 .WithDataBindMount(
 source: @"C:\Garnet\Data",
 isReadOnly: false);

builder.AddProject<Projects.ExampleProject>()
 .WithReference(cache);

// After adding all resources, run the app...

） Important

Data bind mounts have limited functionality compared to volumes , which
offer better performance, portability, and security, making them more suitable for
production environments. However, bind mounts allow direct access and
modification of files on the host system, ideal for development and testing where
real-time changes are needed.

Add Garnet resource with persistence

var builder = DistributedApplication.CreateBuilder(args);

var cache = builder.AddGarnet("cache")
 .WithDataVolume()
 .WithPersistence(
 interval: TimeSpan.FromMinutes(5),
 keysChangedThreshold: 100);

builder.AddProject<Projects.ExampleProject>()
 .WithReference(cache);

https://docs.docker.com/engine/storage/bind-mounts
https://docs.docker.com/engine/storage/bind-mounts
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.garnetbuilderextensions.withpersistence
https://docs.docker.com/engine/storage/bind-mounts/
https://docs.docker.com/engine/storage/bind-mounts/
https://docs.docker.com/engine/storage/volumes/
https://docs.docker.com/engine/storage/volumes/

The preceding code adds persistence to the Redis resource by taking snapshots of the
Garnet data at a specified interval and threshold. The interval is time between
snapshot exports and the keysChangedThreshold is the number of key change operations
required to trigger a snapshot. For more information on persistence, see Redis docs:
Persistence .

The Redis hosting integration automatically adds a health check for the appropriate
resource type. The health check verifies that the server is running and that a connection
can be established to it.

The hosting integration relies on the 📦 AspNetCore.HealthChecks.Redis NuGet
package.

To get started with the .NET Aspire Stack Exchange Redis output caching client
integration, install the 📦 Aspire.StackExchange.Redis.OutputCaching NuGet package
in the client-consuming project, that is, the project for the application that uses the
output caching client. The Redis output caching client integration registers services
required for enabling CacheOutput method calls and [OutputCache] attribute usage to
rely on Redis as its caching mechanism.

.NET CLI

In the Program.cs file of your client-consuming project, call the AddRedisOutputCache
extension method on any IHostApplicationBuilder to register the required services for
output caching.

C#

// After adding all resources, run the app...

Hosting integration health checks

Client integration

.NET CLI

dotnet add package Aspire.StackExchange.Redis.OutputCaching

Add output caching

https://redis.io/topics/persistence
https://redis.io/topics/persistence
https://redis.io/topics/persistence
https://www.nuget.org/packages/AspNetCore.HealthChecks.Redis
https://www.nuget.org/packages/AspNetCore.HealthChecks.Redis
https://www.nuget.org/packages/Aspire.StackExchange.Redis.OutputCaching
https://www.nuget.org/packages/Aspire.StackExchange.Redis.OutputCaching
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.outputcacheconventionbuilderextensions.cacheoutput
https://learn.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.outputcaching.outputcacheattribute
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.aspireredisoutputcacheextensions.addredisoutputcache
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.ihostapplicationbuilder

Add the middleware to the request processing pipeline by calling
UseOutputCache(IApplicationBuilder):

C#

For minimal API apps, configure an endpoint to do caching by calling CacheOutput, or
by applying the OutputCacheAttribute, as shown in the following examples:

C#

For apps with controllers, apply the [OutputCache] attribute to the action method. For
Razor Pages apps, apply the attribute to the Razor page class.

The .NET Aspire Stack Exchange Redis output caching integration provides multiple
options to configure the Redis connection based on the requirements and conventions
of your project.

When using a connection string from the ConnectionStrings configuration section, you
can provide the name of the connection string when calling AddRedisOutputCache:

builder.AddRedisOutputCache(connectionName: "cache");

 Tip

The connectionName parameter must match the name used when adding the Garnet
resource in the app host project. For more information, see Add Garnet resource.

var app = builder.Build();

app.UseOutputCache();

app.MapGet("/cached", () => "Hello world!")
 .CacheOutput();

app.MapGet(
 "/attribute",
 [OutputCache] () => "Hello world!");

Configuration

Use a connection string

https://learn.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.outputcacheapplicationbuilderextensions.useoutputcache#microsoft-aspnetcore-builder-outputcacheapplicationbuilderextensions-useoutputcache(microsoft-aspnetcore-builder-iapplicationbuilder)
https://learn.microsoft.com/en-us/aspnet/core/fundamentals/minimal-apis/overview
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.outputcacheconventionbuilderextensions.cacheoutput
https://learn.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.outputcaching.outputcacheattribute
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.aspireredisoutputcacheextensions.addredisoutputcache

C#

Then the connection string will be retrieved from the ConnectionStrings configuration
section:

JSON

For more information on how to format this connection string, see the Stack Exchange
Redis configuration docs .

The .NET Aspire Stack Exchange Redis output caching integration supports
Microsoft.Extensions.Configuration. It loads the StackExchangeRedisSettings from
configuration by using the Aspire:StackExchange:Redis key. Example appsettings.json
that configures some of the options:

JSON

For the complete Redis output caching client integration JSON schema, see
Aspire.StackExchange.Redis.OutputCaching/ConfigurationSchema.json .

builder.AddRedisOutputCache(connectionName: "cache");

{
 "ConnectionStrings": {
 "cache": "localhost:6379"
 }
}

Use configuration providers

{
 "Aspire": {
 "StackExchange": {
 "Redis": {
 "ConfigurationOptions": {
 "ConnectTimeout": 3000,
 "ConnectRetry": 2
 },
 "DisableHealthChecks": true,
 "DisableTracing": false
 }
 }
 }
}

https://stackexchange.github.io/StackExchange.Redis/Configuration.html#basic-configuration-strings
https://stackexchange.github.io/StackExchange.Redis/Configuration.html#basic-configuration-strings
https://stackexchange.github.io/StackExchange.Redis/Configuration.html#basic-configuration-strings
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration
https://learn.microsoft.com/en-us/dotnet/api/aspire.stackexchange.redis.stackexchangeredissettings
https://github.com/dotnet/aspire/blob/v9.1.0/src/Components/Aspire.StackExchange.Redis.OutputCaching/ConfigurationSchema.json
https://github.com/dotnet/aspire/blob/v9.1.0/src/Components/Aspire.StackExchange.Redis.OutputCaching/ConfigurationSchema.json

You can also pass the Action<StackExchangeRedisSettings> configurationSettings
delegate to set up some or all the options inline, for example to disable health checks
from code:

C#

You can also set up the ConfigurationOptions using the Action<ConfigurationOptions>
configureOptions delegate parameter of the AddRedisOutputCache method. For
example to set the connection timeout:

C#

By default, .NET Aspire client integrations have health checks enabled for all services.
Similarly, many .NET Aspire hosting integrations also enable health check endpoints. For
more information, see:

.NET app health checks in C#
Health checks in ASP.NET Core

The .NET Aspire Stack Exchange Redis output caching integration handles the following:

Adds the health check when StackExchangeRedisSettings.DisableHealthChecks is
false , which attempts to connect to the container instance.
Integrates with the /health HTTP endpoint, which specifies all registered health
checks must pass for app to be considered ready to accept traffic.

.NET Aspire integrations automatically set up Logging, Tracing, and Metrics
configurations, which are sometimes known as the pillars of observability. For more
information about integration observability and telemetry, see .NET Aspire integrations

Use inline delegates

builder.AddRedisOutputCache(
 "cache",
 static settings => settings.DisableHealthChecks = true);

builder.AddRedisOutputCache(
 "cache",
 static settings => settings.ConnectTimeout = 3_000);

Client integration health checks

Observability and telemetry

https://stackexchange.github.io/StackExchange.Redis/Configuration.html#configuration-options
https://stackexchange.github.io/StackExchange.Redis/Configuration.html#configuration-options
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.aspireredisoutputcacheextensions.addredisoutputcache
https://learn.microsoft.com/en-us/dotnet/core/diagnostics/diagnostic-health-checks
https://learn.microsoft.com/en-us/aspnet/core/host-and-deploy/health-checks
https://learn.microsoft.com/en-us/dotnet/api/aspire.stackexchange.redis.stackexchangeredissettings.disablehealthchecks#aspire-stackexchange-redis-stackexchangeredissettings-disablehealthchecks

overview. Depending on the backing service, some integrations may only support some
of these features. For example, some integrations support logging and tracing, but not
metrics. Telemetry features can also be disabled using the techniques presented in the
Configuration section.

The .NET Aspire Stack Exchange Redis output caching integration uses the following Log
categories:

Aspire.StackExchange.Redis

Microsoft.AspNetCore.OutputCaching.StackExchangeRedis

The .NET Aspire Stack Exchange Redis output caching integration will emit the following
Tracing activities using OpenTelemetry:

OpenTelemetry.Instrumentation.StackExchangeRedis

The .NET Aspire Stack Exchange Redis output caching integration currently doesn't
support metrics by default due to limitations with the StackExchange.Redis library.

Stack Exchange Redis docs
.NET Aspire integrations
.NET Aspire GitHub repo

*: Redis is a registered trademark of Redis Ltd. Any rights therein are reserved to Redis
Ltd. Any use by Microsoft is for referential purposes only and does not indicate any
sponsorship, endorsement or affiliation between Redis and Microsoft. Return to top?

Logging

Tracing

Metrics

See also

https://stackexchange.github.io/StackExchange.Redis/
https://stackexchange.github.io/StackExchange.Redis/
https://github.com/dotnet/aspire
https://github.com/dotnet/aspire

.NET Aspire Redis® integration
Article • 02/11/2025

Includes: Hosting integration and Client integration

Valkey is a Redis fork and complies with the Redis serialization protocol (RESP). It's a
high-performance key/value datastore that supports a variety of workloads such as
caching, message queues, and can act as a primary database. The .NET Aspire Redis
integration enables you to connect to existing Valkey instances, or create new instances
from .NET with the docker.io/valkey/valkey container image .

The Valkey hosting integration models a Valkey resource as the ValkeyResource type. To
access this type and APIs that allow you to add it to your 📦 Aspire.Hosting.Valkey
NuGet package in the app host project.

.NET CLI

For more information, see dotnet add package or Manage package dependencies in
.NET applications.

In your app host project, call AddValkey on the builder instance to add a Valkey
resource:

C#

*

Hosting integration

.NET CLI

dotnet add package Aspire.Hosting.Valkey

Add Valkey resource

var builder = DistributedApplication.CreateBuilder(args);

var cache = builder.AddValkey("cache");

builder.AddProject<Projects.ExampleProject>()
 .WithReference(cache);

// After adding all resources, run the app...

https://valkey.io/
https://valkey.io/
https://hub.docker.com/r/valkey/valkey/
https://hub.docker.com/r/valkey/valkey/
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.valkeyresource
https://www.nuget.org/packages/Aspire.Hosting.Valkey
https://www.nuget.org/packages/Aspire.Hosting.Valkey
https://learn.microsoft.com/en-us/dotnet/core/tools/dotnet-add-package
https://learn.microsoft.com/en-us/dotnet/core/tools/dependencies
https://learn.microsoft.com/en-us/dotnet/core/tools/dependencies
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.valkeybuilderextensions.addvalkey

When .NET Aspire adds a container image to the app host, as shown in the preceding
example with the docker.io/valkey/valkey image, it creates a new Valkey instance on
your local machine. A reference to your Valkey resource (the cache variable) is added to
the ExampleProject .

The WithReference method configures a connection in the ExampleProject named
"cache" . For more information, see Container resource lifecycle.

To add a data volume to the Valkey resource, call the AddValkey method on the Valkey
resource:

C#

The data volume is used to persist the Valkey data outside the lifecycle of its container.
The data volume is mounted at the /data path in the Valkey container and when a name
parameter isn't provided, the name is generated at random. For more information on
data volumes and details on why they're preferred over bind mounts, see Docker docs:
Volumes .

To add a data bind mount to the Valkey resource, call the WithDataBindMount method:

C#

 Tip

If you'd rather connect to an existing Valkey instance, call AddConnectionString
instead. For more information, see Reference existing resources.

Add Valkey resource with data volume

var builder = DistributedApplication.CreateBuilder(args);

var cache = builder.AddValkey("cache")
 .WithDataVolume(isReadOnly: false);

builder.AddProject<Projects.ExampleProject>()
 .WithReference(cache);

// After adding all resources, run the app...

Add Valkey resource with data bind mount

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.resourcebuilderextensions.withreference
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.valkeybuilderextensions.addvalkey
https://docs.docker.com/engine/storage/volumes
https://docs.docker.com/engine/storage/volumes
https://docs.docker.com/engine/storage/volumes
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.valkeybuilderextensions.withdatabindmount
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.parameterresourcebuilderextensions.addconnectionstring

Data bind mounts rely on the host machine's filesystem to persist the Valkey data across
container restarts. The data bind mount is mounted at the C:\Valkey\Data on Windows
(or /Valkey/Data on Unix) path on the host machine in the Valkey container. For more
information on data bind mounts, see Docker docs: Bind mounts .

To add persistence to the Valkey resource, call the WithPersistence method with either
the data volume or data bind mount:

C#

var builder = DistributedApplication.CreateBuilder(args);

var cache = builder.AddValkey("cache")
 .WithDataBindMount(
 source: @"C:\Valkey\Data",
 isReadOnly: false);

builder.AddProject<Projects.ExampleProject>()
 .WithReference(cache);

// After adding all resources, run the app...

） Important

Data bind mounts have limited functionality compared to volumes , which
offer better performance, portability, and security, making them more suitable for
production environments. However, bind mounts allow direct access and
modification of files on the host system, ideal for development and testing where
real-time changes are needed.

Add Valkey resource with persistence

var builder = DistributedApplication.CreateBuilder(args);

var cache = builder.AddValkey("cache")
 .WithDataVolume()
 .WithPersistence(
 interval: TimeSpan.FromMinutes(5),
 keysChangedThreshold: 100);

builder.AddProject<Projects.ExampleProject>()
 .WithReference(cache);

// After adding all resources, run the app...

https://docs.docker.com/engine/storage/bind-mounts
https://docs.docker.com/engine/storage/bind-mounts
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.valkeybuilderextensions.withpersistence
https://docs.docker.com/engine/storage/bind-mounts/
https://docs.docker.com/engine/storage/bind-mounts/
https://docs.docker.com/engine/storage/volumes/
https://docs.docker.com/engine/storage/volumes/

The preceding code adds persistence to the Redis resource by taking snapshots of the
Valkey data at a specified interval and threshold. The interval is time between snapshot
exports and the keysChangedThreshold is the number of key change operations required
to trigger a snapshot. For more information on persistence, see Redis docs:
Persistence .

The Redis hosting integration automatically adds a health check for the appropriate
resource type. The health check verifies that the server is running and that a connection
can be established to it.

The hosting integration relies on the 📦 AspNetCore.HealthChecks.Redis NuGet
package.

To get started with the .NET Aspire Stack Exchange Redis client integration, install the
📦 Aspire.StackExchange.Redis NuGet package in the client-consuming project, that
is, the project for the application that uses the Redis client. The Redis client integration
registers an IConnectionMultiplexer instance that you can use to interact with Redis.

.NET CLI

In the Program.cs file of your client-consuming project, call the AddRedisClient
extension method on any IHostApplicationBuilder to register an IConnectionMultiplexer
for use via the dependency injection container. The method takes a connection name
parameter.

C#

Hosting integration health checks

Client integration

.NET CLI

dotnet add package Aspire.StackExchange.Redis

Add Redis client

builder.AddRedisClient(connectionName: "cache");

https://redis.io/topics/persistence
https://redis.io/topics/persistence
https://redis.io/topics/persistence
https://www.nuget.org/packages/AspNetCore.HealthChecks.Redis
https://www.nuget.org/packages/AspNetCore.HealthChecks.Redis
https://www.nuget.org/packages/Aspire.StackExchange.Redis
https://www.nuget.org/packages/Aspire.StackExchange.Redis
https://stackexchange.github.io/StackExchange.Redis/Basics
https://stackexchange.github.io/StackExchange.Redis/Basics
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.aspireredisextensions.addredisclient
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.ihostapplicationbuilder

You can then retrieve the IConnection instance using dependency injection. For
example, to retrieve the connection from an example service:

C#

For more information on dependency injection, see .NET dependency injection.

There might be situations where you want to register multiple IConnectionMultiplexer

https://learn.microsoft.com/en-us/dotnet/core/extensions/dependency-injection
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.aspireredisextensions.addkeyedredisclient
https://learn.microsoft.com/en-us/dotnet/core/extensions/dependency-injection#keyed-services

The .NET Aspire Stack Exchange Redis client integration provides multiple options to
configure the Redis connection based on the requirements and conventions of your
project.

When using a connection string from the ConnectionStrings configuration section, you
can provide the name of the connection string when calling AddValkey:

C#

Then the connection string will be retrieved from the ConnectionStrings configuration
section:

JSON

For more information on how to format this connection string, see the Stack Exchange
Redis configuration docs .

The .NET Aspire Stack Exchange Redis integration supports
Microsoft.Extensions.Configuration. It loads the StackExchangeRedisSettings from
configuration by using the Aspire:StackExchange:Redis key. Example appsettings.json
that configures some of the options:

JSON

Use a connection string

builder.AddValkey("cache");

{
 "ConnectionStrings": {
 "cache": "localhost:6379"
 }
}

Use configuration providers

{
 "Aspire": {
 "StackExchange": {
 "Redis": {
 "ConfigurationOptions": {
 "ConnectTimeout": 3000,
 "ConnectRetry": 2
 },
 "DisableHealthChecks": true,

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.valkeybuilderextensions.addvalkey
https://stackexchange.github.io/StackExchange.Redis/Configuration.html#basic-configuration-strings
https://stackexchange.github.io/StackExchange.Redis/Configuration.html#basic-configuration-strings
https://stackexchange.github.io/StackExchange.Redis/Configuration.html#basic-configuration-strings
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration
https://learn.microsoft.com/en-us/dotnet/api/aspire.stackexchange.redis.stackexchangeredissettings

For the complete Redis client integration JSON schema, see
Aspire.StackExchange.Redis/ConfigurationSchema.json .

You can also pass the Action<StackExchangeRedisSettings> delegate to set up some or
all the options inline, for example to configure DisableTracing :

C#

By default, .NET Aspire client integrations have health checks enabled for all services.
Similarly, many .NET Aspire hosting integrations also enable health check endpoints. For
more information, see:

.NET app health checks in C#
Health checks in ASP.NET Core

The .NET Aspire Stack Exchange Redis integration handles the following:

Adds the health check when StackExchangeRedisSettings.DisableHealthChecks is
false , which attempts to connect to the container instance.
Integrates with the /health HTTP endpoint, which specifies all registered health
checks must pass for app to be considered ready to accept traffic.

.NET Aspire integrations automatically set up Logging, Tracing, and Metrics
configurations, which are sometimes known as the pillars of observability. For more
information about integration observability and telemetry, see .NET Aspire integrations
overview. Depending on the backing service, some integrations may only support some
of these features. For example, some integrations support logging and tracing, but not

 "DisableTracing": false
 }
 }
 }
}

Use inline delegates

builder.AddRedisClient(
 "cache",
 static settings => settings.DisableTracing = true);

Client integration health checks

Observability and telemetry

https://github.com/dotnet/aspire/blob/v9.1.0/src/Components/Aspire.StackExchange.Redis/ConfigurationSchema.json
https://github.com/dotnet/aspire/blob/v9.1.0/src/Components/Aspire.StackExchange.Redis/ConfigurationSchema.json
https://learn.microsoft.com/en-us/dotnet/core/diagnostics/diagnostic-health-checks
https://learn.microsoft.com/en-us/aspnet/core/host-and-deploy/health-checks
https://learn.microsoft.com/en-us/dotnet/api/aspire.stackexchange.redis.stackexchangeredissettings.disablehealthchecks#aspire-stackexchange-redis-stackexchangeredissettings-disablehealthchecks

metrics. Telemetry features can also be disabled using the techniques presented in the
Configuration section.

The .NET Aspire Stack Exchange Redis integration uses the following log categories:

Aspire.StackExchange.Redis

The .NET Aspire Stack Exchange Redis integration will emit the following tracing
activities using OpenTelemetry:

OpenTelemetry.Instrumentation.StackExchangeRedis

The .NET Aspire Stack Exchange Redis integration currently doesn't support metrics by
default due to limitations with the StackExchange.Redis library.

Stack Exchange Redis docs
.NET Aspire integrations
.NET Aspire GitHub repo

*: Redis is a registered trademark of Redis Ltd. Any rights therein are reserved to Redis
Ltd. Any use by Microsoft is for referential purposes only and does not indicate any
sponsorship, endorsement or affiliation between Redis and Microsoft. Return to top?

Logging

Tracing

Metrics

See also

https://stackexchange.github.io/StackExchange.Redis/
https://stackexchange.github.io/StackExchange.Redis/
https://github.com/dotnet/aspire
https://github.com/dotnet/aspire

.NET Aspire Redis® distributed caching
integration
Article • 02/11/2025

Includes: Hosting integration and Client integration

Learn how to use the .NET Aspire Redis distributed caching integration. The
Aspire.StackExchange.Redis.DistributedCaching library is used to register an
IDistributedCache provider backed by a Valkey server with the
docker.io/valkey/valkey container image .

The Valkey hosting integration models a Valkey resource as the ValkeyResource type. To
access this type and APIs that allow you to add it to your 📦 Aspire.Hosting.Valkey
NuGet package in the app host project.

.NET CLI

For more information, see dotnet add package or Manage package dependencies in
.NET applications.

In your app host project, call AddValkey on the builder instance to add a Valkey
resource:

C#

*

Hosting integration

.NET CLI

dotnet add package Aspire.Hosting.Valkey

Add Valkey resource

var builder = DistributedApplication.CreateBuilder(args);

var cache = builder.AddValkey("cache");

builder.AddProject<Projects.ExampleProject>()
 .WithReference(cache);

https://stackexchange.github.io/StackExchange.Redis/Basics
https://stackexchange.github.io/StackExchange.Redis/Basics
https://valkey.io/
https://valkey.io/
https://hub.docker.com/r/valkey/valkey/
https://hub.docker.com/r/valkey/valkey/
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.valkeyresource
https://www.nuget.org/packages/Aspire.Hosting.Valkey
https://www.nuget.org/packages/Aspire.Hosting.Valkey
https://learn.microsoft.com/en-us/dotnet/core/tools/dotnet-add-package
https://learn.microsoft.com/en-us/dotnet/core/tools/dependencies
https://learn.microsoft.com/en-us/dotnet/core/tools/dependencies
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.valkeybuilderextensions.addvalkey

When .NET Aspire adds a container image to the app host, as shown in the preceding
example with the docker.io/valkey/valkey image, it creates a new Valkey instance on
your local machine. A reference to your Valkey resource (the cache variable) is added to
the ExampleProject .

The WithReference method configures a connection in the ExampleProject named
"cache" . For more information, see Container resource lifecycle.

To add a data volume to the Valkey resource, call the AddValkey method on the Valkey
resource:

C#

The data volume is used to persist the Valkey data outside the lifecycle of its container.
The data volume is mounted at the /data path in the Valkey container and when a name
parameter isn't provided, the name is generated at random. For more information on
data volumes and details on why they're preferred over bind mounts, see Docker docs:
Volumes .

To add a data bind mount to the Valkey resource, call the WithDataBindMount method:

// After adding all resources, run the app...

 Tip

If you'd rather connect to an existing Valkey instance, call AddConnectionString
instead. For more information, see Reference existing resources.

Add Valkey resource with data volume

var builder = DistributedApplication.CreateBuilder(args);

var cache = builder.AddValkey("cache")
 .WithDataVolume(isReadOnly: false);

builder.AddProject<Projects.ExampleProject>()
 .WithReference(cache);

// After adding all resources, run the app...

Add Valkey resource with data bind mount

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.resourcebuilderextensions.withreference
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.valkeybuilderextensions.addvalkey
https://docs.docker.com/engine/storage/volumes
https://docs.docker.com/engine/storage/volumes
https://docs.docker.com/engine/storage/volumes
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.valkeybuilderextensions.withdatabindmount
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.parameterresourcebuilderextensions.addconnectionstring

C#

Data bind mounts rely on the host machine's filesystem to persist the Valkey data across
container restarts. The data bind mount is mounted at the C:\Valkey\Data on Windows
(or /Valkey/Data on Unix) path on the host machine in the Valkey container. For more
information on data bind mounts, see Docker docs: Bind mounts .

To add persistence to the Valkey resource, call the WithPersistence method with either
the data volume or data bind mount:

C#

var builder = DistributedApplication.CreateBuilder(args);

var cache = builder.AddValkey("cache")
 .WithDataBindMount(
 source: @"C:\Valkey\Data",
 isReadOnly: false);

builder.AddProject<Projects.ExampleProject>()
 .WithReference(cache);

// After adding all resources, run the app...

） Important

Data bind mounts have limited functionality compared to volumes , which
offer better performance, portability, and security, making them more suitable for
production environments. However, bind mounts allow direct access and
modification of files on the host system, ideal for development and testing where
real-time changes are needed.

Add Valkey resource with persistence

var builder = DistributedApplication.CreateBuilder(args);

var cache = builder.AddValkey("cache")
 .WithDataVolume()
 .WithPersistence(
 interval: TimeSpan.FromMinutes(5),
 keysChangedThreshold: 100);

builder.AddProject<Projects.ExampleProject>()
 .WithReference(cache);

https://docs.docker.com/engine/storage/bind-mounts
https://docs.docker.com/engine/storage/bind-mounts
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.valkeybuilderextensions.withpersistence
https://docs.docker.com/engine/storage/bind-mounts/
https://docs.docker.com/engine/storage/bind-mounts/
https://docs.docker.com/engine/storage/volumes/
https://docs.docker.com/engine/storage/volumes/

The preceding code adds persistence to the Redis resource by taking snapshots of the
Valkey data at a specified interval and threshold. The interval is time between snapshot
exports and the keysChangedThreshold is the number of key change operations required
to trigger a snapshot. For more information on persistence, see Redis docs:
Persistence .

The Redis hosting integration automatically adds a health check for the appropriate
resource type. The health check verifies that the server is running and that a connection
can be established to it.

The hosting integration relies on the 📦 AspNetCore.HealthChecks.Redis NuGet
package.

To get started with the .NET Aspire Redis distributed caching integration, install the 📦
Aspire.StackExchange.Redis.DistributedCaching NuGet package in the client-
consuming project, i.e., the project for the application that uses the Redis distributed
caching client. The Redis client integration registers an IDistributedCache instance that
you can use to interact with Redis.

.NET CLI

In the Program.cs file of your client-consuming project, call the
AddRedisDistributedCache extension to register the required services for distributed
caching and add a IDistributedCache for use via the dependency injection container.

C#

// After adding all resources, run the app...

Hosting integration health checks

Client integration

.NET CLI

dotnet add package Aspire.StackExchange.Redis.DistributedCaching

Add Redis client

https://redis.io/topics/persistence
https://redis.io/topics/persistence
https://redis.io/topics/persistence
https://www.nuget.org/packages/AspNetCore.HealthChecks.Redis
https://www.nuget.org/packages/AspNetCore.HealthChecks.Redis
https://www.nuget.org/packages/Aspire.StackExchange.Redis.DistributedCaching
https://www.nuget.org/packages/Aspire.StackExchange.Redis.DistributedCaching
https://www.nuget.org/packages/Aspire.StackExchange.Redis.DistributedCaching
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.caching.distributed.idistributedcache
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.aspireredisdistributedcacheextensions.addredisdistributedcache
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.caching.distributed.idistributedcache

You can then retrieve the IDistributedCache instance using dependency injection. For
example, to retrieve the cache from a service:

C#

For more information on dependency injection, see .NET dependency injection.

There might be situations where you want to register multiple IDistributedCache
instances with different connection names. To register keyed Redis clients, call the
AddKeyedRedisDistributedCache method:

C#

Then you can retrieve the IDistributedCache instances using dependency injection. For
example, to retrieve the connection from an example service:

C#

builder.AddRedisDistributedCache(connectionName: "cache");

 Tip

The connectionName parameter must match the name used when adding the Valkey
resource in the app host project. For more information, see Add Valkey resource.

public class ExampleService(IDistributedCache cache)
{
 // Use cache...
}

Add keyed Redis client

builder.AddKeyedRedisDistributedCache(name: "chat");
builder.AddKeyedRedisDistributedCache(name: "product");

public class ExampleService(
 [FromKeyedServices("chat")] IDistributedCache chatCache,
 [FromKeyedServices("product")] IDistributedCache productCache)
{
 // Use caches...
}

https://learn.microsoft.com/en-us/dotnet/core/extensions/dependency-injection
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.aspireredisdistributedcacheextensions.addkeyedredisdistributedcache

For more information on keyed services, see .NET dependency injection: Keyed services.

The .NET Aspire Redis distributed caching integration provides multiple options to
configure the Redis connection based on the requirements and conventions of your
project.

When using a connection string from the ConnectionStrings configuration section, you
can provide the name of the connection string when calling
builder.AddRedisDistributedCache :

C#

And then the connection string will be retrieved from the ConnectionStrings
configuration section:

JSON

For more information on how to format this connection string, see the Stack Exchange
Redis configuration docs .

The .NET Aspire Stack Exchange Redis distributed caching integration supports
Microsoft.Extensions.Configuration. It loads the StackExchangeRedisSettings from
configuration by using the Aspire:StackExchange:Redis key. Example appsettings.json
that configures some of the options:

JSON

Configuration

Use a connection string

builder.AddRedisDistributedCache("cache");

{
 "ConnectionStrings": {
 "cache": "localhost:6379"
 }
}

Use configuration providers

{
 "Aspire": {

https://learn.microsoft.com/en-us/dotnet/core/extensions/dependency-injection#keyed-services
https://stackexchange.github.io/StackExchange.Redis/Configuration.html#basic-configuration-strings
https://stackexchange.github.io/StackExchange.Redis/Configuration.html#basic-configuration-strings
https://stackexchange.github.io/StackExchange.Redis/Configuration.html#basic-configuration-strings
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration
https://learn.microsoft.com/en-us/dotnet/api/aspire.stackexchange.redis.stackexchangeredissettings

For the complete Redis distributed caching client integration JSON schema, see
Aspire.StackExchange.Redis.DistributedCaching/ConfigurationSchema.json .

You can also pass the Action<StackExchangeRedisSettings> delegate to set up some or
all the options inline, for example to configure DisableTracing :

C#

You can also set up the ConfigurationOptions using the Action<ConfigurationOptions>
configureOptions delegate parameter of the AddRedisDistributedCache method. For
example to set the connection timeout:

C#

By default, .NET Aspire client integrations have health checks enabled for all services.
Similarly, many .NET Aspire hosting integrations also enable health check endpoints. For
more information, see:

.NET app health checks in C#

 "StackExchange": {
 "Redis": {
 "ConfigurationOptions": {
 "ConnectTimeout": 3000,
 "ConnectRetry": 2
 },
 "DisableHealthChecks": true,
 "DisableTracing": false
 }
 }
 }
}

Use inline delegates

builder.AddRedisDistributedCache(
 "cache",
 settings => settings.DisableTracing = true);

builder.AddRedisDistributedCache(
 "cache",
 null,
 static options => options.ConnectTimeout = 3_000);

Client integration health checks

https://github.com/dotnet/aspire/blob/v9.1.0/src/Components/Aspire.StackExchange.Redis.DistributedCaching/ConfigurationSchema.json
https://github.com/dotnet/aspire/blob/v9.1.0/src/Components/Aspire.StackExchange.Redis.DistributedCaching/ConfigurationSchema.json
https://stackexchange.github.io/StackExchange.Redis/Configuration.html#configuration-options
https://stackexchange.github.io/StackExchange.Redis/Configuration.html#configuration-options
https://learn.microsoft.com/en-us/dotnet/core/diagnostics/diagnostic-health-checks

Health checks in ASP.NET Core

The .NET Aspire Redis distributed caching integration handles the following:

Adds the health check when StackExchangeRedisSettings.DisableHealthChecks is
false , which attempts to connect to the container instance.
Integrates with the /health HTTP endpoint, which specifies all registered health
checks must pass for app to be considered ready to accept traffic.

.NET Aspire integrations automatically set up Logging, Tracing, and Metrics
configurations, which are sometimes known as the pillars of observability. For more
information about integration observability and telemetry, see .NET Aspire integrations
overview. Depending on the backing service, some integrations may only support some
of these features. For example, some integrations support logging and tracing, but not

https://learn.microsoft.com/en-us/aspnet/core/host-and-deploy/health-checks
https://learn.microsoft.com/en-us/dotnet/api/aspire.stackexchange.redis.stackexchangeredissettings.disablehealthchecks#aspire-stackexchange-redis-stackexchangeredissettings-disablehealthchecks
https://stackexchange.github.io/StackExchange.Redis/
https://stackexchange.github.io/StackExchange.Redis/

.NET Aspire integrations

.NET Aspire GitHub repo

*: Redis is a registered trademark of Redis Ltd. Any rights therein are reserved to Redis
Ltd. Any use by Microsoft is for referential purposes only and does not indicate any
sponsorship, endorsement or affiliation between Redis and Microsoft. Return to top?

https://github.com/dotnet/aspire
https://github.com/dotnet/aspire

.NET Aspire Redis® output caching
integration
Article • 02/11/2025

Includes: Hosting integration and Client integration

Learn how to use the .NET Aspire Redis output caching integration. The
Aspire.StackExchange.Redis.OutputCaching client integration is used to register an
ASP.NET Core Output Caching provider backed by a Valkey server with the
docker.io/valkey/valkey container image .

The Valkey hosting integration models a Valkey resource as the ValkeyResource type. To
access this type and APIs that allow you to add it to your 📦 Aspire.Hosting.Valkey
NuGet package in the app host project.

.NET CLI

For more information, see dotnet add package or Manage package dependencies in
.NET applications.

In your app host project, call AddValkey on the builder instance to add a Valkey
resource:

C#

*

Hosting integration

.NET CLI

dotnet add package Aspire.Hosting.Valkey

Add Valkey resource

var builder = DistributedApplication.CreateBuilder(args);

var cache = builder.AddValkey("cache");

builder.AddProject<Projects.ExampleProject>()
 .WithReference(cache);

https://learn.microsoft.com/en-us/aspnet/core/performance/caching/output
https://valkey.io/
https://valkey.io/
https://hub.docker.com/r/valkey/valkey/
https://hub.docker.com/r/valkey/valkey/
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.valkeyresource
https://www.nuget.org/packages/Aspire.Hosting.Valkey
https://www.nuget.org/packages/Aspire.Hosting.Valkey
https://learn.microsoft.com/en-us/dotnet/core/tools/dotnet-add-package
https://learn.microsoft.com/en-us/dotnet/core/tools/dependencies
https://learn.microsoft.com/en-us/dotnet/core/tools/dependencies
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.valkeybuilderextensions.addvalkey

When .NET Aspire adds a container image to the app host, as shown in the preceding
example with the docker.io/valkey/valkey image, it creates a new Valkey instance on
your local machine. A reference to your Valkey resource (the cache variable) is added to
the ExampleProject .

The WithReference method configures a connection in the ExampleProject named
"cache" . For more information, see Container resource lifecycle.

To add a data volume to the Valkey resource, call the AddValkey method on the Valkey
resource:

C#

The data volume is used to persist the Valkey data outside the lifecycle of its container.
The data volume is mounted at the /data path in the Valkey container and when a name
parameter isn't provided, the name is generated at random. For more information on
data volumes and details on why they're preferred over bind mounts, see Docker docs:
Volumes .

To add a data bind mount to the Valkey resource, call the WithDataBindMount method:

// After adding all resources, run the app...

 Tip

If you'd rather connect to an existing Valkey instance, call AddConnectionString
instead. For more information, see Reference existing resources.

Add Valkey resource with data volume

var builder = DistributedApplication.CreateBuilder(args);

var cache = builder.AddValkey("cache")
 .WithDataVolume(isReadOnly: false);

builder.AddProject<Projects.ExampleProject>()
 .WithReference(cache);

// After adding all resources, run the app...

Add Valkey resource with data bind mount

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.resourcebuilderextensions.withreference
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.valkeybuilderextensions.addvalkey
https://docs.docker.com/engine/storage/volumes
https://docs.docker.com/engine/storage/volumes
https://docs.docker.com/engine/storage/volumes
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.valkeybuilderextensions.withdatabindmount
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.parameterresourcebuilderextensions.addconnectionstring

C#

Data bind mounts rely on the host machine's filesystem to persist the Valkey data across
container restarts. The data bind mount is mounted at the C:\Valkey\Data on Windows
(or /Valkey/Data on Unix) path on the host machine in the Valkey container. For more
information on data bind mounts, see Docker docs: Bind mounts .

To add persistence to the Valkey resource, call the WithPersistence method with either
the data volume or data bind mount:

C#

var builder = DistributedApplication.CreateBuilder(args);

var cache = builder.AddValkey("cache")
 .WithDataBindMount(
 source: @"C:\Valkey\Data",
 isReadOnly: false);

builder.AddProject<Projects.ExampleProject>()
 .WithReference(cache);

// After adding all resources, run the app...

） Important

Data bind mounts have limited functionality compared to volumes , which
offer better performance, portability, and security, making them more suitable for
production environments. However, bind mounts allow direct access and
modification of files on the host system, ideal for development and testing where
real-time changes are needed.

Add Valkey resource with persistence

var builder = DistributedApplication.CreateBuilder(args);

var cache = builder.AddValkey("cache")
 .WithDataVolume()
 .WithPersistence(
 interval: TimeSpan.FromMinutes(5),
 keysChangedThreshold: 100);

builder.AddProject<Projects.ExampleProject>()
 .WithReference(cache);

https://docs.docker.com/engine/storage/bind-mounts
https://docs.docker.com/engine/storage/bind-mounts
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.valkeybuilderextensions.withpersistence
https://docs.docker.com/engine/storage/bind-mounts/
https://docs.docker.com/engine/storage/bind-mounts/
https://docs.docker.com/engine/storage/volumes/
https://docs.docker.com/engine/storage/volumes/

The preceding code adds persistence to the Redis resource by taking snapshots of the
Valkey data at a specified interval and threshold. The interval is time between snapshot
exports and the keysChangedThreshold is the number of key change operations required
to trigger a snapshot. For more information on persistence, see Redis docs:
Persistence .

The Redis hosting integration automatically adds a health check for the appropriate
resource type. The health check verifies that the server is running and that a connection
can be established to it.

The hosting integration relies on the 📦 AspNetCore.HealthChecks.Redis NuGet
package.

To get started with the .NET Aspire Stack Exchange Redis output caching client
integration, install the 📦 Aspire.StackExchange.Redis.OutputCaching NuGet package
in the client-consuming project, that is, the project for the application that uses the
output caching client. The Redis output caching client integration registers services
required for enabling CacheOutput method calls and [OutputCache] attribute usage to
rely on Redis as its caching mechanism.

.NET CLI

In the Program.cs file of your client-consuming project, call the AddRedisOutputCache
extension method on any IHostApplicationBuilder to register the required services for
output caching.

C#

// After adding all resources, run the app...

Hosting integration health checks

Client integration

.NET CLI

dotnet add package Aspire.StackExchange.Redis.OutputCaching

Add output caching

https://redis.io/topics/persistence
https://redis.io/topics/persistence
https://redis.io/topics/persistence
https://www.nuget.org/packages/AspNetCore.HealthChecks.Redis
https://www.nuget.org/packages/AspNetCore.HealthChecks.Redis
https://www.nuget.org/packages/Aspire.StackExchange.Redis.OutputCaching
https://www.nuget.org/packages/Aspire.StackExchange.Redis.OutputCaching
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.outputcacheconventionbuilderextensions.cacheoutput
https://learn.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.outputcaching.outputcacheattribute
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.aspireredisoutputcacheextensions.addredisoutputcache
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.ihostapplicationbuilder

Add the middleware to the request processing pipeline by calling
UseOutputCache(IApplicationBuilder):

C#

For minimal API apps, configure an endpoint to do caching by calling CacheOutput, or
by applying the OutputCacheAttribute, as shown in the following examples:

C#

For apps with controllers, apply the [OutputCache] attribute to the action method. For
Razor Pages apps, apply the attribute to the Razor page class.

The .NET Aspire Stack Exchange Redis output caching integration provides multiple
options to configure the Redis connection based on the requirements and conventions
of your project.

When using a connection string from the ConnectionStrings configuration section, you
can provide the name of the connection string when calling AddRedisOutputCache:

builder.AddRedisOutputCache(connectionName: "cache");

 Tip

The connectionName parameter must match the name used when adding the Valkey
resource in the app host project. For more information, see Add Valkey resource.

var app = builder.Build();

app.UseOutputCache();

app.MapGet("/cached", () => "Hello world!")
 .CacheOutput();

app.MapGet(
 "/attribute",
 [OutputCache] () => "Hello world!");

Configuration

Use a connection string

https://learn.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.outputcacheapplicationbuilderextensions.useoutputcache#microsoft-aspnetcore-builder-outputcacheapplicationbuilderextensions-useoutputcache(microsoft-aspnetcore-builder-iapplicationbuilder)
https://learn.microsoft.com/en-us/aspnet/core/fundamentals/minimal-apis/overview
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.dependencyinjection.outputcacheconventionbuilderextensions.cacheoutput
https://learn.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.outputcaching.outputcacheattribute
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.aspireredisoutputcacheextensions.addredisoutputcache

C#

Then the connection string will be retrieved from the ConnectionStrings configuration
section:

JSON

For more information on how to format this connection string, see the Stack Exchange
Redis configuration docs .

The .NET Aspire Stack Exchange Redis output caching integration supports
Microsoft.Extensions.Configuration. It loads the StackExchangeRedisSettings from
configuration by using the Aspire:StackExchange:Redis key. Example appsettings.json
that configures some of the options:

JSON

For the complete Redis output caching client integration JSON schema, see
Aspire.StackExchange.Redis.OutputCaching/ConfigurationSchema.json .

builder.AddRedisOutputCache(connectionName: "cache");

{
 "ConnectionStrings": {
 "cache": "localhost:6379"
 }
}

Use configuration providers

{
 "Aspire": {
 "StackExchange": {
 "Redis": {
 "ConfigurationOptions": {
 "ConnectTimeout": 3000,
 "ConnectRetry": 2
 },
 "DisableHealthChecks": true,
 "DisableTracing": false
 }
 }
 }
}

https://stackexchange.github.io/StackExchange.Redis/Configuration.html#basic-configuration-strings
https://stackexchange.github.io/StackExchange.Redis/Configuration.html#basic-configuration-strings
https://stackexchange.github.io/StackExchange.Redis/Configuration.html#basic-configuration-strings
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration
https://learn.microsoft.com/en-us/dotnet/api/aspire.stackexchange.redis.stackexchangeredissettings
https://github.com/dotnet/aspire/blob/v9.1.0/src/Components/Aspire.StackExchange.Redis.OutputCaching/ConfigurationSchema.json
https://github.com/dotnet/aspire/blob/v9.1.0/src/Components/Aspire.StackExchange.Redis.OutputCaching/ConfigurationSchema.json

You can also pass the Action<StackExchangeRedisSettings> configurationSettings
delegate to set up some or all the options inline, for example to disable health checks
from code:

C#

You can also set up the ConfigurationOptions using the Action<ConfigurationOptions>
configureOptions delegate parameter of the AddRedisOutputCache method. For
example to set the connection timeout:

C#

By default, .NET Aspire client integrations have health checks enabled for all services.
Similarly, many .NET Aspire hosting integrations also enable health check endpoints. For
more information, see:

.NET app health checks in C#
Health checks in ASP.NET Core

The .NET Aspire Stack Exchange Redis output caching integration handles the following:

Adds the health check when StackExchangeRedisSettings.DisableHealthChecks is
false , which attempts to connect to the container instance.
Integrates with the /health HTTP endpoint, which specifies all registered health
checks must pass for app to be considered ready to accept traffic.

.NET Aspire integrations automatically set up Logging, Tracing, and Metrics
configurations, which are sometimes known as the pillars of observability. For more
information about integration observability and telemetry, see .NET Aspire integrations

Use inline delegates

builder.AddRedisOutputCache(
 "cache",
 static settings => settings.DisableHealthChecks = true);

builder.AddRedisOutputCache(
 "cache",
 static settings => settings.ConnectTimeout = 3_000);

Client integration health checks

Observability and telemetry

https://stackexchange.github.io/StackExchange.Redis/Configuration.html#configuration-options
https://stackexchange.github.io/StackExchange.Redis/Configuration.html#configuration-options
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.aspireredisoutputcacheextensions.addredisoutputcache
https://learn.microsoft.com/en-us/dotnet/core/diagnostics/diagnostic-health-checks
https://learn.microsoft.com/en-us/aspnet/core/host-and-deploy/health-checks
https://learn.microsoft.com/en-us/dotnet/api/aspire.stackexchange.redis.stackexchangeredissettings.disablehealthchecks#aspire-stackexchange-redis-stackexchangeredissettings-disablehealthchecks

overview. Depending on the backing service, some integrations may only support some
of these features. For example, some integrations support logging and tracing, but not
metrics. Telemetry features can also be disabled using the techniques presented in the
Configuration section.

The .NET Aspire Stack Exchange Redis output caching integration uses the following Log
categories:

Aspire.StackExchange.Redis

Microsoft.AspNetCore.OutputCaching.StackExchangeRedis

The .NET Aspire Stack Exchange Redis output caching integration will emit the following
Tracing activities using OpenTelemetry:

OpenTelemetry.Instrumentation.StackExchangeRedis

The .NET Aspire Stack Exchange Redis output caching integration currently doesn't
support metrics by default due to limitations with the StackExchange.Redis library.

Stack Exchange Redis docs
.NET Aspire integrations
.NET Aspire GitHub repo

*: Redis is a registered trademark of Redis Ltd. Any rights therein are reserved to Redis
Ltd. Any use by Microsoft is for referential purposes only and does not indicate any
sponsorship, endorsement or affiliation between Redis and Microsoft. Return to top?

Logging

Tracing

Metrics

See also

https://stackexchange.github.io/StackExchange.Redis/
https://stackexchange.github.io/StackExchange.Redis/
https://github.com/dotnet/aspire
https://github.com/dotnet/aspire

.NET Aspire Seq integration
Article • 02/11/2025

Includes: Hosting integration and Client integration

Seq is a self-hosted search and analysis server that handles structured application logs
and trace files. It includes a JSON event store and a simple query language that make it
easy to use. You can use the .NET Aspire Seq integration to send OpenTelemetry
Protocol (OTLP) data to Seq. The integration supports persistent logs and traces across
application restarts.

During development, .NET Aspire runs and connects to the datalust/seq container
image .

The Seq hosting integration models the server as the SeqResource type. To access this
type and the API, add the 📦 Aspire.Hosting.Seq NuGet package in the app host
project.

.NET CLI

For more information, see dotnet add package or Manage package dependencies in
.NET applications.

In your app host project, call AddSeq to add and return a Seq resource builder.

C#

Hosting integration

.NET CLI

dotnet add package Aspire.Hosting.Seq

Add a Seq resource

var builder = DistributedApplication.CreateBuilder(args);

var seq = builder.AddSeq("seq")
 .ExcludeFromManifest()
 .WithLifetime(ContainerLifetime.Persistent)
 .WithEnvironment("ACCEPT_EULA"

https://datalust.co/seq
https://datalust.co/seq
https://hub.docker.com/r/datalust/seq
https://hub.docker.com/r/datalust/seq
https://hub.docker.com/r/datalust/seq
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.seqresource
https://www.nuget.org/packages/Aspire.Hosting.Seq
https://www.nuget.org/packages/Aspire.Hosting.Seq
https://learn.microsoft.com/en-us/dotnet/core/tools/dotnet-add-package
https://learn.microsoft.com/en-us/dotnet/core/tools/dependencies
https://learn.microsoft.com/en-us/dotnet/core/tools/dependencies
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.seqbuilderextensions.addseq

You must accept the Seq EULA for Seq to start. To accept the agreement in code, pass
the environment variable ACCEPT_EULA to the Seq container, and set its value to Y . The
above code passes this variable in the chained call to WithEnvironment.

Seq shouldn't be part of the .NET Aspire deployment manifest, hence the chained call to
ExcludeFromManifest. It's recommended you set up a secure production Seq server
outside of .NET Aspire for your production environment.

Register Seq with a data directory in your app host project to retain Seq's data and
configuration across application restarts:

C#

The directory specified must already exist.

To add a data volume to the Seq resource, call the WithDataVolume method on the Seq
resource:

var myService = builder.AddProject<Projects.ExampleProject>()
 .WithReference(seq)
 .WaitFor(seq);

// After adding all resources, run the app...

７ Note

The Seq container may be slow to start, so it's best to use a persistent lifetime to
avoid unnecessary restarts. For more information, see Container resource lifetime.

Accept the Seq End User License Agreement (EULA)

Seq in the .NET Aspire manifest

Persistent logs and traces

var seq = builder.AddSeq("seq", seqDataDirectory: "./seqdata")
 .ExcludeFromManifest()
 .WithLifetime(ContainerLifetime.Persistent);

Add a Seq resource with a data volume

https://datalust.co/doc/eula-current.pdf
https://datalust.co/doc/eula-current.pdf
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.resourcebuilderextensions.withenvironment
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.resourcebuilderextensions.excludefrommanifest
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.seqbuilderextensions.withdatavolume

C#

The data volume is used to persist the Seq data outside the lifecycle of its container. The
data volume is mounted at the /data path in the Seq container and when a name
parameter isn't provided, the name is generated at random. For more information on
data volumes and details on why they're preferred over bind mounts, see Docker docs:
Volumes .

To add a data bind mount to the Seq resource, call the WithDataBindMount method:

C#

var builder = DistributedApplication.CreateBuilder(args);

var seq = builder.AddSeq("seq")
 .WithDataVolume()
 .ExcludeFromManifest()
 .WithLifetime(ContainerLifetime.Persistent);

var myService = builder.AddProject<Projects.ExampleProject>()
 .WithReference(seq)
 .WaitFor(seq);

Add Seq resource with data bind mount

var builder = DistributedApplication.CreateBuilder(args);

var seq = builder.AddSeq("seq")
 .WithDataBindMount(source: @"C:\Data")
 .ExcludeFromManifest()
 .WithLifetime(ContainerLifetime.Persistent);

var myService = builder.AddProject<Projects.ExampleProject>()
 .WithReference(seq)
 .WaitFor(seq);

） Important

Data bind mounts have limited functionality compared to volumes , which
offer better performance, portability, and security, making them more suitable for
production environments. However, bind mounts allow direct access and
modification of files on the host system, ideal for development and testing where
real-time changes are needed.

https://docs.docker.com/engine/storage/volumes
https://docs.docker.com/engine/storage/volumes
https://docs.docker.com/engine/storage/volumes
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.seqbuilderextensions.withdatabindmount
https://docs.docker.com/engine/storage/bind-mounts/
https://docs.docker.com/engine/storage/bind-mounts/
https://docs.docker.com/engine/storage/volumes/
https://docs.docker.com/engine/storage/volumes/

Data bind mounts rely on the host machine's filesystem to persist the Seq data across
container restarts. The data bind mount is mounted at the C:\Data on Windows (or
/Data on Unix) path on the host machine in the Seq container. For more information on
data bind mounts, see Docker docs: Bind mounts .

To get started with the .NET Aspire Seq client integration, install the 📦 Aspire.Seq
NuGet package in the client-consuming project, that is, the project for the application
that uses the Seq client.

.NET CLI

In the Program.cs file of your client-consuming project, call the AddSeqEndpoint
extension method to register OpenTelemetry Protocol exporters to send logs and traces
to Seq and the .NET Aspire Dashboard. The method takes a connection name
parameter.

C#

Client integration

.NET CLI

dotnet add package Aspire.Seq

Add a Seq client

builder.AddSeqEndpoint(connectionName: "seq");

 Tip

The connectionName parameter must match the name used when adding the Seq
resource in the app host project. In other words, when you call AddSeq and provide
a name of seq that same name should be used when calling AddSeqEndpoint . For
more information, see Add a Seq resource.

Configuration

https://docs.docker.com/engine/storage/bind-mounts
https://docs.docker.com/engine/storage/bind-mounts
https://www.nuget.org/packages/Aspire.Seq
https://www.nuget.org/packages/Aspire.Seq
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.aspireseqextensions.addseqendpoint

The .NET Aspire Seq integration provides multiple options to configure the connection
to Seq based on the requirements and conventions of your project.

The .NET Aspire Seq integration supports Microsoft.Extensions.Configuration. It loads
the SeqSettings from configuration by using the Aspire:Seq key. The following snippet
is an example of an appsettings.json file that configures some of the options:

JSON

For the complete Seq client integration JSON schema, see
Aspire.Seq/ConfigurationSchema.json .

Also you can pass the Action<SeqSettings> configureSettings delegate to set up some
or all the options inline, for example to disable health checks from code:

C#

By default, .NET Aspire client integrations have health checks enabled for all services.
Similarly, many .NET Aspire hosting integrations also enable health check endpoints. For
more information, see:

.NET app health checks in C#
Health checks in ASP.NET Core

Use configuration providers

{
 "Aspire": {
 "Seq": {
 "DisableHealthChecks": true,
 "ServerUrl": "http://localhost:5341"
 }
 }
}

Use inline delegates

builder.AddSeqEndpoint("seq", static settings =>
{
 settings.DisableHealthChecks = true;
 settings.ServerUrl = "http://localhost:5341"
});

Client integration health checks

https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration
https://learn.microsoft.com/en-us/dotnet/api/aspire.seq.seqsettings
https://github.com/dotnet/aspire/blob/v9.1.0/src/Components/Aspire.Microsoft.Data.SqlClient/ConfigurationSchema.json
https://github.com/dotnet/aspire/blob/v9.1.0/src/Components/Aspire.Microsoft.Data.SqlClient/ConfigurationSchema.json
https://learn.microsoft.com/en-us/dotnet/core/diagnostics/diagnostic-health-checks
https://learn.microsoft.com/en-us/aspnet/core/host-and-deploy/health-checks

The .NET Aspire Seq integration handles the following:

Adds the health check when SeqSettings.DisableHealthChecks is false , which
attempts to connect to the Seq server's /health endpoint.
Integrates with the /health HTTP endpoint, which specifies all registered health
checks must pass for app to be considered ready to accept traffic.

.NET Aspire integrations automatically set up Logging, Tracing, and Metrics
configurations, which are sometimes known as the pillars of observability. For more
information about integration observability and telemetry, see .NET Aspire integrations
overview. Depending on the backing service, some integrations may only support some
of these features. For example, some integrations support logging and tracing, but not
metrics. Telemetry features can also be disabled using the techniques presented in the
Configuration section.

The .NET Aspire Seq integration uses the following log categories:

Seq

The .NET Aspire Seq integration doesn't emit tracing activities and or metrics because
it's a telemetry sink, not a telemetry source.

Seq
Seq Query Language
.NET Aspire integrations
.NET Aspire GitHub repo

Observability and telemetry

Logging

Tracing and Metrics

See also

https://learn.microsoft.com/en-us/dotnet/api/aspire.seq.seqsettings.disablehealthchecks#aspire-seq-seqsettings-disablehealthchecks
https://datalust.co/
https://datalust.co/
https://docs.datalust.co/docs/the-seq-query-language
https://docs.datalust.co/docs/the-seq-query-language
https://github.com/dotnet/aspire
https://github.com/dotnet/aspire

.NET Aspire SQL Server integration
Article • 02/11/2025

Includes: Hosting integration and Client integration

SQL Server is a relational database management system developed by Microsoft. The
.NET Aspire SQL Server integration enables you to connect to existing SQL Server
instances or create new instances from .NET with the mcr.microsoft.com/mssql/server
container image .

The SQL Server hosting integration models the server as the SqlServerServerResource
type and the database as the SqlServerDatabaseResource type. To access these types
and APIs, add the 📦 Aspire.Hosting.SqlServer NuGet package in the app host
project.

.NET CLI

For more information, see dotnet add package or Manage package dependencies in
.NET applications.

In your app host project, call AddSqlServer to add and return a SQL Server resource
builder. Chain a call to the returned resource builder to AddDatabase, to add SQL Server
database resource.

C#

Hosting integration

.NET CLI

dotnet add package Aspire.Hosting.SqlServer

Add SQL Server resource and database resource

var builder = DistributedApplication.CreateBuilder(args);

var sql = builder.AddSqlServer("sql")
 .WithLifetime(ContainerLifetime.Persistent);

var db = sql.AddDatabase("database");

builder.AddProject<Projects.ExampleProject>()

https://www.microsoft.com/sql-server
https://www.microsoft.com/sql-server
https://hub.docker.com/_/microsoft-mssql-server
https://hub.docker.com/_/microsoft-mssql-server
https://hub.docker.com/_/microsoft-mssql-server
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.sqlserverserverresource
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.sqlserverdatabaseresource
https://www.nuget.org/packages/Aspire.Hosting.SqlServer
https://www.nuget.org/packages/Aspire.Hosting.SqlServer
https://learn.microsoft.com/en-us/dotnet/core/tools/dotnet-add-package
https://learn.microsoft.com/en-us/dotnet/core/tools/dependencies
https://learn.microsoft.com/en-us/dotnet/core/tools/dependencies
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.sqlserverbuilderextensions.addsqlserver
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.sqlserverbuilderextensions.adddatabase

When .NET Aspire adds a container image to the app host, as shown in the preceding
example with the mcr.microsoft.com/mssql/server image, it creates a new SQL Server
instance on your local machine. A reference to your SQL Server resource builder (the
sql variable) is used to add a database. The database is named database and then
added to the ExampleProject . The SQL Server resource includes default credentials with
a username of sa and a random password generated using the
CreateDefaultPasswordParameter method.

When the app host runs, the password is stored in the app host's secret store. It's added
to the Parameters section, for example:

JSON

The name of the parameter is sql-password , but really it's just formatting the resource
name with a -password suffix. For more information, see Safe storage of app secrets in
development in ASP.NET Core and Add SQL Server resource with parameters.

The WithReference method configures a connection in the ExampleProject named
database .

 .WithReference(db)
 .WaitFor(db);

// After adding all resources, run the app...

７ Note

The SQL Server container is slow to start, so it's best to use a persistent lifetime to
avoid unnecessary restarts. For more information, see Container resource lifetime.

{
 "Parameters:sql-password": "<THE_GENERATED_PASSWORD>"
}

 Tip

If you'd rather connect to an existing SQL Server, call AddConnectionString
instead. For more information, see Reference existing resources.

Add SQL Server resource with data volume

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.parameterresourcebuilderextensions.createdefaultpasswordparameter
https://learn.microsoft.com/en-us/aspnet/core/security/app-secrets
https://learn.microsoft.com/en-us/aspnet/core/security/app-secrets
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.resourcebuilderextensions.withreference
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.parameterresourcebuilderextensions.addconnectionstring

To add a data volume to the SQL Server resource, call the WithDataVolume method on
the SQL Server resource:

C#

The data volume is used to persist the SQL Server data outside the lifecycle of its
container. The data volume is mounted at the /var/opt/mssql path in the SQL Server
container and when a name parameter isn't provided, the name is generated at random.
For more information on data volumes and details on why they're preferred over bind
mounts, see Docker docs: Volumes .

To add a data bind mount to the SQL Server resource, call the WithDataBindMount
method:

C#

var builder = DistributedApplication.CreateBuilder(args);

var sql = builder.AddSqlServer("sql")
 .WithDataVolume();

var db = sql.AddDatabase("database");

builder.AddProject<Projects.ExampleProject>()
 .WithReference(db)
 .WaitFor(db);

// After adding all resources, run the app...

２ Warning

The password is stored in the data volume. When using a data volume and if the
password changes, it will not work until you delete the volume.

Add SQL Server resource with data bind mount

var builder = DistributedApplication.CreateBuilder(args);

var sql = builder.AddSqlServer("sql")
 .WithDataBindMount(source: @"C:\SqlServer\Data");

var db = sql.AddDatabase("database");

builder.AddProject<Projects.ExampleProject>()
 .WithReference(db)
 .WaitFor(db);

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.sqlserverbuilderextensions.withdatavolume
https://docs.docker.com/engine/storage/volumes
https://docs.docker.com/engine/storage/volumes
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.sqlserverbuilderextensions.withdatabindmount

Data bind mounts rely on the host machine's filesystem to persist the SQL Server data
across container restarts. The data bind mount is mounted at the C:\SqlServer\Data on
Windows (or /SqlServer/Data on Unix) path on the host machine in the SQL Server
container. For more information on data bind mounts, see Docker docs: Bind mounts .

When you want to explicitly provide the password used by the container image, you can
provide these credentials as parameters. Consider the following alternative example:

C#

For more information on providing parameters, see External parameters.

When the .NET Aspire app host runs, the server's database resources can be accessed
from external tools, such as SQL Server Management Studio (SSMS) or MSSQL for Visual
Studio Code. The connection string for the database resource is available in the

// After adding all resources, run the app...

） Important

Data bind mounts have limited functionality compared to volumes , which
offer better performance, portability, and security, making them more suitable for
production environments. However, bind mounts allow direct access and
modification of files on the host system, ideal for development and testing where
real-time changes are needed.

Add SQL Server resource with parameters

var builder = DistributedApplication.CreateBuilder(args);

var password = builder.AddParameter("password", secret: true);

var sql = builder.AddSqlServer("sql", password);
var db = sql.AddDatabase("database");

builder.AddProject<Projects.ExampleProject>()
 .WithReference(db)
 .WaitFor(db);

// After adding all resources, run the app...

Connect to database resources

https://docs.docker.com/engine/storage/bind-mounts
https://docs.docker.com/engine/storage/bind-mounts
https://learn.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms
https://learn.microsoft.com/en-us/sql/tools/visual-studio-code-extensions/mssql/mssql-extension-visual-studio-code
https://learn.microsoft.com/en-us/sql/tools/visual-studio-code-extensions/mssql/mssql-extension-visual-studio-code
https://docs.docker.com/engine/storage/bind-mounts/
https://docs.docker.com/engine/storage/bind-mounts/
https://docs.docker.com/engine/storage/volumes/
https://docs.docker.com/engine/storage/volumes/

dependent resources environment variables and is accessed using the .NET Aspire
dashboard: Resource details pane. The environment variable is named
ConnectionStrings__{name} where {name} is the name of the database resource, in this
example it's database . Use the connection string to connect to the database resource
from external tools. Imagine that you have a database named todos with a single
dbo.Todos table.

To connect to the database resource from SQL Server Management Studio, follow
these steps:

1. Open SSMS.

2. In the Connect to Server dialog, select the Additional Connection Parameters
tab.

3. Paste the connection string into the Additional Connection Parameters field
and select Connect.

4. If you're connected, you can see the database resource in the Object Explorer:

SQL Server Management Studio



https://learn.microsoft.com/en-us/dotnet/aspire/docs/database/includes/media/ssms-new-connection.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/database/includes/media/ssms-new-connection.png#lightbox

For more information, see SQL Server Management Studio: Connect to a server.

The SQL Server hosting integration automatically adds a health check for the SQL Server
resource. The health check verifies that the SQL Server is running and that a connection
can be established to it.

The hosting integration relies on the 📦 AspNetCore.HealthChecks.SqlServer NuGet
package.

To get started with the .NET Aspire SQL Server client integration, install the 📦
Aspire.Microsoft.Data.SqlClient NuGet package in the client-consuming project, that
is, the project for the application that uses the SQL Server client. The SQL Server client
integration registers a SqlConnection instance that you can use to interact with SQL
Server.

.NET CLI



Hosting integration health checks

Client integration

.NET CLI

https://learn.microsoft.com/en-us/sql/ssms/quickstarts/ssms-connect-query-sql-server
https://www.nuget.org/packages/AspNetCore.HealthChecks.SqlServer
https://www.nuget.org/packages/AspNetCore.HealthChecks.SqlServer
https://www.nuget.org/packages/Aspire.Microsoft.Data.SqlClient
https://www.nuget.org/packages/Aspire.Microsoft.Data.SqlClient
https://www.nuget.org/packages/Aspire.Microsoft.Data.SqlClient
https://learn.microsoft.com/en-us/dotnet/api/system.data.sqlclient.sqlconnection
https://learn.microsoft.com/en-us/dotnet/aspire/docs/database/includes/media/ssms-connected.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/database/includes/media/ssms-connected.png#lightbox

In the Program.cs file of your client-consuming project, call the AddSqlServerClient
extension method on any IHostApplicationBuilder to register a SqlConnection for use
via the dependency injection container. The method takes a connection name
parameter.

C#

You can then retrieve the SqlConnection instance using dependency injection. For
example, to retrieve the connection from an example service:

C#

For more information on dependency injection, see .NET dependency injection.

There might be situations where you want to register multiple SqlConnection instances
with different connection names. To register keyed SQL Server clients, call the
AddKeyedSqlServerClient method:

dotnet add package Aspire.Microsoft.Data.SqlClient

Add SQL Server client

builder.AddSqlServerClient(connectionName: "database");

 Tip

The connectionName parameter must match the name used when adding the SQL
Server database resource in the app host project. In other words, when you call
AddDatabase and provide a name of database that same name should be used
when calling AddSqlServerClient . For more information, see Add SQL Server
resource and database resource.

public class ExampleService(SqlConnection connection)
{
 // Use connection...
}

Add keyed SQL Server client

https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.aspiresqlserversqlclientextensions.addsqlserverclient
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.ihostapplicationbuilder
https://learn.microsoft.com/en-us/dotnet/api/microsoft.data.sqlclient.sqlconnection
https://learn.microsoft.com/en-us/dotnet/core/extensions/dependency-injection
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.aspiresqlserversqlclientextensions.addkeyedsqlserverclient

C#

Then you can retrieve the SqlConnection instances using dependency injection. For
example, to retrieve the connection from an example service:

C#

For more information on keyed services, see .NET dependency injection: Keyed services.

The .NET Aspire SQL Server integration provides multiple options to configure the
connection based on the requirements and conventions of your project.

When using a connection string from the ConnectionStrings configuration section, you
can provide the name of the connection string when calling the AddSqlServerClient
method:

C#

Then the connection string is retrieved from the ConnectionStrings configuration
section:

builder.AddKeyedSqlServerClient(name: "mainDb");
builder.AddKeyedSqlServerClient(name: "loggingDb");

） Important

When using keyed services, it's expected that your SQL Server resource configured
two named databases, one for the mainDb and one for the loggingDb .

public class ExampleService(
 [FromKeyedServices("mainDb")] SqlConnection mainDbConnection,
 [FromKeyedServices("loggingDb")] SqlConnection loggingDbConnection)
{
 // Use connections...
}

Configuration

Use a connection string

builder.AddSqlServerClient(connectionName: "sql");

https://learn.microsoft.com/en-us/dotnet/core/extensions/dependency-injection#keyed-services
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.aspiresqlserversqlclientextensions.addsqlserverclient

JSON

For more information on how to format this connection string, see the
ConnectionString.

The .NET Aspire SQL Server integration supports Microsoft.Extensions.Configuration. It
loads the MicrosoftDataSqlClientSettings from configuration by using the
Aspire:Microsoft:Data:SqlClient key. The following snippet is an example of a
appsettings.json file that configures some of the options:

JSON

For the complete SQL Server client integration JSON schema, see
Aspire.Microsoft.Data.SqlClient/ConfigurationSchema.json .

Also you can pass the Action<MicrosoftDataSqlClientSettings> configureSettings
delegate to set up some or all the options inline, for example to disable health checks
from code:

C#

{
 "ConnectionStrings": {
 "database": "Data Source=myserver;Initial Catalog=master"
 }
}

Use configuration providers

{
 "Aspire": {
 "Microsoft": {
 "Data": {
 "SqlClient": {
 "ConnectionString": "YOUR_CONNECTIONSTRING",
 "DisableHealthChecks": false,
 "DisableMetrics": true
 }
 }
 }
 }
}

Use inline delegates

https://learn.microsoft.com/en-us/dotnet/api/system.data.sqlclient.sqlconnection.connectionstring#remarks
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration
https://learn.microsoft.com/en-us/dotnet/api/aspire.microsoft.data.sqlclient.microsoftdatasqlclientsettings
https://github.com/dotnet/aspire/blob/v8.2.2/src/Components/Aspire.Microsoft.Data.SqlClient/ConfigurationSchema.json
https://github.com/dotnet/aspire/blob/v8.2.2/src/Components/Aspire.Microsoft.Data.SqlClient/ConfigurationSchema.json

By default, .NET Aspire integrations enable health checks for all services. For more
information, see .NET Aspire integrations overview.

The .NET Aspire SQL Server integration:

Adds the health check when MicrosoftDataSqlClientSettings.DisableHealthChecks
is false , which attempts to connect to the SQL Server.
Integrates with the /health HTTP endpoint, which specifies all registered health
checks must pass for app to be considered ready to accept traffic.

.NET Aspire integrations automatically set up Logging, Tracing, and Metrics
configurations, which are sometimes known as the pillars of observability. For more
information about integration observability and telemetry, see .NET Aspire integrations
overview. Depending on the backing service, some integrations may only support some
of these features. For example, some integrations support logging and tracing, but not
metrics. Telemetry features can also be disabled using the techniques presented in the
Configuration section.

The .NET Aspire SQL Server integration currently doesn't enable logging by default due
to limitations of the Microsoft.Data.SqlClient.

The .NET Aspire SQL Server integration emits the following tracing activities using
OpenTelemetry:

OpenTelemetry.Instrumentation.SqlClient

builder.AddSqlServerClient(
 "database",
 static settings => settings.DisableHealthChecks = true);

Client integration health checks

Observability and telemetry

Logging

Tracing

Metrics

https://learn.microsoft.com/en-us/dotnet/api/aspire.microsoft.data.sqlclient.microsoftdatasqlclientsettings.disablehealthchecks#aspire-microsoft-data-sqlclient-microsoftdatasqlclientsettings-disablehealthchecks
https://learn.microsoft.com/en-us/dotnet/api/microsoft.data.sqlclient

The .NET Aspire SQL Server integration will emit the following metrics using
OpenTelemetry:

Microsoft.Data.SqlClient.EventSource
active-hard-connections

hard-connects

hard-disconnects

active-soft-connects

soft-connects

soft-disconnects

number-of-non-pooled-connections

number-of-pooled-connections

number-of-active-connection-pool-groups

number-of-inactive-connection-pool-groups

number-of-active-connection-pools

number-of-inactive-connection-pools

number-of-active-connections

number-of-free-connections

number-of-stasis-connections

number-of-reclaimed-connections

Azure SQL Database
SQL Server
.NET Aspire database containers sample
.NET Aspire integrations
.NET Aspire GitHub repo
Azure SQL & SQL Server Aspire Samples

See also

https://learn.microsoft.com/en-us/azure/azure-sql/database
https://learn.microsoft.com/en-us/sql/sql-server
https://learn.microsoft.com/en-us/samples/dotnet/aspire-samples/aspire-database-containers/
https://github.com/dotnet/aspire
https://github.com/dotnet/aspire
https://github.com/Azure-Samples/azure-sql-db-aspire
https://github.com/Azure-Samples/azure-sql-db-aspire

.NET Aspire Community Toolkit
Article • 03/05/2025

The .NET Aspire Community Toolkit is part of the .NET Foundation . The community
toolkit is a collection of integrations and extensions for .NET Aspire created by the
community. The .NET Aspire team doesn't officially support the integrations and
extensions in the community toolkit. The community provides these tools as-is for
everyone to use and contribute to. You can find the source code for the toolkit on
GitHub .

The community toolkit offers flexible, community-driven integrations that enhance the
.NET Aspire ecosystem. By contributing, you help shape tools that make building cloud-
native applications easier and more versatile.

The community toolkit is a growing project, publishing a set of NuGet packages. It aims
to provide various integrations, both hosting and client alike, that aren't otherwise part
of the official .NET Aspire project. Additionally, the community toolkit packages various
extensions for popular services and platforms. The following sections detail some of the
integrations and extensions currently available in the toolkit.

The Azure Static Web Apps integration enables local emulator support:
📄 .NET Aspire Azure Static Web Apps emulator integration.
📦 CommunityToolkit.Aspire.Hosting.Azure.StaticWebApps .

The Azure Data API Builder integration enables seamless API creation for your
data:
📄 .NET Aspire Azure Data API Builder integration .
📦 CommunityToolkit.Aspire.Hosting.Azure.DataApiBuilder .

The Bun integration provides support for hosting Bun applications:
📄 .NET Aspire Bun hosting integration.
📦 CommunityToolkit.Aspire.Hosting.Bun .

The Golang apps integration provides support for hosting Go applications:
📄 .NET Aspire Go integration.
📦 CommunityToolkit.Aspire.Hosting.Golang .

Why use the toolkit?

What's in the toolkit?

Hosting integrations

https://dotnetfoundation.org/projects/project-detail/.net-aspire-community-toolkit
https://dotnetfoundation.org/projects/project-detail/.net-aspire-community-toolkit
https://github.com/CommunityToolkit/Aspire
https://github.com/CommunityToolkit/Aspire
https://learn.microsoft.com/en-us/azure/static-web-apps/static-web-apps-cli-overview
https://nuget.org/packages/CommunityToolkit.Aspire.Hosting.Azure.StaticWebApps
https://nuget.org/packages/CommunityToolkit.Aspire.Hosting.Azure.StaticWebApps
https://learn.microsoft.com/en-us/azure/data-api-builder/overview
https://github.com/CommunityToolkit/Aspire/tree/main/src/CommunityToolkit.Aspire.Hosting.Azure.DataApiBuilder
https://github.com/CommunityToolkit/Aspire/tree/main/src/CommunityToolkit.Aspire.Hosting.Azure.DataApiBuilder
https://nuget.org/packages/CommunityToolkit.Aspire.Hosting.Azure.DataApiBuilder
https://nuget.org/packages/CommunityToolkit.Aspire.Hosting.Azure.DataApiBuilder
https://bun.sh/
https://bun.sh/
https://nuget.org/packages/CommunityToolkit.Aspire.Hosting.Bun
https://nuget.org/packages/CommunityToolkit.Aspire.Hosting.Bun
https://go.dev/
https://go.dev/
https://nuget.org/packages/CommunityToolkit.Aspire.Hosting.Golang
https://nuget.org/packages/CommunityToolkit.Aspire.Hosting.Golang

The Java integration runs Java code with a local Java Development Kit (JDK) or
using a container:
📄 .NET Aspire Java/Spring hosting integration.
📦 CommunityToolkit.Aspire.Hosting.Java .

The Deno integration provides support for hosting Deno applications and
running tasks.
📄 .NET Aspire Deno hosting integration .
📦 CommunityToolkit.Aspire.Hosting.Deno .

The Ollama integration provides extensions and resource definitions, and
support for downloading models as startup.
📄 .NET Aspire Ollama hosting integration.
📦 CommunityToolkit.Aspire.Hosting.Ollama .

The Meilisearch integration enables hosting Meilisearch containers.
📄 .NET Aspire Meilisearch hosting integration.
📦 CommunityToolkit.Aspire.Hosting.Meilisearch .

The Rust apps integration provides support for hosting Rust applications.
📄 .NET Aspire Rust hosting integration.
📦 CommunityToolkit.Aspire.Hosting.Rust .

The SQLite integration provides support for hosting SQLite databases.
📄 .NET Aspire SQLite hosting integration
📦 CommunityToolkit.Aspire.Hosting.SQLite .

The following client integrations are available in the toolkit:

OllamaSharp is a .NET client for the Ollama API:
📄 .NET Aspire Ollama client integration
📦 CommunityToolkit.Aspire.OllamaSharp

Meilisearch is a .NET client for the Meilisearch API:
📄 .NET Aspire Meilisearch client integration
📦 CommunityToolkit.Aspire.Meilisearch

The SQLite integration provides support for hosting SQLite databases.
📄 .NET Aspire SQLite hosting integration
📦 CommunityToolkit.Aspire.Hosting.SQLite .

The SQLite Entity Framework integration provides support for hosting SQLite
databases with Entity Framework.
📄 .NET Aspire SQLite EF hosting integration
📦 CommunityToolkit.Aspire.Microsoft.EntityFrameworkCore.Sqlite .

Client integrations

 Tip

https://www.java.com/
https://www.java.com/
https://nuget.org/packages/CommunityToolkit.Aspire.Hosting.Java
https://nuget.org/packages/CommunityToolkit.Aspire.Hosting.Java
https://deno.com/
https://deno.com/
https://github.com/CommunityToolkit/Aspire/tree/main/src/CommunityToolkit.Aspire.Hosting.Deno
https://github.com/CommunityToolkit/Aspire/tree/main/src/CommunityToolkit.Aspire.Hosting.Deno
https://nuget.org/packages/CommunityToolkit.Aspire.Hosting.Deno
https://nuget.org/packages/CommunityToolkit.Aspire.Hosting.Deno
https://ollama.com/
https://ollama.com/
https://nuget.org/packages/CommunityToolkit.Aspire.Hosting.Ollama
https://nuget.org/packages/CommunityToolkit.Aspire.Hosting.Ollama
https://www.meilisearch.com/
https://www.meilisearch.com/
https://nuget.org/packages/CommunityToolkit.Aspire.Hosting.Meilisearch
https://nuget.org/packages/CommunityToolkit.Aspire.Hosting.Meilisearch
https://www.rust-lang.org/
https://www.rust-lang.org/
https://nuget.org/packages/CommunityToolkit.Aspire.Hosting.Rust
https://nuget.org/packages/CommunityToolkit.Aspire.Hosting.Rust
https://www.sqlite.org/index.html
https://www.sqlite.org/index.html
https://nuget.org/packages/CommunityToolkit.Aspire.Hosting.SQLite
https://nuget.org/packages/CommunityToolkit.Aspire.Hosting.SQLite
https://nuget.org/packages/CommunityToolkit.Aspire.OllamaSharp
https://nuget.org/packages/CommunityToolkit.Aspire.OllamaSharp
https://nuget.org/packages/CommunityToolkit.Aspire.Meilisearch
https://nuget.org/packages/CommunityToolkit.Aspire.Meilisearch
https://www.sqlite.org/index.html
https://www.sqlite.org/index.html
https://nuget.org/packages/CommunityToolkit.Aspire.Hosting.SQLite
https://nuget.org/packages/CommunityToolkit.Aspire.Hosting.SQLite
https://www.nuget.org/packages/Microsoft.EntityFrameworkCore.Sqlite
https://www.nuget.org/packages/Microsoft.EntityFrameworkCore.Sqlite
https://nuget.org/packages/CommunityToolkit.Aspire.Microsoft.EntityFrameworkCore.Sqlite
https://nuget.org/packages/CommunityToolkit.Aspire.Microsoft.EntityFrameworkCore.Sqlite

To expand the functionality provided by the .NET Aspire integrations, the Community
Toolkit also provides extension packages for some hosting integrations. The following
extensions are available in the toolkit:

📦 CommunityToolkit.Aspire.Hosting.NodeJS.Extensions
📄 Docs
📦 CommunityToolkit.Aspire.Hosting.SqlServer.Extensions
📄 Docs
📦 CommunityToolkit.Aspire.Hosting.PostgreSQL.Extensions
📄 Docs
📦 CommunityToolkit.Aspire.Hosting.Redis.Extensions
📄 Docs
📦 CommunityToolkit.Aspire.Hosting.MongoDB.Extensions
📄 Docs

If you're not seeing an integration or extension you need, you can contribute to the
toolkit by creating your own integration and submitting a pull request. For more
information, see How to collaborate.

The community toolkit is an open-source project, and contributions from the
community aren't only welcomed, but encouraged. If you're interested in contributing,
see the contributing guidelines . As part of the .NET Foundation, contributors of the
toolkit must adhere to the .NET Foundation Code of Conduct .

Always check the GitHub repository for the most up-to-date information on the
toolkit.

Extensions

How to collaborate

https://nuget.org/packages/CommunityToolkit.Aspire.Hosting.NodeJS.Extensions
https://nuget.org/packages/CommunityToolkit.Aspire.Hosting.NodeJS.Extensions
https://nuget.org/packages/CommunityToolkit.Aspire.Hosting.SqlServer.Extensions
https://nuget.org/packages/CommunityToolkit.Aspire.Hosting.SqlServer.Extensions
https://nuget.org/packages/CommunityToolkit.Aspire.Hosting.PostgreSQL.Extensions
https://nuget.org/packages/CommunityToolkit.Aspire.Hosting.PostgreSQL.Extensions
https://nuget.org/packages/CommunityToolkit.Aspire.Hosting.Redis.Extensions
https://nuget.org/packages/CommunityToolkit.Aspire.Hosting.Redis.Extensions
https://nuget.org/packages/CommunityToolkit.Aspire.Hosting.MongoDB.Extensions
https://nuget.org/packages/CommunityToolkit.Aspire.Hosting.MongoDB.Extensions
https://github.com/CommunityToolkit/Aspire/blob/main/CONTRIBUTING.md
https://github.com/CommunityToolkit/Aspire/blob/main/CONTRIBUTING.md
https://dotnetfoundation.org/about/policies/code-of-conduct
https://dotnetfoundation.org/about/policies/code-of-conduct
https://github.com/CommunityToolkit/Aspire
https://github.com/CommunityToolkit/Aspire

.NET Aspire Azure Static Web Apps
emulator integration
Article • 10/11/2024

Includes: Hosting integration not Client integration

In this article, you learn how to use the .NET Aspire Azure Static Web Apps emulator
hosting integration to run Azure Static Web Apps locally using the emulator. The
emulator provides support for proxying both the static frontend and the API backend
using resources defined in the app host.

This integration requires the Azure Static Web Apps CLI to run, and only supports
hosting the emulator for local development, not deploying to Azure Static Web Apps.

To get started with the .NET Aspire Azure Static Web Apps emulator hosting integration,
install the 📦 CommunityToolkit.Aspire.Hosting.Azure.StaticWebApps NuGet package
in the AppHost project.

.NET CLI

For more information, see dotnet add package or Manage package dependencies in
.NET applications.

In the Program.cs file of your app host project, define the backend and frontend
resources. Then, call the AddSwaEmulator method to create the emulator and pass the

７ Note

This integration is part of the .NET Aspire Community Toolkit and isn't officially
supported by the .NET Aspire team.

Hosting integration

.NET CLI

dotnet add package CommunityToolkit.Aspire.Hosting.Azure.StaticWebApps

Example usage

https://learn.microsoft.com/en-us/azure/static-web-apps/local-development
https://learn.microsoft.com/en-us/azure/static-web-apps/local-development#get-started
https://nuget.org/packages/CommunityToolkit.Aspire.Hosting.Azure.StaticWebApps
https://nuget.org/packages/CommunityToolkit.Aspire.Hosting.Azure.StaticWebApps
https://learn.microsoft.com/en-us/dotnet/core/tools/dotnet-add-package
https://learn.microsoft.com/en-us/dotnet/core/tools/dependencies
https://learn.microsoft.com/en-us/dotnet/core/tools/dependencies
https://github.com/CommunityToolkit/Aspire
https://github.com/CommunityToolkit/Aspire

resources using the WithAppResource and WithApiResource methods.

C#

The preceding code defines the API and frontend resources and creates an emulator
with the resources. The emulator is then started using the Run method.

Azure Static Web Apps emulator
Azure Static Web Apps
.NET Aspire Community Toolkit GitHub repo
Sample app source code

var builder = DistributedApplication.CreateBuilder(args);

// Define the API resource
var api =
builder.AddProject<Projects.Aspire_CommunityToolkit_StaticWebApps_ApiApp>
("api");

// Define the frontend resource
var web = builder
 .AddNpmApp("web", Path.Combine("..",
"CommunityToolkit.Aspire.StaticWebApps.WebApp"), "dev")
 .WithHttpEndpoint(env: "PORT")
 .WithExternalHttpEndpoints();

// Create a SWA emulator with the frontend and API resources
_ = builder
 .AddSwaEmulator("swa")
 .WithAppResource(web)
 .WithApiResource(api);

builder.Build().Run();

See also

https://learn.microsoft.com/en-us/azure/static-web-apps/local-development
https://learn.microsoft.com/en-us/azure/static-web-apps/
https://github.com/CommunityToolkit/Aspire
https://github.com/CommunityToolkit/Aspire
https://github.com/CommunityToolkit/Aspire/tree/main/examples/swa
https://github.com/CommunityToolkit/Aspire/tree/main/examples/swa

.NET Aspire Bun hosting
Article • 11/20/2024

Includes: Hosting integration not Client integration

Bun is a modern, fast, and lightweight framework for building web applications with
TypeScript. The .NET Aspire Bun hosting integration allows you to host Bun applications
in your .NET Aspire app host project, and provide it to other resources in your
application.

The Bun hosting integration models a Bun application as the
Aspire.Hosting.ApplicationModel.BunAppResource type. To access this type and APIs that
allow you to add it to your app host project, install the 📦
CommunityToolkit.Aspire.Hosting.Bun NuGet package in the app host project.

This integration expects that the Bun executable has already been installed on the host
machine, and that it's available in the system path.

.NET CLI

For more information, see dotnet add package or Manage package dependencies in
.NET applications.

In your app host project, call the Aspire.Hosting.BunAppExtensions.AddBunApp on the
builder instance to add a Bun application resource as shown in the following example:

７ Note

This integration is part of the .NET Aspire Community Toolkit and isn't officially
supported by the .NET Aspire team.

Hosting integration

.NET CLI

dotnet add package CommunityToolkit.Aspire.Hosting.Bun

Add a Bun resource

https://bun.sh/
https://bun.sh/
https://nuget.org/packages/CommunityToolkit.Aspire.Hosting.Bun
https://nuget.org/packages/CommunityToolkit.Aspire.Hosting.Bun
https://nuget.org/packages/CommunityToolkit.Aspire.Hosting.Bun
https://learn.microsoft.com/en-us/dotnet/core/tools/dotnet-add-package
https://learn.microsoft.com/en-us/dotnet/core/tools/dependencies
https://learn.microsoft.com/en-us/dotnet/core/tools/dependencies
https://github.com/CommunityToolkit/Aspire
https://github.com/CommunityToolkit/Aspire

C#

By default the working directory of the application will be a sibling folder to the app
host matching the name provided to the resource, and the entrypoint will be :::no-loc
text="index.ts"::. Both of these can be customized by passing additional parameters to
the AddBunApp method.

C#

The Bun application can be added as a reference to other resources in the app host
project.

To ensure that the Bun application has all the dependencies installed as defined in the
lockfile, you can use the Aspire.Hosting.BunAppExtensions.WithBunPackageInstaller
method to ensure that package installation is run before the application is started.

C#

.NET Aspire Community Toolkit GitHub repo
Sample Bun app

var builder = DistributedApplication.CreateBuilder(args);

var api = builder.AddBunApp("api")
 .WithHttpEndpoint(env: "PORT");

var exampleProject = builder.AddProject<Projects.ExampleProject>()
 .WithReference(api);

// After adding all resources, run the app...

var api = builder.AddBunApp("api", "../api-service", "start")
 .WithHttpEndpoint(env: "PORT");

Ensuring packages are installed

var api = builder.AddBunApp("api")
 .WithHttpEndpoint(env: "PORT")
 .WithBunPackageInstaller();

See also

https://github.com/CommunityToolkit/Aspire
https://github.com/CommunityToolkit/Aspire
https://github.com/CommunityToolkit/Aspire/tree/main/examples/bun
https://github.com/CommunityToolkit/Aspire/tree/main/examples/bun

.NET Aspire Community Toolkit Deno
hosting integration
Article • 11/20/2024

Includes: Hosting integration not Client integration

In this article, you learn about the .NET Aspire Community Toolkit Deno package. The
extensions package brings the following features:

Running Deno applications
Running Node.js applications via Deno tasks
Ensuring that the packages are installed before running the application via Deno
installer

To get started with the .NET Aspire Community Toolkit Deno extensions, install the 📦
CommunityToolkit.Aspire.Hosting.Deno NuGet package in the AppHost project.

.NET CLI

For more information, see dotnet add package or Manage package dependencies in
.NET applications.

The following sections detail various usages, from running Vite applications to using
specific package managers.

７ Note

This integration is part of the .NET Aspire Community Toolkit and isn't officially
supported by the .NET Aspire team.

Hosting integration

.NET CLI

dotnet add package CommunityToolkit.Aspire.Hosting.Deno

Example usage

https://deno.com/
https://deno.com/
https://nuget.org/packages/CommunityToolkit.Aspire.Hosting.Deno
https://nuget.org/packages/CommunityToolkit.Aspire.Hosting.Deno
https://nuget.org/packages/CommunityToolkit.Aspire.Hosting.Deno
https://learn.microsoft.com/en-us/dotnet/core/tools/dotnet-add-package
https://learn.microsoft.com/en-us/dotnet/core/tools/dependencies
https://learn.microsoft.com/en-us/dotnet/core/tools/dependencies
https://github.com/CommunityToolkit/Aspire
https://github.com/CommunityToolkit/Aspire

This integration extension adds support for running a Deno application defined in a
script. Since Deno is secure by default , permission flags must be specified in
permissionFlags argument of AddDenoApp .

C#

The preceding code uses the fully qualified switches. Alternatively, you can use the
equivalent alias as well. For more information, see Deno docs: Security and
permissions .

This integration extension adds support for running tasks that are either specified in a
package.json or deno.json.

C#

This integration extension adds support for installing dependencies that utilizes deno
install behind the scenes by simply using WithDenoPackageInstallation .

Run Deno apps

var builder = DistributedApplication.CreateBuilder(args);

builder.AddDenoApp("oak-demo", "main.ts", permissionFlags: ["--allow-env",
"--allow-net"])
 .WithHttpEndpoint(env: "PORT")
 .WithEndpoint();

builder.Build().Run();

Run Deno tasks

var builder = DistributedApplication.CreateBuilder(args);

builder.AddDenoTask("vite-demo", taskName: "dev")
 .WithHttpEndpoint(env: "PORT")
 .WithEndpoint();

builder.Build().Run();

Deno package installation

７ Note

https://docs.deno.com/runtime/fundamentals/security
https://docs.deno.com/runtime/fundamentals/security
https://docs.deno.com/runtime/fundamentals/security/#permissions
https://docs.deno.com/runtime/fundamentals/security/#permissions
https://docs.deno.com/runtime/fundamentals/security/#permissions

C#

.NET Aspire Community Toolkit GitHub repo
Sample Deno apps
Deno Docs

This API only works when a deno.lock file present.

var builder = DistributedApplication.CreateBuilder(args);

builder.AddDenoTask("vite-demo", taskName: "dev")
 .WithDenoPackageInstallation()
 .WithHttpEndpoint(env: "PORT")
 .WithEndpoint();

See also

https://github.com/CommunityToolkit/Aspire
https://github.com/CommunityToolkit/Aspire
https://github.com/CommunityToolkit/Aspire/tree/main/examples/deno
https://github.com/CommunityToolkit/Aspire/tree/main/examples/deno
https://docs.deno.com/
https://docs.deno.com/

.NET Aspire Go hosting
Article • 11/20/2024

Includes: Hosting integration not Client integration

In this article, you learn how to use the .NET Aspire Go hosting integration to host Go
applications.

To get started with the .NET Aspire Go hosting integration, install the 📦
CommunityToolkit.Aspire.Hosting.Go NuGet package in the AppHost project.

.NET CLI

For more information, see dotnet add package or Manage package dependencies in
.NET applications.

In the Program.cs file of your app host project, call the AddGolangApp method to add a
Go application to the builder.

C#

The PORT environment variable is used to determine the port the Go application should
listen on. By default, this port is randomly assigned by .NET Aspire. The name of the

７ Note

This integration is part of the .NET Aspire Community Toolkit and isn't officially
supported by the .NET Aspire team.

Hosting integration

.NET CLI

dotnet add package CommunityToolkit.Aspire.Hosting.Golang

Example usage

var golang = builder.AddGolangApp("golang", "../gin-api")
 .WithHttpEndpoint(env: "PORT");

https://nuget.org/packages/CommunityToolkit.Aspire.Hosting.Golang
https://nuget.org/packages/CommunityToolkit.Aspire.Hosting.Golang
https://nuget.org/packages/CommunityToolkit.Aspire.Hosting.Golang
https://learn.microsoft.com/en-us/dotnet/core/tools/dotnet-add-package
https://learn.microsoft.com/en-us/dotnet/core/tools/dependencies
https://learn.microsoft.com/en-us/dotnet/core/tools/dependencies
https://github.com/CommunityToolkit/Aspire
https://github.com/CommunityToolkit/Aspire

environment variable can be changed by passing a different value to the
WithHttpEndpoint method.

The Go application can be added as a reference to other resources in the AppHost
project.

.NET Aspire Community Toolkit GitHub repo
Sample Go app

See also

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.resourcebuilderextensions.withhttpendpoint
https://github.com/CommunityToolkit/Aspire
https://github.com/CommunityToolkit/Aspire
https://github.com/CommunityToolkit/Aspire/tree/main/examples/golang
https://github.com/CommunityToolkit/Aspire/tree/main/examples/golang

.NET Aspire Java/Spring hosting
integration
Article • 10/11/2024

Includes: Hosting integration not Client integration

In this article, you learn how to use the .NET Aspire Java/Spring hosting integration to
host Java/Spring applications using either the Java runtime or a container.

This integration requires the OpenTelemetry Agent for Java to be downloaded and
placed in the agents directory in the root of the project. Depending on your preferred
shell, use either of the following commands to download the agent:

Bash

To get started with the .NET Aspire Azure Static Web Apps emulator integration, install
the 📦 CommunityToolkit.Aspire.Hosting.Java NuGet package in the AppHost project.

.NET CLI

７ Note

This integration is part of the .NET Aspire Community Toolkit and isn't officially
supported by the .NET Aspire team.

Prerequisites

Bash

bash/zsh
mkdir -p ./agents
wget -P ./agents \
 https://github.com/open-telemetry/opentelemetry-java-
instrumentation/releases/latest/download/opentelemetry-javaagent.jar

Get started

.NET CLI

https://opentelemetry.io/docs/zero-code/java/agent/
https://opentelemetry.io/docs/zero-code/java/agent/
https://nuget.org/packages/CommunityToolkit.Aspire.Hosting.Java
https://nuget.org/packages/CommunityToolkit.Aspire.Hosting.Java
https://github.com/CommunityToolkit/Aspire
https://github.com/CommunityToolkit/Aspire

For more information, see dotnet add package or Manage package dependencies in
.NET applications.

The following sections detail various example usage scenarios, from hosting a
containerized Spring app to hosting an executable Spring app.

In the _Program.cs_file of your app host project, call the AddSpringApp method to
define the containerized Spring app. Use the JavaAppContainerResourceOptions to
define the containerized Spring app.

C#

Java developer resources
.NET Aspire Community Toolkit GitHub repo

dotnet add package CommunityToolkit.Aspire.Hosting.Java

Example Usage

Container hosting

var containerapp = builder.AddSpringApp(
 "containerapp",
 new JavaAppContainerResourceOptions
 {
 ContainerImageName = "<repository>/<image>",
 OtelAgentPath = "<agent-path>"
 });

See also

https://learn.microsoft.com/en-us/dotnet/core/tools/dotnet-add-package
https://learn.microsoft.com/en-us/dotnet/core/tools/dependencies
https://learn.microsoft.com/en-us/dotnet/core/tools/dependencies
https://learn.microsoft.com/en-us/java
https://github.com/CommunityToolkit/Aspire
https://github.com/CommunityToolkit/Aspire

.NET Aspire Community Toolkit Node.js
hosting extensions
Article • 10/11/2024

Includes: Hosting integration not

https://nuget.org/packages/Aspire.Hosting.NodeJS
https://nuget.org/packages/Aspire.Hosting.NodeJS
https://nuget.org/packages/Aspire.Hosting.NodeJS
https://vitejs.dev/
https://vitejs.dev/
https://yarnpkg.com/
https://yarnpkg.com/
https://pnpm.io/
https://pnpm.io/
https://nuget.org/packages/CommunityToolkit.Aspire.Hosting.NodeJS.Extensions
https://nuget.org/packages/CommunityToolkit.Aspire.Hosting.NodeJS.Extensions
https://learn.microsoft.com/en-us/dotnet/core/tools/dotnet-add-package
https://learn.microsoft.com/en-us/dotnet/core/tools/dependencies
https://learn.microsoft.com/en-us/dotnet/core/tools/dependencies
https://github.com/CommunityToolkit/Aspire
https://github.com/CommunityToolkit/Aspire

The following sections detail various usages, from running Vite applications to using
specific package managers.

This integration extension adds support for running Node.js applications using Yarn or
pnpm as the package manager.

C#

This integration extension adds support for running the development server for Vite
applications. By default, it uses the npm package manager to launch, but this can be
overridden with the packageManager argument.

C#

When using the WithNpmPackageInstallation , WithYarnPackageInstallation or
WithPnpmPackageInstallation methods, the package manager is used to install the
packages before starting the application. These methods are useful to ensure that

Run specific package managers

yarn

var builder = DistributedApplication.CreateBuilder(args);

builder.AddYarnApp("yarn-demo")
 .WithExternalHttpEndpoints();

Run Vite apps

var builder = DistributedApplication.CreateBuilder(args);

builder.AddViteApp("vite-demo")
 .WithExternalHttpEndpoints();

builder.AddViteApp("yarn-demo", packageManager: "yarn")
 .WithExternalHttpEndpoints();

builder.AddViteApp("pnpm-demo", packageManager: "pnpm")
 .WithExternalHttpEndpoints();

builder.Build().Run();

Install packages

packages are installed before the application starts, similar to how a .NET application
would restore NuGet packages before running.

Orchestrate Node.js apps in .NET Aspire
.NET Aspire Community Toolkit GitHub repo
Sample Node.js apps

See also

https://github.com/CommunityToolkit/Aspire
https://github.com/CommunityToolkit/Aspire
https://github.com/CommunityToolkit/Aspire/tree/main/examples/nodejs-ext
https://github.com/CommunityToolkit/Aspire/tree/main/examples/nodejs-ext

Community Toolkit Python hosting
extensions
Article • 12/03/2024

Includes: Hosting integration not Client integration

In this article, you learn about the .NET Aspire Community Toolkit Python hosting
extensions package which provides extra functionality to the .NET Aspire Python hosting
package . The extensions package lets you run Uvicorn applications.

To get started with the .NET Aspire Community Toolkit Python hosting extensions, install
the 📦 CommunityToolkit.Aspire.Hosting.Python.Extensions NuGet package in the
AppHost project.

.NET CLI

For more information, see dotnet add package or Manage package dependencies in
.NET applications.

To work with Python apps, they need to be within a virtual environment. To create a
virtual environment, refer to the Initialize the Python virtual environment section.

In the Program.cs file of your app host project, call the AddUvicornApp method to add a
Uvicorn application to the builder.

７ Note

This integration is part of the .NET Aspire Community Toolkit and isn't officially
supported by the .NET Aspire team.

Hosting integration

.NET CLI

dotnet add package CommunityToolkit.Aspire.Hosting.Python.Extensions

Example usage

https://nuget.org/packages/Aspire.Hosting.Python
https://nuget.org/packages/Aspire.Hosting.Python
https://nuget.org/packages/Aspire.Hosting.Python
https://www.uvicorn.org/
https://www.uvicorn.org/
https://nuget.org/packages/CommunityToolkit.Aspire.Hosting.Python.Extensions
https://nuget.org/packages/CommunityToolkit.Aspire.Hosting.Python.Extensions
https://learn.microsoft.com/en-us/dotnet/core/tools/dotnet-add-package
https://learn.microsoft.com/en-us/dotnet/core/tools/dependencies
https://learn.microsoft.com/en-us/dotnet/core/tools/dependencies
https://learn.microsoft.com/en-us/dotnet/aspire/get-started/build-aspire-apps-with-python?tabs=powershell#initialize-the-python-virtual-environment
https://github.com/CommunityToolkit/Aspire
https://github.com/CommunityToolkit/Aspire

C#

The PORT environment variable is used to determine the port the Uvicorn application
should listen on. By default, this port is randomly assigned by .NET Aspire. The name of
the environment variable can be changed by passing a different value to the
WithHttpEndpoint method.

The Uvicorn application can be added as a reference to other resources in the AppHost
project.

Orchestrate Python apps in .NET Aspire
.NET Aspire Community Toolkit GitHub repo
Sample Python apps

var builder = DistributedApplication.CreateBuilder(args);

var uvicorn = builder.AddUvicornApp(
 name: "uvicornapp",
 projectDirectory: "../uvicornapp-api",
 appName: "main:app"
)
 .WithHttpEndpoint(env: "PORT");

builder.Build().Run();

See also

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.resourcebuilderextensions.withhttpendpoint
https://github.com/CommunityToolkit/Aspire
https://github.com/CommunityToolkit/Aspire
https://github.com/CommunityToolkit/Aspire/tree/main/examples/python
https://github.com/CommunityToolkit/Aspire/tree/main/examples/python

.NET Aspire Community Toolkit Ollama
integration
Article • 11/20/2024

Includes: Hosting integration and Client integration

Ollama is a powerful, open source language model that can be used to generate text
based on a given prompt. The .NET Aspire Ollama integration provides a way to host
Ollama models using the docker.io/ollama/ollama container image and access them
via the OllamaSharp client.

The Ollama hosting integration models an Ollama server as the OllamaResource type,
and provides the ability to add models to the server using the AddModel extension
method, which represents the model as an OllamaModelResource type. To access these
types and APIs that allow you to add the 📦 CommunityToolkit.Aspire.Hosting.Ollama
NuGet package in the app host project.

.NET CLI

For more information, see dotnet add package or Manage package dependencies in
.NET applications.

In the app host project, register and consume the Ollama integration using the
AddOllama extension method to add the Ollama container to the application builder. You

７ Note

This integration is part of the .NET Aspire Community Toolkit and isn't officially
supported by the .NET Aspire team.

Hosting integration

.NET CLI

dotnet add package CommunityToolkit.Aspire.Hosting.Ollama

Add Ollama resource

https://ollama.com/
https://ollama.com/
https://hub.docker.com/r/ollama/ollama
https://hub.docker.com/r/ollama/ollama
https://www.nuget.org/packages/OllamaSharp
https://www.nuget.org/packages/OllamaSharp
https://nuget.org/packages/CommunityToolkit.Aspire.Hosting.Ollama
https://nuget.org/packages/CommunityToolkit.Aspire.Hosting.Ollama
https://learn.microsoft.com/en-us/dotnet/core/tools/dotnet-add-package
https://learn.microsoft.com/en-us/dotnet/core/tools/dependencies
https://learn.microsoft.com/en-us/dotnet/core/tools/dependencies
https://github.com/CommunityToolkit/Aspire
https://github.com/CommunityToolkit/Aspire

can then add models to the container, which downloads and run when the container
starts, using the AddModel extension method.

C#

Alternatively, if you want to use a model from the Hugging Face model hub, you can
use the AddHuggingFaceModel extension method.

C#

When .NET Aspire adds a container image to the app host, as shown in the preceding
example with the docker.io/ollama/ollama image, it creates a new Ollama instance on
your local machine. For more information, see Container resource lifecycle.

When the Ollama container for this integration first spins up, it downloads the
configured LLMs. The progress of this download displays in the State column for this
integration on the .NET Aspire dashboard.

One or more LLMs are downloaded into the container which Ollama is running from,
and by default this container is ephemeral. If you need to persist one or more LLMs

var builder = DistributedApplication.CreateBuilder(args);

var ollama = builder.AddOllama("ollama");

var phi35 = ollama.AddModel("phi3.5");

var exampleProject = builder.AddProject<Projects.ExampleProject>()
 .WithReference(phi35);

var llama = ollama.AddHuggingFaceModel("llama", "bartowski/Llama-3.2-1B-
Instruct-GGUF:IQ4_XS");

Download the LLM

） Important

Keep the .NET Aspire orchestration app open until the download is complete,
otherwise the download will be cancelled.

Cache the LLM

https://huggingface.co/
https://huggingface.co/

across container restarts, you need to mount a volume into the container using the
WithDataVolume method.

C#

One or more LLMs are downloaded into the container which Ollama is running from,
and by default this container runs on CPU. If you need to run the container in GPU you
need to pass a parameter to the container runtime args.

C#

For more information, see GPU support in Docker Desktop .

The Ollama hosting integration automatically adds a health check for the Ollama server
and model resources. For the Ollama server, a health check is added to verify that the
Ollama server is running and that a connection can be established to it. For the Ollama
model resources, a health check is added to verify that the model is running and that
the model is available, meaning the resource will be marked as unhealthy until the
model has been downloaded.

The Ollama integration also provided support for running Open WebUI and having it
communicate with the Ollama container.

C#

var ollama = builder.AddOllama("ollama")
 .WithDataVolume();

var llama = ollama.AddModel("llama3");

Use GPUs when available

Docker

var ollama = builder.AddOllama("ollama")
 .AddModel("llama3")
 .WithContainerRuntimeArgs("--gpus=all");

Hosting integration health checks

Open WebUI support

https://docs.docker.com/desktop/gpu/
https://docs.docker.com/desktop/gpu/
https://openwebui.com/
https://openwebui.com/

To get started with the .NET Aspire OllamaSharp integration, install the 📦
CommunityToolkit.Aspire.OllamaSharp NuGet package in the client-consuming
project, that is, the project for the application that uses the Ollama client.

.NET CLI

In the Program.cs file of your client-consuming project, call the AddOllamaClientApi
extension to register an IOllamaClientApi for use via the dependency injection
container. If the resource provided in the app host, and referenced in the client-
consuming project, is an OllamaModelResource , then the AddOllamaClientApi method will
register the model as the default model for the IOllamaClientApi .

C#

After adding IOllamaClientApi to the builder, you can get the IOllamaClientApi
instance using dependency injection. For example, to retrieve your context object from
service:

C#

var ollama = builder.AddOllama("ollama")
 .AddModel("llama3")
 .WithOpenWebUI();

Client integration

.NET CLI

dotnet add package CommunityToolkit.Aspire.OllamaSharp

Add Ollama client API

builder.AddOllamaClientApi("llama3");

public class ExampleService(IOllamaClientApi ollama)
{
 // Use ollama...
}

https://nuget.org/packages/CommunityToolkit.Aspire.OllamaSharp
https://nuget.org/packages/CommunityToolkit.Aspire.OllamaSharp
https://nuget.org/packages/CommunityToolkit.Aspire.OllamaSharp

There might be situations where you want to register multiple IOllamaClientApi
instances with different connection names. To register keyed Ollama clients, call the
AddKeyedOllamaClientApi method:

C#

Then you can retrieve the IOllamaClientApi instances using dependency injection. For
example, to retrieve the connection from an example service:

C#

The Ollama client integration provides multiple configuration approaches and options
to meet the requirements and conventions of your project.

When using a connection string from the ConnectionStrings configuration section, you
can provide the name of the connection string when calling the AddOllamaClientApi
method:

C#

Then the connection string will be retrieved from the ConnectionStrings configuration
section:

JSON

Add keyed Ollama client API

builder.AddKeyedOllamaClientApi(name: "chat");
builder.AddKeyedOllamaClientApi(name: "embeddings");

public class ExampleService(
 [FromKeyedServices("chat")] IOllamaClientApi chatOllama,
 [FromKeyedServices("embeddings")] IOllamaClientApi embeddingsOllama)
{
 // Use ollama...
}

Configuration

Use a connection string

builder.AddOllamaClientApi("llama");

The Microsoft.Extensions.AI library provides an abstraction over the Ollama client API,
using generic interfaces. OllamaSharp supports these interfaces, and they can be
registered using the AddOllamaSharpChatClient and AddOllamaSharpEmbeddingGenerator
extension methods. These methods will also register the IOllamaClientApi instances
with the dependency injection container, and have keyed versions for multiple instances.

C#

After adding IChatClient to the builder, you can get the IChatClient instance using
dependency injection. For example, to retrieve your context object from service:

C#

Ollama
Open WebUI
.NET Aspire Community Toolkit GitHub repo
OllamaSharp
Microsoft.Extensions.AI

{
 "ConnectionStrings": {
 "llama": "Endpoint=http//localhost:1234;Model=llama3"
 }
}

Integration with Microsoft.Extensions.AI

builder.AddOllamaSharpChatClient("llama");

public class ExampleService(IChatClient chatClient)
{
 // Use chat client...
}

See also

https://ollama.com/
https://ollama.com/
https://openwebui.com/
https://openwebui.com/
https://github.com/CommunityToolkit/Aspire
https://github.com/CommunityToolkit/Aspire
https://github.com/awaescher/OllamaSharp
https://github.com/awaescher/OllamaSharp
https://devblogs.microsoft.com/dotnet/introducing-microsoft-extensions-ai-preview/
https://devblogs.microsoft.com/dotnet/introducing-microsoft-extensions-ai-preview/

.NET Aspire Community Toolkit
Meilisearch integration
Article • 10/25/2024

Includes: Hosting integration and Client integration

In this article, you learn how to use the .NET Aspire Meilisearch hosting integration to
run Meilisearch container and accessing it via the Meilisearch client.

To run the Meilisearch container, install the 📦
CommunityToolkit.Aspire.Hosting.Meilisearch NuGet package in the app host project.

.NET CLI

For more information, see dotnet add package or Manage package dependencies in
.NET applications.

In the app host project, register and consume the Meilisearch integration using the
AddMeilisearch extension method to add the Meilisearch container to the application
builder.

C#

７ Note

This integration is part of the .NET Aspire Community Toolkit and isn't officially
supported by the .NET Aspire team.

Hosting integration

.NET CLI

dotnet add package CommunityToolkit.Aspire.Hosting.Meilisearch

Add Meilisearch resource

var builder = DistributedApplication.CreateBuilder(args);

var meilisearch = builder.AddMeilisearch("meilisearch");

https://meilisearch.com/
https://meilisearch.com/
https://github.com/meilisearch/meilisearch-dotnet
https://github.com/meilisearch/meilisearch-dotnet
https://nuget.org/packages/CommunityToolkit.Aspire.Hosting.Meilisearch
https://nuget.org/packages/CommunityToolkit.Aspire.Hosting.Meilisearch
https://nuget.org/packages/CommunityToolkit.Aspire.Hosting.Meilisearch
https://learn.microsoft.com/en-us/dotnet/core/tools/dotnet-add-package
https://learn.microsoft.com/en-us/dotnet/core/tools/dependencies
https://learn.microsoft.com/en-us/dotnet/core/tools/dependencies
https://github.com/CommunityToolkit/Aspire
https://github.com/CommunityToolkit/Aspire

When .NET Aspire adds a container image to the app host, as shown in the preceding
example with the docker.io/getmeili/meilisearch image, it creates a new Meilisearch
instance on your local machine. A reference to your Meilisearch resource (the
meilisearch variable) is added to the ExampleProject . The Meilisearch resource includes
a randomly generated master key using the CreateDefaultPasswordParameter method
when a master key wasn't provided.

For more information, see Container resource lifecycle.

To add a data volume to the Meilisearch resource, call the
Aspire.Hosting.MeilisearchBuilderExtensions.WithDataVolume method on the
Meilisearch resource:

C#

The data volume is used to persist the Meilisearch data outside the lifecycle of its
container. The data volume is mounted at the /meili_data path in the Meilisearch
container and when a name parameter isn't provided, the name is generated at random.
For more information on data volumes and details on why they're preferred over bind
mounts, see Docker docs: Volumes .

To add a data bind mount to the Meilisearch resource, call the
Aspire.Hosting.MeilisearchBuilderExtensions.WithDataBindMount method:

builder.AddProject<Projects.ExampleProject>()
 .WithReference(meilisearch);

// After adding all resources, run the app...

Add Meilisearch resource with data volume

var builder = DistributedApplication.CreateBuilder(args);

var meilisearch = builder.AddMeilisearch("meilisearch")
 .WithDataVolume();

builder.AddProject<Projects.ExampleProject>()
 .WithReference(meilisearch);

// After adding all resources, run the app...

Add Meilisearch resource with data bind mount

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.parameterresourcebuilderextensions.createdefaultpasswordparameter
https://docs.docker.com/engine/storage/volumes
https://docs.docker.com/engine/storage/volumes

C#

Data bind mounts rely on the host machine's filesystem to persist the Meilisearch data
across container restarts. The data bind mount is mounted at the C:\Meilisearch\Data
on Windows (or /Meilisearch/Data on Unix) path on the host machine in the
Meilisearch container. For more information on data bind mounts, see Docker docs: Bind
mounts .

When you want to explicitly provide the master key used by the container image, you
can provide these credentials as parameters. Consider the following alternative example:

C#

For more information on providing parameters, see External parameters.

var builder = DistributedApplication.CreateBuilder(args);

var meilisearch = builder.AddMeilisearch("meilisearch")
 .WithDataBindMount(
 source: @"C:\Meilisearch\Data");

builder.AddProject<Projects.ExampleProject>()
 .WithReference(meilisearch);

// After adding all resources, run the app...

） Important

Data bind mounts have limited functionality compared to volumes , which
offer better performance, portability, and security, making them more suitable for
production environments. However, bind mounts allow direct access and
modification of files on the host system, ideal for development and testing where
real-time changes are needed.

Add Meilisearch resource with master key parameter

var builder = DistributedApplication.CreateBuilder(args);

var masterkey = builder.AddParameter("masterkey", secret: true);
var meilisearch = builder.AddMeilisearch("meilisearch", masterkey);

builder.AddProject<Projects.ExampleProject>()
 .WithReference(meilisearch);

// After adding all resources, run the app...

https://docs.docker.com/engine/storage/bind-mounts
https://docs.docker.com/engine/storage/bind-mounts
https://docs.docker.com/engine/storage/bind-mounts
https://docs.docker.com/engine/storage/bind-mounts/
https://docs.docker.com/engine/storage/bind-mounts/
https://docs.docker.com/engine/storage/volumes/
https://docs.docker.com/engine/storage/volumes/

To get started with the .NET Aspire Meilisearch client integration, install the 📦
CommunityToolkit.Aspire.Meilisearch NuGet package in the client-consuming project,
that is, the project for the application that uses the Meilisearch client.

.NET CLI

In the Program.cs file of your client-consuming project, call the
Microsoft.Extensions.Hosting.AspireMeilisearchExtensions.AddMeilisearchClient

extension method on any IHostApplicationBuilder to register an MeilisearchClient for
use via the dependency injection container. The method takes a connection name
parameter.

C#

You can then retrieve the MeilisearchClient instance using dependency injection. For
example, to retrieve the connection from an example service:

C#

Client integration

.NET CLI

dotnet add package CommunityToolkit.Aspire.Meilisearch

Add Meilisearch client

builder.AddMeilisearchClient(connectionName: "meilisearch");

 Tip

The connectionName parameter must match the name used when adding the
Meilisearch resource in the app host project. For more information, see Add
Meilisearch resource.

public class ExampleService(MeilisearchClient client)
{
 // Use client...
}

https://nuget.org/packages/CommunityToolkit.Aspire.Meilisearch
https://nuget.org/packages/CommunityToolkit.Aspire.Meilisearch
https://nuget.org/packages/CommunityToolkit.Aspire.Meilisearch
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.ihostapplicationbuilder

There might be situations where you want to register multiple MeilisearchClient
instances with different connection names. To register keyed Meilisearch clients, call the
Microsoft.Extensions.Hosting.AspireMeilisearchExtensions.AddKeyedMeilisearchClient

C#

Then you can retrieve the MeilisearchClient instances using dependency injection. For
example, to retrieve the connection from an example service:

C#

For more information on keyed services, see .NET dependency injection: Keyed services.

The .NET Aspire Meilisearch client integration provides multiple options to configure the
server connection based on the requirements and conventions of your project.

When using a connection string from the ConnectionStrings configuration section, you
can provide the name of the connection string when calling
builder.AddMeilisearchClient :

C#

Then the connection string will be retrieved from the ConnectionStrings configuration
section:

Add keyed Meilisearch client

builder.AddKeyedMeilisearchClient(name: "products");
builder.AddKeyedMeilisearchClient(name: "orders");

public class ExampleService(
 [FromKeyedServices("products")] MeilisearchClient productsClient,
 [FromKeyedServices("orders")] MeilisearchClient ordersClient)
{
 // Use clients...
}

Configuration

Use a connection string

builder.AddMeilisearchClient("meilisearch");

https://learn.microsoft.com/en-us/dotnet/core/extensions/dependency-injection#keyed-services

JSON

The .NET Aspire Meilisearch Client integration supports
Microsoft.Extensions.Configuration. It loads the
CommunityToolkit.Aspire.Meilisearch.MeilisearchClientSettings from configuration by
using the Aspire:Meilisearch:Client key. Consider the following example
appsettings.json that configures some of the options:

JSON

Also you can pass the Action<MeilisearchClientSettings> configureSettings delegate
to set up some or all the options inline, for example to set the API key from code:

C#

The .NET Aspire Meilisearch integration uses the configured client to perform a
IsHealthyAsync . If the result is true , the health check is considered healthy, otherwise

{
 "ConnectionStrings": {
 "meilisearch": "Endpoint=http://localhost:19530/;MasterKey=123456!@#$%"
 }
}

Use configuration providers

{
 "Aspire": {
 "Meilisearch": {
 "Client": {
 "Endpoint": "http://localhost:19530/",
 "MasterKey": "123456!@#$%"
 }
 }
 }
}

Use inline delegates

builder.AddMeilisearchClient(
 "meilisearch",
 static settings => settings.MasterKey = "123456!@#$%");

Client integration health checks

https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration

it's unhealthy. Likewise, if there's an exception, the health check is considered unhealthy
with the error propagating through the health check failure.

Meilisearch
Meilisearch Client
.NET Aspire Community Toolkit GitHub repo

See also

https://meilisearch.com/
https://meilisearch.com/
https://github.com/meilisearch/meilisearch-dotnet
https://github.com/meilisearch/meilisearch-dotnet
https://github.com/CommunityToolkit/Aspire
https://github.com/CommunityToolkit/Aspire

.NET Aspire Rust hosting
Article • 11/20/2024

Includes: Hosting integration not Client integration

Rust is a general-purpose programming language emphasizing performance, type
safety, and concurrency. It enforces memory safety, meaning that all references point to
valid memory. The .NET Aspire Rust hosting integration allows you to host Rust
applications in your .NET Aspire app host project, and provide it to other resources in
your application.

The Rust hosting integration models a Rust application as the
Aspire.Hosting.ApplicationModel.RustAppExecutableResource type. To access this type
and APIs that allow you to add it to your app host project, install the 📦
CommunityToolkit.Aspire.Hosting.Rust NuGet package in the app host project.

This integration expects that the Rust programming language has already been installed
on the host machine and the Rust package manager cargo is available in the system
path.

.NET CLI

For more information, see dotnet add package or Manage package dependencies in
.NET applications.

７ Note

This integration is part of the .NET Aspire Community Toolkit and isn't officially
supported by the .NET Aspire team.

Hosting integration

.NET CLI

dotnet add package CommunityToolkit.Aspire.Hosting.Rust

Add a Rust resource

https://www.rust-lang.org/
https://www.rust-lang.org/
https://nuget.org/packages/CommunityToolkit.Aspire.Hosting.Rust
https://nuget.org/packages/CommunityToolkit.Aspire.Hosting.Rust
https://nuget.org/packages/CommunityToolkit.Aspire.Hosting.Rust
https://doc.rust-lang.org/cargo/getting-started/installation.html
https://doc.rust-lang.org/cargo/getting-started/installation.html
https://learn.microsoft.com/en-us/dotnet/core/tools/dotnet-add-package
https://learn.microsoft.com/en-us/dotnet/core/tools/dependencies
https://learn.microsoft.com/en-us/dotnet/core/tools/dependencies
https://github.com/CommunityToolkit/Aspire
https://github.com/CommunityToolkit/Aspire

In the Program.cs file of your app host project, call the
Aspire.Hosting.RustAppHostingExtension.AddRustApp on the builder instance to add a
Rust application resource as shown in the following example:

C#

The working directory of the application should be the root of Rust application
directory. Also you can customize running behavior by passing args parameter to the
AddRustApp method.

C#

The Rust application can be added as a reference to other resources in the app host
project.

.NET Aspire Community Toolkit GitHub repo

https://github.com/CommunityToolkit/Aspire
https://github.com/CommunityToolkit/Aspire
https://github.com/CommunityToolkit/Aspire/tree/main/examples/rust
https://github.com/CommunityToolkit/Aspire/tree/main/examples/rust
https://www.rust-lang.org/tools/install
https://www.rust-lang.org/tools/install

.NET Aspire SQL Database Projects
hosting integration
Article • 02/27/2025

Includes: Hosting integration not Client integration

In this article, you learn how to use the .NET Aspire SQL Database Projects hosting
integration to publish your database schema to your SQL Server database.

This integration requires a SQL Database Project based on either MSBuild.Sdk.SqlProj
or Microsoft.Build.Sql .

To get started with the .NET Aspire SQL Database Projects hosting integration, install the
📦 CommunityToolkit.Aspire.Hosting.SqlDatabaseProjects NuGet package in the app
host project.

.NET CLI

For more information, see dotnet add package or Manage package dependencies in
.NET applications.

７ Note

This integration is part of the .NET Aspire Community Toolkit and isn't officially
supported by the .NET Aspire team.

Prerequisites

Hosting integration

.NET CLI

dotnet add package CommunityToolkit.Aspire.Hosting.SqlDatabaseProjects

Example usage

https://github.com/rr-wfm/MSBuild.Sdk.SqlProj
https://github.com/rr-wfm/MSBuild.Sdk.SqlProj
https://github.com/microsoft/DacFx
https://github.com/microsoft/DacFx
https://nuget.org/packages/CommunityToolkit.Aspire.Hosting.SqlDatabaseProjects
https://nuget.org/packages/CommunityToolkit.Aspire.Hosting.SqlDatabaseProjects
https://learn.microsoft.com/en-us/dotnet/core/tools/dotnet-add-package
https://learn.microsoft.com/en-us/dotnet/core/tools/dependencies
https://learn.microsoft.com/en-us/dotnet/core/tools/dependencies
https://github.com/CommunityToolkit/Aspire
https://github.com/CommunityToolkit/Aspire

Add a reference to the 📦 MSBuild.Sdk.SqlProj or 📦 Microsoft.Build.Sql project
you want to publish in your .NET Aspire app host project:

.NET CLI

Add the project as a resource to your .NET Aspire AppHost:

C#

Now when you run your .NET Aspire app host project you see the SQL Database Project
being published to the specified SQL Server.

Starting with version 9.2.0, you can deploy databases from referenced NuGet packages,
such as those produced by 📦 MSBuild.Sdk.SqlProj or 📦 Microsoft.Build.Sql . To
deploy, add the NuGet package to your Aspire app host project, for example:

.NET CLI

Next, edit your project file to set the IsAspirePackageResource flag to True for the
corresponding PackageReference , as shown in the following example:

XML

dotnet add reference ../MySqlProj/MySqlProj.csproj

７ Note

Adding this reference will currently result in warning ASPIRE004 on the project due
to how references are parsed. The .NET Aspire team is aware of this and we're
working on a cleaner solution.

var builder = DistributedApplication.CreateBuilder(args);

var sql = builder.AddSqlServer("sql")
 .AddDatabase("test");

builder.AddSqlProject<Projects.MySqlProj>("mysqlproj")
 .WithReference(sql);

NuGet Package support

dotnet add package ErikEJ.Dacpac.Chinook

https://www.nuget.org/packages/MSBuild.Sdk.SqlProj
https://www.nuget.org/packages/MSBuild.Sdk.SqlProj
https://www.nuget.org/packages/Microsoft.Build.Sql
https://www.nuget.org/packages/Microsoft.Build.Sql
https://www.nuget.org/packages/MSBuild.Sdk.SqlProj
https://www.nuget.org/packages/MSBuild.Sdk.SqlProj
https://www.nuget.org/packages/Microsoft.Build.Sql
https://www.nuget.org/packages/Microsoft.Build.Sql

Finally, add the package as a resource to your app model:

C#

If you are sourcing your .dacpac file from somewhere other than a project reference, you
can also specify the path to the .dacpac file directly:

C#

<PackageReference Include="ErikEJ.Dacpac.Chinook" Version="1.0.0"
 IsAspirePackageResource="True" />

var builder = DistributedApplication.CreateBuilder(args);

var sql = builder.AddSqlServer("sql")
 .AddDatabase("test");

builder.AddSqlPackage<Packages.ErikEJ_Dacpac_Chinook>("chinook")
 .WithReference(sql);

７ Note

By default, the .dacpac is expected to be located under tools/<package-id>.dacpac .
In the preceding example, the tools/ErikEJ.Dacpac.Chinook.dacpac path is expected.
If for whatever reason the .dacpac is under a different path within the package you
can use WithDacpac("relative/path/to/some.dacpac") API to specify a path relative
to the root of app host project directory.

Local .dacpac file support

var builder = DistributedApplication.CreateBuilder(args);

var sql = builder.AddSqlServer("sql")
 .AddDatabase("test");

builder.AddSqlProject("mysqlproj")
 .WithDacpac("path/to/mysqlproj.dacpac")
 .WithReference(sql);

Support for existing SQL Server instances

Starting with version 9.2.0, you can publish the SQL Database project to an existing SQL
Server instance by using a connection string:

C#

To define options that affect the behavior of package deployment, call the
WithConfigureDacDeployOptions API:

C#

The preceding code:

Adds a SQL server resource named sql and adds a test database resource to it.
Adds a SQL project resource named mysqlproj and then configures the
DacDeployOptions.
The SQL project resource depends on the database resource.

If you make changes to your SQL Database project while the app host is running, you
can use the Redeploy custom action on the .NET Aspire dashboard to redeploy your

var builder = DistributedApplication.CreateBuilder(args);

// Get an existing SQL Server connection string from the configuration
var connection = builder.AddConnectionString("Aspire");

builder.AddSqlProject<Projects.SdkProject>("mysqlproj")
 .WithReference(connection);

builder.Build().Run();

Deployment options support

var builder = DistributedApplication.CreateBuilder(args);

var sql = builder.AddSqlServer("sql")
 .AddDatabase("test");

builder.AddSqlProject("mysqlproj")
 .WithConfigureDacDeployOptions(options =>
options.IncludeCompositeObjects = true)
 .WithReference(sql);

builder.Build().Run();

Redeploy support

https://learn.microsoft.com/en-us/dotnet/api/microsoft.sqlserver.dac.dacdeployoptions

updates without having to restart the app host.

MSBuild.Sdk.SqlProj GitHub repository
Microsoft.Build.Sql GitHub repository
Get started with SQL database projects
.NET Aspire Community Toolkit GitHub repo

See also

https://github.com/rr-wfm/MSBuild.Sdk.SqlProj
https://github.com/rr-wfm/MSBuild.Sdk.SqlProj
https://github.com/microsoft/DacFx
https://github.com/microsoft/DacFx
https://learn.microsoft.com/en-us/sql/tools/sql-database-projects/get-started
https://github.com/CommunityToolkit/Aspire
https://github.com/CommunityToolkit/Aspire

Community Toolkit Azure Data API
Builder hosting integration
Article • 11/20/2024

Includes: Hosting integration not Client integration

In this article, you learn how to use the .NET Aspire Data API Builder hosting integration
to run Data API Builder as a container.

To get started with the .NET Aspire Azure Data API Builder hosting integration, install the
📦 CommunityToolkit.Aspire.Hosting.Azure.DataApiBuilder NuGet package in the app
host project.

.NET CLI

For more information, see dotnet add package or Manage package dependencies in
.NET applications.

In the app host project, register and consume the Data API Builder integration using the
AddDataAPIBuilder extension method to add the Data API Builder container to the
application builder.

C#

７ Note

This integration is part of the .NET Aspire Community Toolkit and isn't officially
supported by the .NET Aspire team.

Hosting integration

.NET CLI

dotnet add package CommunityToolkit.Aspire.Hosting.Azure.DataApiBuilder

Usage

https://learn.microsoft.com/en-us/azure/data-api-builder/overview
https://nuget.org/packages/CommunityToolkit.Aspire.Hosting.Azure.DataApiBuilder
https://nuget.org/packages/CommunityToolkit.Aspire.Hosting.Azure.DataApiBuilder
https://learn.microsoft.com/en-us/dotnet/core/tools/dotnet-add-package
https://learn.microsoft.com/en-us/dotnet/core/tools/dependencies
https://learn.microsoft.com/en-us/dotnet/core/tools/dependencies
https://github.com/CommunityToolkit/Aspire
https://github.com/CommunityToolkit/Aspire

When the .NET Aspire adds a container image to the app host, as shown in the
preceding example with the mcr.microsoft.com/azure-databases/data-api-builder
image, it creates a new Data API Builder instance on your local machin. A reference to
the DAB resource (the dab variable) is added to the ExampleProject project.

Parameter Description

name The name of the resource is a required string and it's validated by the
ResourceNameAttribute.

configFilePaths The paths to the configuration or schema file(s) for Data API builder. These are
optional and are available as a params string[] , meaning you can omit them
altogether, or provide one or more path inline. When omitted, it defaults to
"./dab-config.json" .

httpPort The port number for the Data API Builder container is represented as a an
int? . By default, the port is null , .NET Aspire assigns a port when this isn't
otherwise provided.

You can specify custom container registry/image/tag values by using the following APIs
chained to the IResourceBuilder<DataApiBuilderContainerResource> :

WithImageRegistry : Pass the desired registry name, such as ghcr.io for the GitHub
Container Registry or docker.io for Docker.
WithImage : Provide the name of the image, such as azure-databases/data-api-
builder .
WithImageTag : Specify an image tag to use other than latest , which is the default
in most cases.

 var builder = DistributedApplication.CreateBuilder();

// Add Data API Builder using dab-config.json
var dab = builder.AddDataAPIBuilder("dab");

builder.AddProject<Projects.ExampleProject>()
 .WithReference(dab);

 // After adding all resources, run the app...

Configuration
ﾉ Expand table

Data API Builder container image configuration

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.resourcenameattribute

Consider the following example that demonstrates chaining these APIs together, to
fluently express that the Data API Builder's container image is fully qualified as
mcr.microsoft.com/azure-databases/data-api-builder:latest :

C#

If you need to configure your own local database, you can refer to the SQL Server
integration documentation.

Once you have your database added as a resource, you can reference it using the
following APIs chained to the IResourceBuilder<DataApiBuilderContainerResource> :

C#

The WaitFor method ensures that the database is ready before starting the Data API
Builder container.

Referencing the sqlDatabase resource will inject its connection string into the Data API
Builder container with the name ConnectionStrings__<DATABASE_RESOURCE_NAME> . Next,
update the dab-config.json file to include the connection string for the database:

JSON

You can pass multiple configuration files to the AddDataAPIBuilder method:

var dab = builder.AddDataAPIBuilder("dab")
 .WithImageRegistry("mcr.microsoft.com")
 .WithImage("azure-databases/data-api-builder")
 .WithImageTag("latest");

Database Configuration

var dab = builder.AddDataAPIBuilder("dab")
 .WithReference(sqlDatabase)
 .WaitFor(sqlDatabase);

"data-source": {
 "connection-string":
"@env('ConnectionStrings__<DATABASE_RESOURCE_NAME>')",
}

Using multiple data sources

C#

.NET Aspire Community Toolkit GitHub repo
Sample DAB
Further usage examples

var dab = builder.AddDataAPIBuilder("dab",
 "./dab-config-1.json",
 "./dab-config-2.json")
 .WithReference(sqlDatabase1)
 .WaitFor(sqlDatabase1)
 .WithReference(sqlDatabase2)
 .WaitFor(sqlDatabase2);

７ Note

All files are mounted/copied to the same /App folder.

See also

https://github.com/CommunityToolkit/Aspire
https://github.com/CommunityToolkit/Aspire
https://github.com/CommunityToolkit/Aspire/tree/main/examples/data-api-builder
https://github.com/CommunityToolkit/Aspire/tree/main/examples/data-api-builder
https://github.com/CommunityToolkit/Aspire/blob/main/src/CommunityToolkit.Aspire.Hosting.Azure.DataApiBuilder/README.md#usage
https://github.com/CommunityToolkit/Aspire/blob/main/src/CommunityToolkit.Aspire.Hosting.Azure.DataApiBuilder/README.md#usage

.NET Aspire Community Toolkit
EventStore integration
Article • 11/22/2024

Includes: Hosting integration and Client integration

In this article, you learn how to use the .NET Aspire EventStore hosting integration to run
EventStore container and accessing it via the EventStore client.

To run the EventStore container, install the 📦
CommunityToolkit.Aspire.Hosting.EventStore NuGet package in the app host project.

.NET CLI

For more information, see dotnet add package or Manage package dependencies in
.NET applications.

In the app host project, register and consume the EventStore integration using the
AddEventStore extension method to add the EventStore container to the application
builder.

C#

７ Note

This integration is part of the .NET Aspire Community Toolkit and isn't officially
supported by the .NET Aspire team.

Hosting integration

.NET CLI

dotnet add package CommunityToolkit.Aspire.Hosting.EventStore

Add EventStore resource

var builder = DistributedApplication.CreateBuilder(args);

var eventstore = builder.AddEventStore("eventstore");

https://eventstore.com/
https://eventstore.com/
https://github.com/EventStore/EventStore-Client-Dotnet
https://github.com/EventStore/EventStore-Client-Dotnet
https://github.com/CommunityToolkit/Aspire/tree/main/src/CommunityToolkit.Aspire.Hosting.EventStore
https://github.com/CommunityToolkit/Aspire/tree/main/src/CommunityToolkit.Aspire.Hosting.EventStore
https://github.com/CommunityToolkit/Aspire/tree/main/src/CommunityToolkit.Aspire.Hosting.EventStore
https://learn.microsoft.com/en-us/dotnet/core/tools/dotnet-add-package
https://learn.microsoft.com/en-us/dotnet/core/tools/dependencies
https://learn.microsoft.com/en-us/dotnet/core/tools/dependencies
https://github.com/CommunityToolkit/Aspire
https://github.com/CommunityToolkit/Aspire

When .NET Aspire adds a container image to the app host, as shown in the preceding
example with the docker.io/eventstore/eventstore image, it creates a new EventStore
instance on your local machine. A reference to your EventStore resource (the eventstore
variable) is added to the ExampleProject .

For more information, see Container resource lifecycle.

To add a data volume to the EventStore resource, call the
Aspire.Hosting.EventStoreBuilderExtensions.WithDataVolume method on the EventStore
resource:

C#

The data volume is used to persist the EventStore data outside the lifecycle of its
container. The data volume is mounted at the /var/lib/eventstore path in the
EventStore container and when a name parameter isn't provided, the name is generated
at random. For more information on data volumes and details on why they're preferred
over bind mounts, see Docker docs: Volumes .

To add a data bind mount to the EventStore resource, call the
Aspire.Hosting.EventStoreBuilderExtensions.WithDataBindMount method:

C#

builder.AddProject<Projects.ExampleProject>()
 .WithReference(eventstore);

// After adding all resources, run the app...

Add EventStore resource with data volume

var builder = DistributedApplication.CreateBuilder(args);

var eventstore = builder.AddEventStore("eventstore")
 .WithDataVolume();

builder.AddProject<Projects.ExampleProject>()
 .WithReference(eventstore);

// After adding all resources, run the app...

Add EventStore resource with data bind mount

https://docs.docker.com/engine/storage/volumes
https://docs.docker.com/engine/storage/volumes

Data bind mounts rely on the host machine's filesystem to persist the EventStore data
across container restarts. The data bind mount is mounted at the C:\EventStore\Data on
Windows (or /EventStore/Data on Unix) path on the host machine in the EventStore
container. For more information on data bind mounts, see Docker docs: Bind mounts .

To add a log volume to the EventStore resource, call the WithVolume extension method
on the EventStore resource:

C#

The data volume is used to persist the EventStore logs outside the lifecycle of its
container. The data volume must be mounted at the /var/log/eventstore target path in
the EventStore container and when a name parameter isn't provided, the name is

var builder = DistributedApplication.CreateBuilder(args);

var eventstore = builder.AddEventStore("eventstore")
 .WithDataBindMount(source: @"C:\EventStore\Data");

builder.AddProject<Projects.ExampleProject>()
 .WithReference(eventstore);

// After adding all resources, run the app...

） Important

Data bind mounts have limited functionality compared to volumes , which
offer better performance, portability, and security, making them more suitable for
production environments. However, bind mounts allow direct access and
modification of files on the host system, ideal for development and testing where
real-time changes are needed.

Add EventStore resource with log volume

var builder = DistributedApplication.CreateBuilder(args);

var eventstore = builder.AddEventStore("eventstore")
 .WithVolume(name: "eventstore_logs", target:
"/var/log/eventstore");

builder.AddProject<Projects.ExampleProject>()
 .WithReference(eventstore);

// After adding all resources, run the app...

https://docs.docker.com/engine/storage/bind-mounts
https://docs.docker.com/engine/storage/bind-mounts
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.containerresourcebuilderextensions.withvolume
https://docs.docker.com/engine/storage/bind-mounts/
https://docs.docker.com/engine/storage/bind-mounts/
https://docs.docker.com/engine/storage/volumes/
https://docs.docker.com/engine/storage/volumes/

generated at random. For more information on data volumes and details on why they're
preferred over bind mounts, see Docker docs: Volumes .

For more information about EventStore logs location, see EventStore Resources: Logs .

To add a log bind mount to the EventStore resource, call the WithBindMount extension
method on the EventStore resource:

C#

Data bind mounts rely on the host machine's filesystem to persist the EventStore logs
across container restarts. The data bind mount is mounted at the C:\EventStore\Logs on
Windows (or /EventStore/Logs on Unix) path on the host machine in the EventStore
container. The target path must be set to the log folder used by the EventStore
container (/var/log/eventstore).

For more information about EventStore logs location, see EventStore Resources: Logs .

For more information on data bind mounts, see Docker docs: Bind mounts .

Add EventStore resource with log bind mount

var builder = DistributedApplication.CreateBuilder(args);

var eventstore = builder.AddEventStore("eventstore")
 .WithBindMount(@"C:\EventStore\Logs",
"/var/log/eventstore");

builder.AddProject<Projects.ExampleProject>()
 .WithReference(eventstore);

// After adding all resources, run the app...

） Important

Data bind mounts have limited functionality compared to volumes , which
offer better performance, portability, and security, making them more suitable for
production environments. However, bind mounts allow direct access and
modification of files on the host system, ideal for development and testing where
real-time changes are needed.

Client integration

https://docs.docker.com/engine/storage/volumes
https://docs.docker.com/engine/storage/volumes
https://developers.eventstore.com/server/v24.10/diagnostics/logs.html#logs-location
https://developers.eventstore.com/server/v24.10/diagnostics/logs.html#logs-location
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.containerresourcebuilderextensions.withbindmount
https://developers.eventstore.com/server/v24.10/diagnostics/logs.html#logs-location
https://developers.eventstore.com/server/v24.10/diagnostics/logs.html#logs-location
https://docs.docker.com/engine/storage/bind-mounts
https://docs.docker.com/engine/storage/bind-mounts
https://docs.docker.com/engine/storage/bind-mounts/
https://docs.docker.com/engine/storage/bind-mounts/
https://docs.docker.com/engine/storage/volumes/
https://docs.docker.com/engine/storage/volumes/

To get started with the .NET Aspire EventStore client integration, install the 📦
CommunityToolkit.Aspire.EventStore NuGet package in the client-consuming project,
that is, the project for the application that uses the EventStore client.

.NET CLI

In the Program.cs file of your client-consuming project, call the
Microsoft.Extensions.Hosting.AspireEventStoreExtensions.AddEventStoreClient

extension method on any IHostApplicationBuilder to register an EventStoreClient for
use via the dependency injection container. The method takes a connection name
parameter.

C#

You can then retrieve the EventStoreClient instance using dependency injection. For
example, to retrieve the connection from an example service:

C#

.NET CLI

dotnet add package CommunityToolkit.Aspire.EventStore

Add EventStore client

builder.AddEventStoreClient(connectionName: "eventstore");

 Tip

The connectionName parameter must match the name used when adding the
EventStore resource in the app host project. For more information, see Add
EventStore resource.

public class ExampleService(EventStoreClient client)
{
 // Use client...
}

Add keyed EventStore client

https://github.com/CommunityToolkit/Aspire/tree/main/src/CommunityToolkit.Aspire.EventStore
https://github.com/CommunityToolkit/Aspire/tree/main/src/CommunityToolkit.Aspire.EventStore
https://github.com/CommunityToolkit/Aspire/tree/main/src/CommunityToolkit.Aspire.EventStore
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.ihostapplicationbuilder

There might be situations where you want to register multiple EventStoreClient
instances with different connection names. To register keyed EventStore clients, call the
Microsoft.Extensions.Hosting.AspireEventStoreExtensions.AddKeyedEventStoreClient

C#

Then you can retrieve the EventStoreClient instances using dependency injection. For
example, to retrieve the connection from an example service:

C#

For more information on keyed services, see .NET dependency injection: Keyed services.

The .NET Aspire EventStore client integration provides multiple options to configure the
server connection based on the requirements and conventions of your project.

When using a connection string from the

https://learn.microsoft.com/en-us/dotnet/core/extensions/dependency-injection#keyed-services

The .NET Aspire EventStore Client integration supports
Microsoft.Extensions.Configuration. It loads the
CommunityToolkit.Aspire.EventStore.EventStoreSettings from configuration by using
the Aspire:EventStore:Client key. Consider the following example appsettings.json that
configures some of the options:

JSON

Also you can pass the Action<EventStoreSettings> configureSettings delegate to set
up some or all the options inline, for example to set the API key from code:

C#

The .NET Aspire EventStore integration uses the configured client to perform a
IsHealthyAsync . If the result is true , the health check is considered healthy, otherwise

{
 "ConnectionStrings": {
 "eventstore": "esdb://localhost:22113?tls=false"
 }
}

Use configuration providers

{
 "Aspire": {
 "EventStore": {
 "Client": {
 "ConnectionString": "esdb://localhost:22113?tls=false",
 "DisableHealthChecks": true
 }
 }
 }
}

Use inline delegates

builder.AddEventStoreClient(
 "eventstore",
 static settings => settings.DisableHealthChecks = true);

Client integration health checks

https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration

it's unhealthy. Likewise, if there's an exception, the health check is considered unhealthy
with the error propagating through the health check failure.

EventStore
EventStore Client
.NET Aspire Community Toolkit GitHub repo

See also

https://eventstore.com/
https://eventstore.com/
https://github.com/EventStore/EventStore-Client-Dotnet
https://github.com/EventStore/EventStore-Client-Dotnet
https://github.com/CommunityToolkit/Aspire
https://github.com/CommunityToolkit/Aspire

.NET Aspire Community Toolkit SQLite
Entity Framework integration
Article • 03/05/2025

Includes: Hosting integration and Client integration

SQLite is a lightweight, serverless, self-contained SQL database engine that is widely
used for local data storage in applications. The .NET Aspire SQLite integration provides a
way to use SQLite databases within your .NET Aspire applications, and access them via
the Microsoft.EntityFrameworkCore.Sqlite Entity Framework support package.

The SQLite hosting integration models a SQLite database as the SQLiteResource type
and will create the database file in the specified location. To access these types and APIs
that allow you to add the 📦 CommunityToolkit.Aspire.Hosting.SQLite NuGet package
in the app host project.

.NET CLI

For more information, see dotnet add package or Manage package dependencies in
.NET applications.

In the app host project, register and consume the SQLite integration using the
AddSQLite extension method to add the SQLite database to the application builder.

C#

７ Note

This integration is part of the .NET Aspire Community Toolkit and isn't officially
supported by the .NET Aspire team.

Hosting integration

.NET CLI

dotnet add package CommunityToolkit.Aspire.Hosting.SQLite

Add SQLite resource

https://www.sqlite.org/index.html
https://www.sqlite.org/index.html
https://www.nuget.org/packages/Microsoft.EntityFrameworkCore.Sqlite
https://www.nuget.org/packages/Microsoft.EntityFrameworkCore.Sqlite
https://nuget.org/packages/CommunityToolkit.Aspire.Hosting.SQLite
https://nuget.org/packages/CommunityToolkit.Aspire.Hosting.SQLite
https://learn.microsoft.com/en-us/dotnet/core/tools/dotnet-add-package
https://learn.microsoft.com/en-us/dotnet/core/tools/dependencies
https://learn.microsoft.com/en-us/dotnet/core/tools/dependencies
https://github.com/CommunityToolkit/Aspire
https://github.com/CommunityToolkit/Aspire

When .NET Aspire adds a SQLite database to the app host, as shown in the preceding
example, it creates a new SQLite database file in the users temp directory.

Alternatively, if you want to specify a custom location for the SQLite database file,
provide the relevant arguments to the AddSqlite method.

C#

When adding the SQLite resource, you can also add the SQLiteWeb resource, which
provides a web interface to interact with the SQLite database. To do this, use the
WithSqliteWeb extension method.

C#

This code adds a container based on ghcr.io/coleifer/sqlite-web to the app host,
which provides a web interface to interact with the SQLite database it is connected to.
Each SQLiteWeb instance is connected to a single SQLite database, meaning that if you
add multiple SQLiteWeb instances, there will be multiple SQLiteWeb containers.

SQLite supports extensions that can be added to the SQLite database. Extensions can
either be provided via a NuGet package, or via a location on disk. Use either the
WithNuGetExtension or WithLocalExtension extension methods to add extensions to the
SQLite database.

var builder = DistributedApplication.CreateBuilder(args);

var sqlite = builder.AddSQLite("my-database");

var exampleProject = builder.AddProject<Projects.ExampleProject>()
 .WithReference(sqlite);

var sqlite = builder.AddSQLite("my-database", "C:\\Database\\Location", "my-
database.db");

Add SQLiteWeb resource

var sqlite = builder.AddSQLite("my-database")
 .WithSqliteWeb();

Adding SQLite extensions

７ Note

To get started with the .NET Aspire SQLite EF client integration, install the 📦
CommunityToolkit.Aspire.Microsoft.EntityFrameworkCore.Sqlite NuGet package in the
client-consuming project, that is, the project for the application that uses the SQLite
client. The SQLite client integration registers a SqliteConnection instance that you can
use to interact with SQLite.

.NET CLI

In the Program.cs file of your client-consuming project, call the
Microsoft.Extensions.Hosting.AspireEFSqliteExtensions.AddSqliteDbContext extension
method on any IHostApplicationBuilder to register your DbContext subclass for use via
the dependency injection container. The method takes a connection name parameter.

C#

After adding YourDbContext to the builder, you can get the YourDbContext instance
using dependency injection. For example, to retrieve your data source object from an
example service define it as a constructor parameter and ensure the ExampleService
class is registered with the dependency injection container:

The SQLite extensions support is considered experimental and produces a
CTASPIRE002 warning.

Client integration

.NET CLI

dotnet add package
CommunityToolkit.Aspire.Microsoft.EntityFrameworkCore.Sqlite

Add Sqlite client

builder.AddSqliteDbContext<YourDbContext>(connectionName: "sqlite");

 Tip

The connectionName parameter must match the name used when adding the SQLite
resource in the app host project. For more information, see Add SQLite resource.

https://www.nuget.org/packages/CommunityToolkit.Aspire.Microsoft.EntityFrameworkCore.Sqlite
https://www.nuget.org/packages/CommunityToolkit.Aspire.Microsoft.EntityFrameworkCore.Sqlite
https://www.nuget.org/packages/CommunityToolkit.Aspire.Microsoft.EntityFrameworkCore.Sqlite
https://learn.microsoft.com/en-us/dotnet/api/microsoft.data.sqlite.sqliteconnection
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.ihostapplicationbuilder
https://learn.microsoft.com/en-us/dotnet/api/system.data.entity.dbcontext

C#

For more information on dependency injection, see .NET dependency injection.

You may prefer to use the standard Entity Framework method to obtain the database
contextand add it to the dependency injection container:

C#

The SQLite client integration provides multiple configuration approaches and options to
meet the requirements and conventions of your project.

When using a connection string from the ConnectionStrings configuration section, you
can provide the name of the connection string when calling the
Microsoft.Extensions.Hosting.AspireEFSqliteExtensions.AddSqliteDbContext method:

C#

public class ExampleService(YourDbContext context)
{
 // Use context...
}

Enrich a SQLite database context

builder.Services.AddDbContext<YourDbContext>(options =>
 options.UseSqlite(builder.Configuration.GetConnectionString("sqlite")
 ?? throw new InvalidOperationException("Connection string 'sqlite'
not found.")));

７ Note

The connection string name that you pass to the GetConnectionString method
must match the name used when adding the SQLite resource in the app host
project. For more information, see Add SQLite resource.

Configuration

Use a connection string

builder.AddSqliteDbContext<YourDbContext>("sqlite");

https://learn.microsoft.com/en-us/dotnet/core/extensions/dependency-injection
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration.configurationextensions.getconnectionstring

Then the connection string will be retrieved from the ConnectionStrings configuration
section.

JSON

The SQLite client integration supports Microsoft.Extensions.Configuration. It loads the
Microsoft.Extensions.Hosting.SqliteConnectionSettings from the appsettings.json or
other configuration providers by using the Aspire:Sqlite:EntityFrameworkCore:Sqlite
key. Example _appsettings.json that configures some of the options:

JSON

{
 "ConnectionStrings": {
 "sqlite": "Data Source=C:\\Database\\Location\\my-database.db"
 }
}

Use configuration providers

{
 "Aspire": {
 "Sqlite": {
 "EntityFrameworkCore": {
 "Sqlite": {
 "ConnectionString": "Data Source=C:\\Database\\Location\\my-
database.db",
 "DisableHealthCheck": true
 }
 }
 }
 }
}

https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration

.NET Aspire Community Toolkit SQLite
integration
Article • 03/05/2025

Includes: Hosting integration and Client integration

SQLite is a lightweight, serverless, self-contained SQL database engine that is widely
used for local data storage in applications. The .NET Aspire SQLite integration provides a
way to use SQLite databases within your .NET Aspire applications, and access them via
the Microsoft.Data.Sqlite client.

The SQLite hosting integration models a SQLite database as the SQLiteResource type
and will create the database file in the specified location. To access these types and APIs
that allow you to add the 📦 CommunityToolkit.Aspire.Hosting.SQLite NuGet package
in the app host project.

.NET CLI

For more information, see dotnet add package or Manage package dependencies in
.NET applications.

In the app host project, register and consume the SQLite integration using the
AddSQLite extension method to add the SQLite database to the application builder.

C#

７ Note

This integration is part of the .NET Aspire Community Toolkit and isn't officially
supported by the .NET Aspire team.

Hosting integration

.NET CLI

dotnet add package CommunityToolkit.Aspire.Hosting.SQLite

Add SQLite resource

https://www.sqlite.org/index.html
https://www.sqlite.org/index.html
https://www.nuget.org/packages/Microsoft.Data.Sqlite
https://www.nuget.org/packages/Microsoft.Data.Sqlite
https://nuget.org/packages/CommunityToolkit.Aspire.Hosting.SQLite
https://nuget.org/packages/CommunityToolkit.Aspire.Hosting.SQLite
https://learn.microsoft.com/en-us/dotnet/core/tools/dotnet-add-package
https://learn.microsoft.com/en-us/dotnet/core/tools/dependencies
https://learn.microsoft.com/en-us/dotnet/core/tools/dependencies
https://github.com/CommunityToolkit/Aspire
https://github.com/CommunityToolkit/Aspire

When .NET Aspire adds a SQLite database to the app host, as shown in the preceding
example, it creates a new SQLite database file in the users temp directory.

Alternatively, if you want to specify a custom location for the SQLite database file,
provide the relevant arguments to the AddSqlite method.

C#

When adding the SQLite resource, you can also add the SQLiteWeb resource, which
provides a web interface to interact with the SQLite database. To do this, use the
WithSqliteWeb extension method.

C#

This code adds a container based on ghcr.io/coleifer/sqlite-web to the app host,
which provides a web interface to interact with the SQLite database it is connected to.
Each SQLiteWeb instance is connected to a single SQLite database, meaning that if you
add multiple SQLiteWeb instances, there will be multiple SQLiteWeb containers.

SQLite supports extensions that can be added to the SQLite database. Extensions can
either be provided via a NuGet package, or via a location on disk. Use either the
WithNuGetExtension or WithLocalExtension extension methods to add extensions to the
SQLite database.

var builder = DistributedApplication.CreateBuilder(args);

var sqlite = builder.AddSQLite("my-database");

var exampleProject = builder.AddProject<Projects.ExampleProject>()
 .WithReference(sqlite);

var sqlite = builder.AddSQLite("my-database", "C:\\Database\\Location", "my-
database.db");

Add SQLiteWeb resource

var sqlite = builder.AddSQLite("my-database")
 .WithSqliteWeb();

Adding SQLite extensions

７ Note

To get started with the .NET Aspire SQLite client integration, install the 📦
CommunityToolkit.Aspire.Microsoft.Data.Sqlite NuGet package in the client-
consuming project, that is, the project for the application that uses the SQLite client. The
SQLite client integration registers a SqliteConnection instance that you can use to
interact with SQLite.

.NET CLI

In the Program.cs file of your client-consuming project, call the
Microsoft.Extensions.Hosting.AspireSqliteExtensions.AddSqliteConnection extension
method on any IHostApplicationBuilder to register a SqliteConnection for use via the
dependency injection container. The method takes a connection name parameter.

C#

After adding SqliteConnection to the builder, you can get the SqliteConnection
instance using dependency injection. For example, to retrieve your connection object
from an example service define it as a constructor parameter and ensure the
ExampleService class is registered with the dependency injection container:

The SQLite extensions support is considered experimental and produces a
CTASPIRE002 warning.

Client integration

.NET CLI

dotnet add package CommunityToolkit.Aspire.Microsoft.Data.Sqlite

Add Sqlite client

builder.AddSqliteConnection(connectionName: "sqlite");

 Tip

The connectionName parameter must match the name used when adding the SQLite
resource in the app host project. For more information, see Add SQLite resource.

https://www.nuget.org/packages/CommunityToolkit.Aspire.Microsoft.Data.Sqlite
https://www.nuget.org/packages/CommunityToolkit.Aspire.Microsoft.Data.Sqlite
https://www.nuget.org/packages/CommunityToolkit.Aspire.Microsoft.Data.Sqlite
https://learn.microsoft.com/en-us/dotnet/api/microsoft.data.sqlite.sqliteconnection
https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.ihostapplicationbuilder

C#

For more information on dependency injection, see .NET dependency injection.

There might be situations where you want to register multiple SqliteConnection
instances with different connection names. To register keyed Sqlite clients, call the
Microsoft.Extensions.Hosting.AspireSqliteExtensions.AddKeyedSqliteConnection

method:

C#

Then you can retrieve the SqliteConnection instances using dependency injection. For
example, to retrieve the connection from an example service:

C#

The SQLite client integration provides multiple configuration approaches and options to
meet the requirements and conventions of your project.

When using a connection string from the ConnectionStrings configuration section, you
can provide the name of the connection string when calling the
Microsoft.Extensions.Hosting.AspireSqliteExtensions.AddSqliteConnection method:

public class ExampleService(SqliteConnection connection)
{
 // Use connection...
}

Add keyed Sqlite client

builder.AddKeyedSqliteConnection(name: "chat");
builder.AddKeyedSqliteConnection(name: "queue");

public class ExampleService(
 [FromKeyedServices("chat")] SqliteConnection chatConnection,
 [FromKeyedServices("queue")] SqliteConnection queueConnection)
{
 // Use connections...
}

Configuration

Use a connection string

https://learn.microsoft.com/en-us/dotnet/core/extensions/dependency-injection

C#

Then the connection string will be retrieved from the ConnectionStrings configuration
section.

JSON

The SQLite client integration supports Microsoft.Extensions.Configuration. It loads the
Microsoft.Extensions.Hosting.SqliteConnectionSettings from the appsettings.json or
other configuration providers by using the Aspire:Sqlite:Client key. Example
appsettings.json that configures some of the options:

JSON

builder.AddSqliteConnection("sqlite");

{
 "ConnectionStrings": {
 "sqlite": "Data Source=C:\\Database\\Location\\my-database.db"
 }
}

Use configuration providers

{
 "Aspire": {
 "Sqlite": {
 "Client": {
 "ConnectionString": "Data Source=C:\\Database\\Location\\my-
database.db",
 "DisableHealthCheck": true
 }
 }
 }
}

https://learn.microsoft.com/en-us/dotnet/api/microsoft.extensions.configuration

.NET Aspire Community Toolkit SQL
Server hosting extensions
Article • 03/05/2025

Includes: Hosting integration not Client integration

In this article, you learn about the .NET Aspire Community Toolkit SQL Server hosting
extensions package which provides extra functionality to the .NET Aspire SQL Server
hosting package .

This package provides the following features:

DbGate management UI

To get started with the .NET Aspire Community Toolkit SQL Server hosting extensions,
install the 📦 CommunityToolkit.Aspire.Hosting.SqlServer.Extensions NuGet package
in the AppHost project.

.NET CLI

For more information, see dotnet add package or Manage package dependencies in
.NET applications.

To add the DbGate management UI to your SQL Server resource, call the WithDbGate
method on the SqlServerResourceBuilder instance.

７ Note

This integration is part of the .NET Aspire Community Toolkit and isn't officially
supported by the .NET Aspire team.

Hosting integration

.NET CLI

dotnet add package CommunityToolkit.Aspire.Hosting.SqlServer.Extensions

Example usage

https://nuget.org/packages/Aspire.Hosting.SQLServer
https://nuget.org/packages/Aspire.Hosting.SQLServer
https://nuget.org/packages/Aspire.Hosting.SQLServer
https://dbgate.org/
https://dbgate.org/
https://nuget.org/packages/CommunityToolkit.Aspire.Hosting.SqlServer.Extensions
https://nuget.org/packages/CommunityToolkit.Aspire.Hosting.SqlServer.Extensions
https://learn.microsoft.com/en-us/dotnet/core/tools/dotnet-add-package
https://learn.microsoft.com/en-us/dotnet/core/tools/dependencies
https://learn.microsoft.com/en-us/dotnet/core/tools/dependencies
https://github.com/CommunityToolkit/Aspire
https://github.com/CommunityToolkit/Aspire

C#

This will add a new resource to the app host which will be available from the .NET Aspire
dashboard.

var sqlserver = builder.AddSqlServer("sqlserver")
 .WithDbGate();

.NET Aspire Community Toolkit
MongoDB hosting extensions
Article • 03/05/2025

Includes: Hosting integration not Client integration

In this article, you learn about the .NET Aspire Community Toolkit MongoDB hosting
extensions package which provides extra functionality to the .NET Aspire MongoDB
hosting package .

This package provides the following features:

DbGate management UI

To get started with the .NET Aspire Community Toolkit MongoDB hosting extensions,
install the 📦 CommunityToolkit.Aspire.Hosting.MongoDB.Extensions NuGet package
in the AppHost project.

.NET CLI

For more information, see dotnet add package or Manage package dependencies in
.NET applications.

To add the DbGate management UI to your MongoDB resource, call the WithDbGate
method on the MongoDBResourceBuilder instance.

７ Note

This integration is part of the .NET Aspire Community Toolkit and isn't officially
supported by the .NET Aspire team.

Hosting integration

.NET CLI

dotnet add package CommunityToolkit.Aspire.Hosting.MongoDB.Extensions

Example usage

https://nuget.org/packages/Aspire.Hosting.MongoDB
https://nuget.org/packages/Aspire.Hosting.MongoDB
https://nuget.org/packages/Aspire.Hosting.MongoDB
https://dbgate.org/
https://dbgate.org/
https://nuget.org/packages/CommunityToolkit.Aspire.Hosting.MongoDB.Extensions
https://nuget.org/packages/CommunityToolkit.Aspire.Hosting.MongoDB.Extensions
https://learn.microsoft.com/en-us/dotnet/core/tools/dotnet-add-package
https://learn.microsoft.com/en-us/dotnet/core/tools/dependencies
https://learn.microsoft.com/en-us/dotnet/core/tools/dependencies
https://github.com/CommunityToolkit/Aspire
https://github.com/CommunityToolkit/Aspire

C#

This will add a new resource to the app host which will be available from the .NET Aspire
dashboard.

var MongoDB = builder.AddMongoDB("MongoDB")
 .WithDbGate();

.NET Aspire Community Toolkit Redis
hosting extensions
Article • 03/05/2025

Includes: Hosting integration not Client integration

In this article, you learn about the .NET Aspire Community Toolkit Redis hosting
extensions package which provides extra functionality to the .NET Aspire Redis hosting
package .

This package provides the following features:

DbGate management UI

To get started with the .NET Aspire Community Toolkit Redis hosting extensions, install
the 📦 CommunityToolkit.Aspire.Hosting.Redis.Extensions NuGet package in the
AppHost project.

.NET CLI

For more information, see dotnet add package or Manage package dependencies in
.NET applications.

To add the DbGate management UI to your Redis resource, call the WithDbGate method
on the RedisResource instance.

https://nuget.org/packages/Aspire.Hosting.Redis
https://nuget.org/packages/Aspire.Hosting.Redis
https://nuget.org/packages/Aspire.Hosting.Redis
https://dbgate.org/
https://dbgate.org/
https://nuget.org/packages/CommunityToolkit.Aspire.Hosting.Redis.Extensions
https://nuget.org/packages/CommunityToolkit.Aspire.Hosting.Redis.Extensions
https://learn.microsoft.com/en-us/dotnet/core/tools/dotnet-add-package
https://learn.microsoft.com/en-us/dotnet/core/tools/dependencies
https://learn.microsoft.com/en-us/dotnet/core/tools/dependencies
https://github.com/CommunityToolkit/Aspire
https://github.com/CommunityToolkit/Aspire

C#

This will add a new resource to the app host which will be available from the .NET Aspire
dashboard.

var redis = builder.AddRedis("Redis")
 .WithDbGate();

.NET Aspire Community Toolkit
PostgreSQL hosting extensions
Article • 03/05/2025

Includes: Hosting integration not Client integration

In this article, you learn about the .NET Aspire Community Toolkit PostgreSQL hosting
extensions package which provides extra functionality to the .NET Aspire PostgreSQL
hosting package .

This package provides the following features:

DbGate management UI

To get started with the .NET Aspire Community Toolkit PostgreSQL hosting extensions,
install the 📦 CommunityToolkit.Aspire.Hosting.PostgreSQL.Extensions NuGet
package in the AppHost project.

.NET CLI

For more information, see dotnet add package or Manage package dependencies in
.NET applications.

To add the DbGate management UI to your PostgreSQL resource, call the WithDbGate
method on the PostgresServerResource instance.

７ Note

This integration is part of the .NET Aspire Community Toolkit and isn't officially
supported by the .NET Aspire team.

Hosting integration

.NET CLI

dotnet add package CommunityToolkit.Aspire.Hosting.PostgreSQL.Extensions

Example usage

https://nuget.org/packages/Aspire.Hosting.PostgreSQL
https://nuget.org/packages/Aspire.Hosting.PostgreSQL
https://nuget.org/packages/Aspire.Hosting.PostgreSQL
https://dbgate.org/
https://dbgate.org/
https://nuget.org/packages/CommunityToolkit.Aspire.Hosting.PostgreSQL.Extensions
https://nuget.org/packages/CommunityToolkit.Aspire.Hosting.PostgreSQL.Extensions
https://learn.microsoft.com/en-us/dotnet/core/tools/dotnet-add-package
https://learn.microsoft.com/en-us/dotnet/core/tools/dependencies
https://learn.microsoft.com/en-us/dotnet/core/tools/dependencies
https://github.com/CommunityToolkit/Aspire
https://github.com/CommunityToolkit/Aspire

C#

This will add a new resource to the app host which will be available from the .NET Aspire
dashboard.

var postgresServer = builder.AddPostgreSQL("PostgreSQL")
 .WithDbGate();

Create custom .NET Aspire hosting
integrations
Article • 11/11/2024

.NET Aspire improves the development experience by providing reusable building
blocks that can be used to quickly arrange application dependencies and expose them
to your own code. One of the key building blocks of an Aspire-based application is the
resource. Consider the code below:

C#

In the preceding code there are four resources represented:

1. cache : A Redis container.
2. pgserver : A Postgres container.
3. inventorydb : A database hosted on pgserver .
4. inventoryservice : An ASP.NET Core application.

Most .NET Aspire-related code that the average developer writes, centers around adding
resources to the app model and creating references between them.

Building a custom resource in .NET Aspire requires the following:

1. A custom resource type that implements IResource
2. An extension method for IDistributedApplicationBuilder named

Add{CustomResource} where {CustomResource} is the name of the custom resource.

When custom resource requires optional configuration, developers may wish to
implement With* suffixed extension methods to make these configuration options

var builder = DistributedApplication.CreateBuilder(args);

var redis = builder.AddRedis("cache");

var db = builder.AddPostgres("pgserver")
 .AddDatabase("inventorydb");

builder.AddProject<Projects.InventoryService>("inventoryservice")
 .WithReference(redis)
 .WithReference(db);

Key elements of a .NET Aspire custom resource

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.iresource
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.idistributedapplicationbuilder

discoverable using the builder pattern.

To help understand how to develop custom resources, this article shows an example of
how to build a custom resource for MailDev . MailDev is an open-source tool which
provides a local mail server designed to allow developers to test e-mail sending
behaviors within their app. For more information, see the MailDev GitHub repository .

In this example you create a new .NET Aspire project as a test environment for the
MailDev resource that you create. While you can create custom resources in existing
.NET Aspire projects it's a good idea to consider whether the custom resource might be
used across multiple .NET Aspire-based solutions and should be developed as a
reusable integration.

Create a new .NET Aspire project that is used to test out the new resource that we're
developing.

.NET CLI

Once the project is created, you should see a listing containing the following:

MailDevResource.AppHost : The app host used to test out the custom resource.
MailDevResource.ServiceDefaults : The service defaults project for use in service-
related projects.
MailDevResource.sln : The solution file referencing both projects.

Verify that the project can build and run successfully by executing the following
command:

.NET CLI

The console output should look similar to the following:

A practical example: MailDev

Set up the starter project

dotnet new aspire -o MailDevResource
cd MailDevResource
dir

dotnet run --project MailDevResource.AppHost/MailDevResource.AppHost.csproj

https://maildev.github.io/maildev/
https://maildev.github.io/maildev/
https://github.com/maildev/maildev
https://github.com/maildev/maildev

.NET CLI

Select the dashboard link in the browser to see the .NET Aspire dashboard:

Press Ctrl + C to shut down the app (you can close the browser tab).

.NET Aspire resources are just classes and methods contained within a class library that
references the .NET Aspire Hosting library (Aspire.Hosting). By placing the resource in a
separate project, you can more easily share it between .NET Aspire-based apps and
potentially package and share it on NuGet.

1. Create the class library project named MailDev.Hosting.

.NET CLI

Building...
info: Aspire.Hosting.DistributedApplication[0]
 Aspire version: 9.0.0
info: Aspire.Hosting.DistributedApplication[0]
 Distributed application starting.
info: Aspire.Hosting.DistributedApplication[0]
 Application host directory is:
 ..\docs-
aspire\docs\extensibility\snippets\MailDevResource\MailDevResource.AppHost
info: Aspire.Hosting.DistributedApplication[0]
 Now listening on: https://localhost:17251
info: Aspire.Hosting.DistributedApplication[0]
 Login to the dashboard at https://localhost:17251/login?
t=928db244c720c5022a7a9bf5cf3a3526
info: Aspire.Hosting.DistributedApplication[0]
 Distributed application started. Press Ctrl+C to shut down.



Create library for resource extension

dotnet new classlib -o MailDev.Hosting

https://learn.microsoft.com/en-us/dotnet/aspire/docs/extensibility/media/maildevresource-empty-dashboard.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/extensibility/media/maildevresource-empty-dashboard.png#lightbox

2. Add Aspire.Hosting to the class library as a package reference.

.NET CLI

3. Add class library reference to the MailDevResource.AppHost project.

.NET CLI

4. Add class library project to the solution file.

.NET CLI

Once the following steps are performed, you can launch the project:

.NET CLI

This results in a warning being displayed to the console:

Output

dotnet add ./MailDev.Hosting/MailDev.Hosting.csproj package
Aspire.Hosting --version 9.0.0

） Important

The version you specify here should match the version of the .NET Aspire
workload installed.

dotnet add ./MailDevResource.AppHost/MailDevResource.AppHost.csproj
reference ./MailDev.Hosting/MailDev.Hosting.csproj

dotnet sln ./MailDevResource.sln add
./MailDev.Hosting/MailDev.Hosting.csproj

dotnet run --project
./MailDevResource.AppHost/MailDevResource.AppHost.csproj

.\.nuget\packages\aspire.hosting.apphost\9.0.0\build\Aspire.Hosting.AppHost.
targets(174,5): warning ASPIRE004:
'..\MailDev.Hosting\MailDev.Hosting.csproj' is referenced by an A
spire Host project, but it is not an executable. Did you mean to set
IsAspireProjectResource="false"? [D:\source\repos\docs-
aspire\docs\extensibility\snippets\MailDevResource\MailDevResource.AppHost\M

This is because .NET Aspire treats project references in the app host as if they're service
projects. To tell .NET Aspire that the project reference should be treated as a nonservice
project modify the MailDevResource.AppHostMailDevResource.AppHost.csproj files
reference to the MailDev.Hosting project to be the following:

XML

Now when you launch the app host, there's no warning displayed to the console.

The MailDev.Hosting class library contains the resource type and extension methods for
adding the resource to the app host. You should first think about the experience that
you want to give developers when using your custom resource. In the case of this
custom resource, you would want developers to be able to write code like the following:

C#

To achieve this, you need a custom resource named MailDevResource which implements
IResourceWithConnectionString so that consumers can use it with WithReference
extension to inject the connection details for the MailDev server as a connection string.

MailDev is available as a container resource, so you'll also want to derive from
ContainerResource so that we can make use of various pre-existing container-focused
extensions in .NET Aspire.

ailDevRe
source.AppHost.csproj]

<ItemGroup>
 <!-- The IsAspireProjectResource attribute tells .NET Aspire to treat this
 reference as a standard project reference and not attempt to generate
 a metadata file -->
 <ProjectReference Include="..\MailDev.Hosting\MailDev.Hosting.csproj"
 IsAspireProjectResource="false" />
</ItemGroup>

Define the resource types

var builder = DistributedApplication.CreateBuilder(args);

var maildev = builder.AddMailDev("maildev");

builder.AddProject<Projects.NewsletterService>("newsletterservice")
 .WithReference(maildev);

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.iresourcewithconnectionstring
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.resourcebuilderextensions.withreference
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.containerresource

Replace the contents of the Class1.cs file in the MailDev.Hosting project, and rename the
file to MailDevResource.cs with the following code:

C#

In the preceding custom resource, the EndpointReference and ReferenceExpression are
examples of several types which implement a collection of interfaces, such as
IManifestExpressionProvider, IValueProvider, and IValueWithReferences. For more
information about these types and their role in .NET Aspire, see technical details.

// For ease of discovery, resource types should be placed in
// the Aspire.Hosting.ApplicationModel namespace. If there is
// likelihood of a conflict on the resource name consider using
// an alternative namespace.
namespace Aspire.Hosting.ApplicationModel;

public sealed class MailDevResource(string name) : ContainerResource(name),
IResourceWithConnectionString
{
 // Constants used to refer to well known-endpoint names, this is
specific
 // for each resource type. MailDev exposes an SMTP endpoint and a HTTP
 // endpoint.
 internal const string SmtpEndpointName = "smtp";
 internal const string HttpEndpointName = "http";

 // An EndpointReference is a core .NET Aspire type used for keeping
 // track of endpoint details in expressions. Simple literal values
cannot
 // be used because endpoints are not known until containers are
launched.
 private EndpointReference? _smtpReference;

 public EndpointReference SmtpEndpoint =>
 _smtpReference ??= new(this, SmtpEndpointName);

 // Required property on IResourceWithConnectionString. Represents a
connection
 // string that applications can use to access the MailDev server. In
this case
 // the connection string is composed of the SmtpEndpoint endpoint
reference.
 public ReferenceExpression ConnectionStringExpression =>
 ReferenceExpression.Create(
 $"smtp://{SmtpEndpoint.Property(EndpointProperty.Host)}:
{SmtpEndpoint.Property(EndpointProperty.Port)}"
);
}

Define the resource extensions

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.endpointreference
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.referenceexpression
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.imanifestexpressionprovider
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.ivalueprovider
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.ivaluewithreferences

To make it easy for developers to use the custom resource an extension method named
AddMailDev needs to be added to the MailDev.Hosting project. The AddMailDev
extension method is responsible for configuring the resource so it can start successfully
as a container.

Add the following code to a new file named MailDevResourceBuilderExtensions.cs in the
MailDev.Hosting project:

C#

using Aspire.Hosting.ApplicationModel;

// Put extensions in the Aspire.Hosting namespace to ease discovery as
referencing
// the .NET Aspire hosting package automatically adds this namespace.
namespace Aspire.Hosting;

public static class MailDevResourceBuilderExtensions
{
 /// <summary>
 /// Adds the <see cref="MailDevResource"/> to the given
 /// <paramref name="builder"/> instance. Uses the "2.1.0" tag.
 /// </summary>
 /// <param name="builder">The <see
cref="IDistributedApplicationBuilder"/>.</param>
 /// <param name="name">The name of the resource.</param>
 /// <param name="httpPort">The HTTP port.</param>
 /// <param name="smtpPort">The SMTP port.</param>
 /// <returns>
 /// An <see cref="IResourceBuilder{MailDevResource}"/> instance that
 /// represents the added MailDev resource.
 /// </returns>
 public static IResourceBuilder<MailDevResource> AddMailDev(
 this IDistributedApplicationBuilder builder,
 string name,
 int? httpPort = null,
 int? smtpPort = null)
 {
 // The AddResource method is a core API within .NET Aspire and is
 // used by resource developers to wrap a custom resource in an
 // IResourceBuilder<T> instance. Extension methods to customize
 // the resource (if any exist) target the builder interface.
 var resource = new MailDevResource(name);

 return builder.AddResource(resource)
 .WithImage(MailDevContainerImageTags.Image)
 .WithImageRegistry(MailDevContainerImageTags.Registry)
 .WithImageTag(MailDevContainerImageTags.Tag)
 .WithHttpEndpoint(
 targetPort: 1080,
 port: httpPort,
 name: MailDevResource.HttpEndpointName)

Now that the basic structure for the custom resource is complete it's time to test it in a
real AppHost project. Open the Program.cs file in the MailDevResource.AppHost project
and update it with the following code:

C#

After updating the Program.cs file, launch the app host project and open the dashboard:

.NET CLI

After a few moments the dashboard shows that the maildev resource is running and a
hyperlink will be available that navigates to the MailDev web app, which shows the
content of each e-mail that your app sends.

The .NET Aspire dashboard should look similar to the following:

 .WithEndpoint(
 targetPort: 1025,
 port: smtpPort,
 name: MailDevResource.SmtpEndpointName);
 }
}

// This class just contains constant strings that can be updated
periodically
// when new versions of the underlying container are released.
internal static class MailDevContainerImageTags
{
 internal const string Registry = "docker.io";

 internal const string Image = "maildev/maildev";

 internal const string Tag = "2.1.0";
}

Validate custom integration inside the app host

var builder = DistributedApplication.CreateBuilder(args);

var maildev = builder.AddMailDev("maildev");

builder.Build().Run();

dotnet run --project
./MailDevResource.AppHost/MailDevResource.AppHost.csproj

The MailDev web app should look similar to the following:

Once .NET Aspire can successfully launch the MailDev integration, it's time to consume
the connection information for MailDev within a .NET project. In .NET Aspire it's
common for there to be a hosting package and one or more component packages. For
example consider:

Hosting package: Used to represent resources within the app model.
Aspire.Hosting.Redis

Component packages: Used to configure and consume client libraries.
Aspire.StackExchange.Redis

Aspire.StackExchange.Redis.DistributedCaching

Aspire.StackExchange.Redis.OutputCaching

In the case of the MailDev resource, the .NET platform already has a simple mail transfer
protocol (SMTP) client in the form of SmtpClient. In this example you use this existing
API for the sake of simplicity, although other resource types may benefit from custom
integration libraries to assist developers.

In order to test the end-to-end scenario, you need a .NET project which we can inject
the connection information into for the MailDev resource. Add a Web API project:

1. Create a new .NET project named MailDevResource.NewsletterService.

.NET CLI





Add a .NET service project to the app host for
testing

https://learn.microsoft.com/en-us/dotnet/api/system.net.mail.smtpclient
https://learn.microsoft.com/en-us/dotnet/aspire/docs/extensibility/media/maildev-in-aspire-dashboard.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/extensibility/media/maildev-in-aspire-dashboard.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/extensibility/media/maildev-web-ui.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/extensibility/media/maildev-web-ui.png#lightbox

2. Add a reference to the MailDev.Hosting project.

.NET CLI

3. Add a reference to the MailDevResource.AppHost project.

.NET CLI

4. Add the new project to the solution file.

.NET CLI

After the project has been added and references have been updated, open the
Program.cs of the MailDevResource.AppHost.csproj project, and update the source file to
look like the following:

C#

dotnet new webapi --use-minimal-apis -o
MailDevResource.NewsletterService

dotnet add
./MailDevResource.NewsletterService/MailDevResource.NewsletterService.c
sproj reference ./MailDev.Hosting/MailDev.Hosting.csproj

dotnet add ./MailDevResource.AppHost/MailDevResource.AppHost.csproj
reference
./MailDevResource.NewsletterService/MailDevResource.NewsletterService.c
sproj

dotnet sln ./MailDevResource.sln add
./MailDevResource.NewsletterService/MailDevResource.NewsletterService.c
sproj

var builder = DistributedApplication.CreateBuilder(args);

var maildev = builder.AddMailDev("maildev");

builder.AddProject<Projects.MailDevResource_NewsletterService>
("newsletterservice")
 .WithReference(maildev);

builder.Build().Run();

After updating the Program.cs file, launch the app host again. Then verify that the
Newsletter Service started and that the environment variable
ConnectionStrings__maildev was added to the process. From the Resources page, find
the newsletterservice row, and select the View link on the Details column:

The preceding screenshot shows the environment variables for the newsletterservice
project. The ConnectionStrings__maildev environment variable is the connection string
that was injected into the project by the maildev resource.

To use the SMTP connection details that were injected into the newsletter service
project, you inject an instance of SmtpClient into the dependency injection container as
a singleton. Add the following code to the Program.cs file in the
MailDevResource.NewsletterService project to set up the singleton service. In the Program
class, immediately following the // Add services to the container comment, add the
following code:

C#



Use connection string to send messages

builder.Services.AddSingleton<SmtpClient>(sp =>
{
 var smtpUri = new
Uri(builder.Configuration.GetConnectionString("maildev")!);

 var smtpClient = new SmtpClient(smtpUri.Host, smtpUri.Port);

 return smtpClient;
});

https://learn.microsoft.com/en-us/dotnet/api/system.net.mail.smtpclient
https://learn.microsoft.com/en-us/dotnet/aspire/docs/extensibility/media/maildev-envvar.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/extensibility/media/maildev-envvar.png#lightbox

To test the client, add two simple subscribe and unsubscribe POST methods to the
newsletter service. Add the following code replacing the "weatherforecast" MapGet call in
the Program.cs file of the MailDevResource.NewsletterService project to set up the
ASP.NET Core routes:

C#

Once the Program.cs file is updated, launch the app host and use your browser, or curl
to hit the following URLs (alternatively if you're using Visual Studio you can use .http
files):

HTTP

 Tip

This code snippet relies on the official SmtpClient , however; this type is obsolete on
some platforms and not recommended on others. For a more modern approach
using MailKit , see Create custom .NET Aspire client integrations.

app.MapPost("/subscribe", async (SmtpClient smtpClient, string email) =>
{
 using var message = new MailMessage("newsletter@yourcompany.com", email)
 {
 Subject = "Welcome to our newsletter!",
 Body = "Thank you for subscribing to our newsletter!"
 };

 await smtpClient.SendMailAsync(message);
});

app.MapPost("/unsubscribe", async (SmtpClient smtpClient, string email) =>
{
 using var message = new MailMessage("newsletter@yourcompany.com", email)
 {
 Subject = "You are unsubscribed from our newsletter!",
 Body = "Sorry to see you go. We hope you will come back soon!"
 };

 await smtpClient.SendMailAsync(message);
});

 Tip

Remember to reference the System.Net.Mail and Microsoft.AspNetCore.Mvc
namespaces in Program.cs if your code editor doesn't automatically add them.

https://github.com/jstedfast/MailKit
https://github.com/jstedfast/MailKit

To use this API, you can use curl to send the request. The following curl command
sends an HTTP POST request to the subscribe endpoint, and it expects an email query
string value to subscribe to the newsletter. The Content-Type header is set to
application/json to indicate that the request body is in JSON format.:

PowerShell

The next API is the unsubscribe endpoint. This endpoint is used to unsubscribe from the
newsletter.

HTTP

To unsubscribe from the newsletter, you can use the following curl command, passing
an email parameter to the unsubscribe endpoint as a query string:

PowerShell

POST /subscribe?email=test@test.com HTTP/1.1
Host: localhost:7251
Content-Type: application/json

Windows

curl -H @{ ContentType = "application/json" } -Method POST
https://localhost:7251/subscribe?email=test@test.com

POST /unsubscribe?email=test@test.com HTTP/1.1
Host: localhost:7251
Content-Type: application/json

Windows

curl -H @{ ContentType = "application/json" } -Method POST
https://localhost:7251/unsubscribe?email=test@test.com

 Tip

Make sure that you replace the https://localhost:7251 with the correct localhost
port (the URL of the app host that you are running).

If those API calls return a successful response (HTTP 200, Ok) then you should be able to
select on the maildev resource the dashboard and the MailDev UI will show the emails
that have been sent to the SMTP endpoint.

In the following sections, various technical details are discussed which are important to
understand when developing custom resources for .NET Aspire.

In this example, the MailDev resource is a container resource which is exposed to the
host machine over HTTP and SMTP. The MailDev resource is a development tool and
isn't intended for production use. To instead use HTTPS, see MailDev: Configure
HTTPS .

When developing custom resources that expose network endpoints, it's important to
consider the security implications of the resource. For example, if the resource is a
database, it's important to ensure that the database is secure and that the connection
string isn't exposed to the public internet.

In the preceding code, the MailDevResource had two properties:

SmtpEndpoint : EndpointReference type.
ConnectionStringExpression : ReferenceExpression type.

These types are among several which are used throughout .NET Aspire to represent
configuration data, which isn't finalized until the .NET Aspire project is either run or
published to the cloud via a tool such as Azure Developer CLI (azd).

The fundamental problem that these types help to solve, is deferring resolution of
concrete configuration information until all the information is available.



Technical details

Secure networking

The ReferenceExpression and EndpointReference type

https://github.com/maildev/maildev/blob/357a20edcd205413d3590aedb8fcd7c97563c40d/docs/https.md
https://github.com/maildev/maildev/blob/357a20edcd205413d3590aedb8fcd7c97563c40d/docs/https.md
https://github.com/maildev/maildev/blob/357a20edcd205413d3590aedb8fcd7c97563c40d/docs/https.md
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.endpointreference
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.referenceexpression
https://learn.microsoft.com/en-us/azure/developer/azure-developer-cli/overview
https://learn.microsoft.com/en-us/azure/developer/azure-developer-cli/overview
https://learn.microsoft.com/en-us/azure/developer/azure-developer-cli/overview
https://learn.microsoft.com/en-us/dotnet/aspire/docs/extensibility/media/maildev-emails.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/extensibility/media/maildev-emails.png#lightbox

For example, the MailDevResource exposes a property called
ConnectionStringExpression as required by the IResourceWithConnectionString
interface. The type of the property is ReferenceExpression and is created by passing in
an interpolated string to the Create method.

C#

The signature for the Create method is as follows:

C#

This isn't a regular String argument. The method makes use of the interpolated string
handler pattern, to capture the interpolated string template and the values referenced
within it to allow for custom processing. In the case of .NET Aspire, these details are
captured in a ReferenceExpression which can be evaluated as each value referenced in
the interpolated string becomes available.

Here's how the flow of execution works:

1. A resource which implements IResourceWithConnectionString is added to the
model (for example, AddMailDev(...)).

2. The IResourceBuilder<MailDevResource> is passed to the WithReference which has
a special overload for handling IResourceWithConnectionString implementors.

3. The WithReference wraps the resource in a ConnectionStringReference instance
and the object is captured in a EnvironmentCallbackAnnotation which is evaluated
after the .NET Aspire project is built and starts running.

4. As the process that references the connection string starts .NET Aspire starts
evaluating the expression. It first gets the ConnectionStringReference and calls
IValueProvider.GetValueAsync.

5. The GetValueAsync method gets the value of the ConnectionStringExpression
property to get the ReferenceExpression instance.

6. The IValueProvider.GetValueAsync method then calls GetValueAsync to process the
previously captured interpolated string.

public ReferenceExpression ConnectionStringExpression =>
 ReferenceExpression.Create(
 $"smtp://{SmtpEndpoint.Property(EndpointProperty.Host)}:
{SmtpEndpoint.Property(EndpointProperty.Port)}"
);

public static ReferenceExpression Create(
 in ExpressionInterpolatedStringHandler handler)

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.iresourcewithconnectionstring
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.referenceexpression
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.referenceexpression.create
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.referenceexpression.create
https://learn.microsoft.com/en-us/dotnet/api/system.string
https://learn.microsoft.com/en-us/dotnet/csharp/whats-new/tutorials/interpolated-string-handler
https://learn.microsoft.com/en-us/dotnet/csharp/whats-new/tutorials/interpolated-string-handler
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.referenceexpression
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.iresourcewithconnectionstring
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.resourcebuilderextensions.withreference
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.iresourcewithconnectionstring
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.connectionstringreference
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.environmentcallbackannotation
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.connectionstringreference
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.connectionstringreference.aspire-hosting-applicationmodel-ivalueprovider-getvalueasync
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.iresourcewithconnectionstring.connectionstringexpression#aspire-hosting-applicationmodel-iresourcewithconnectionstring-connectionstringexpression
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.referenceexpression
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.connectionstringreference.aspire-hosting-applicationmodel-ivalueprovider-getvalueasync
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.referenceexpression.getvalueasync

7. Because the interpolated string contains references to other reference types such
as EndpointReference they're also evaluated and real value substituted (which at
this time is now available).

The IManifestExpressionProvider interface is designed to solve the problem of sharing
connection information between resources at deployment. The solution for this
particular problem is described in the .NET Aspire inner-loop networking overview.
Similarly to local development, many of the values are necessary to configure the app,
yet they can't be determined until the app is being deployed via a tool, such as azd
(Azure Developer CLI).

To solve this problem .NET Aspire produces a manifest file which azd and other
deployment tools interpret. Rather than specifying concrete values for connection
information between resources an expression syntax is used which deployment tools
evaluate. Generally the manifest file isn't visible to developers but it's possible to
generate one for manual inspection. The command below can be used on the app host
to produce a manifest.

.NET CLI

This command produces a manifest file like the following:

JSON

Manifest publishing

dotnet run --project MailDevResource.AppHost/MailDevResource.AppHost.csproj
-- --publisher manifest --output-path aspire-manifest.json

{
 "resources": {
 "maildev": {
 "type": "container.v0",
 "connectionString": "smtp://{maildev.bindings.smtp.host}:
{maildev.bindings.smtp.port}",
 "image": "docker.io/maildev/maildev:2.1.0",
 "bindings": {
 "http": {
 "scheme": "http",
 "protocol": "tcp",
 "transport": "http",
 "targetPort": 1080
 },
 "smtp": {
 "scheme": "tcp",
 "protocol": "tcp",

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.endpointreference
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.imanifestexpressionprovider

Because the MailDevResource implements IResourceWithConnectionString the manifest
publishing logic in .NET Aspire knows that even though MailDevResource is a container
resource, it also needs a connectionString field. The connectionString field references
other parts of the maildev resource in the manifest to produce the final string:

JSON

.NET Aspire knows how to form this string because it looks at
ConnectionStringExpression and builds up the final string via the

 "transport": "tcp",
 "targetPort": 1025
 }
 }
 },
 "newsletterservice": {
 "type": "project.v0",
 "path":
"../MailDevResource.NewsletterService/MailDevResource.NewsletterService.cspr
oj",
 "env": {
 "OTEL_DOTNET_EXPERIMENTAL_OTLP_EMIT_EXCEPTION_LOG_ATTRIBUTES":
"true",
 "OTEL_DOTNET_EXPERIMENTAL_OTLP_EMIT_EVENT_LOG_ATTRIBUTES": "true",
 "OTEL_DOTNET_EXPERIMENTAL_OTLP_RETRY": "in_memory",
 "ASPNETCORE_FORWARDEDHEADERS_ENABLED": "true",
 "ConnectionStrings__maildev": "{maildev.connectionString}"
 },
 "bindings": {
 "http": {
 "scheme": "http",
 "protocol": "tcp",
 "transport": "http"
 },
 "https": {
 "scheme": "https",
 "protocol": "tcp",
 "transport": "http"
 }
 }
 }
 }
}

{
 // ... other content omitted.
 "connectionString": "smtp://{maildev.bindings.smtp.host}:
{maildev.bindings.smtp.port}"
}

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.iresourcewithconnectionstring
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.iresourcewithconnectionstring.connectionstringexpression#aspire-hosting-applicationmodel-iresourcewithconnectionstring-connectionstringexpression

IManifestExpressionProvider interface (in much the same way as the IValueProvider
interface is used).

The MailDevResource automatically gets included in the manifest because it's derived
from ContainerResource. Resource authors can choose to suppress outputting content
to the manifest by using the ExcludeFromManifest extension method on the resource
builder.

C#

Careful consideration should be given as to whether the resource should be present in
the manifest, or whether it should be suppressed. If the resource is being added to the
manifest, it should be configured in such a way that it's safe and secure to use.

In the custom resource tutorial, you learned how to create a custom .NET Aspire
resource which uses an existing containerized application (MailDev). You then used that
to improve the local development experience by making it easy to test e-mail
capabilities that might be used within an app. These learnings can be applied to
building out other custom resources that can be used in .NET Aspire-based applications.
This specific example didn't include any custom integrations, but it's possible to build
out custom integrations to make it easier for developers to use the resource. In this

public static IResourceBuilder<MailDevResource> AddMailDev(
 this IDistributedApplicationBuilder builder,
 string name,
 int? httpPort = null,
 int? smtpPort = null)
{
 var resource = new MailDevResource(name);

 return builder.AddResource(resource)
 .WithImage(MailDevContainerImageTags.Image)
 .WithImageRegistry(MailDevContainerImageTags.Registry)
 .WithImageTag(MailDevContainerImageTags.Tag)
 .WithHttpEndpoint(
 targetPort: 1080,
 port: httpPort,
 name: MailDevResource.HttpEndpointName)
 .WithEndpoint(
 targetPort: 1025,
 port: smtpPort,
 name: MailDevResource.SmtpEndpointName)
 .ExcludeFromManifest(); // This line was added
}

Summary

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.imanifestexpressionprovider
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.ivalueprovider
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.containerresource
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.resourcebuilderextensions.excludefrommanifest

scenario you were able to rely on the existing SmtpClient class in the .NET platform to
send e-mails.

Next steps
Create custom .NET Aspire client integrations

Create custom .NET Aspire client
integrations
Article • 09/24/2024

This article is a continuation of the Create custom .NET Aspire hosting integrations
article. It guides you through creating a .NET Aspire client integration that uses MailKit
to send emails. This integration is then added into the Newsletter app you previously
built. The previous example omitted the creation of a client integration and instead
relied on the existing .NET SmtpClient . It's best to use MailKit's SmtpClient over the
official .NET SmtpClient for sending emails, as it's more modern and supports more
features/protocols. For more information, see .NET SmtpClient: Remarks.

If you're following along, you should have a Newsletter app from the steps in the Create
custom .NET Aspire hosting integration article.

.NET Aspire integrations are delivered as NuGet packages, but in this example, it's
beyond the scope of this article to publish a NuGet package. Instead, you create a class
library project that contains the integration and reference it as a project. .NET Aspire
integration packages are intended to wrap a client library, such as MailKit, and provide
production-ready telemetry, health checks, configurability, and testability. Let's start by
creating a new class library project.

1. Create a new class library project named MailKit.Client in the same directory as
the MailDevResource.sln from the previous article.

.NET CLI

Prerequisites

 Tip

This article is inspired by existing .NET Aspire integrations, and based on the team's
official guidance. There are places where said guidance varies, and it's important to
understand the reasoning behind the differences. For more information, see .NET
Aspire integration requirements .

Create library for integration

https://github.com/jstedfast/MailKit
https://github.com/jstedfast/MailKit
https://learn.microsoft.com/en-us/dotnet/api/system.net.mail.smtpclient#remarks
https://github.com/dotnet/aspire/blob/f38b6cba86942ad1c45fc04fe7170f0fd4ba7c0b/src/Components/Aspire_Components_Progress.md#net-aspire-integration-requirements
https://github.com/dotnet/aspire/blob/f38b6cba86942ad1c45fc04fe7170f0fd4ba7c0b/src/Components/Aspire_Components_Progress.md#net-aspire-integration-requirements
https://github.com/dotnet/aspire/blob/f38b6cba86942ad1c45fc04fe7170f0fd4ba7c0b/src/Components/Aspire_Components_Progress.md#net-aspire-integration-requirements

2. Add the project to the solution.

.NET CLI

The next step is to add all the NuGet packages that the integration relies on. Rather than
having you add each package one-by-one from the .NET CLI, it's likely easier to copy
and paste the following XML into the MailKit.Client.csproj file.

XML

Whenever you're creating a .NET Aspire integration, it's best to understand the client
library that you're mapping to. With MailKit, you need to understand the configuration
settings that are required to connect to a Simple Mail Transfer Protocol (SMTP) server.
But it's also important to understand if the library has support for health checks, tracing
and metrics. MailKit supports tracing and metrics, through its Telemetry.SmtpClient
class . When adding health checks, you should use any established or existing health
checks where possible. Otherwise, you might consider implementing your own in the
integration. Add the following code to the MailKit.Client project in a file named
MailKitClientSettings.cs:

C#

dotnet new classlib -o MailKit.Client

dotnet sln ./MailDevResource.sln add
MailKit.Client/MailKit.Client.csproj

<ItemGroup>
 <PackageReference Include="MailKit" Version="4.11.0" />
 <PackageReference Include="Microsoft.Extensions.Configuration.Binder"
Version="9.0.3" />
 <PackageReference Include="Microsoft.Extensions.Resilience"
Version="9.3.0" />
 <PackageReference Include="Microsoft.Extensions.Hosting.Abstractions"
Version="9.0.3" />
 <PackageReference Include="Microsoft.Extensions.Diagnostics.HealthChecks"
Version="9.0.3" />
 <PackageReference Include="OpenTelemetry.Extensions.Hosting"
Version="1.11.2" />
</ItemGroup>

Define integration settings

https://github.com/jstedfast/MailKit/blob/master/MailKit/Telemetry.cs#L112-L189
https://github.com/jstedfast/MailKit/blob/master/MailKit/Telemetry.cs#L112-L189
https://github.com/jstedfast/MailKit/blob/master/MailKit/Telemetry.cs#L112-L189

using System.Data.Common;

namespace MailKit.Client;

/// <summary>
/// Provides the client configuration settings for connecting MailKit to an
SMTP server.
/// </summary>
public sealed class MailKitClientSettings
{
 internal const string DefaultConfigSectionName = "MailKit:Client";

 /// <summary>
 /// Gets or sets the SMTP server <see cref="Uri"/>.
 /// </summary>
 /// <value>
 /// The default value is <see langword="null"/>.
 /// </value>
 public Uri? Endpoint { get; set; }

 /// <summary>
 /// Gets or sets a boolean value that indicates whether the database
health check is disabled or not.
 /// </summary>
 /// <value>
 /// The default value is <see langword="false"/>.
 /// </value>
 public bool DisableHealthChecks { get; set; }

 /// <summary>
 /// Gets or sets a boolean value that indicates whether the
OpenTelemetry tracing is disabled or not.
 /// </summary>
 /// <value>
 /// The default value is <see langword="false"/>.
 /// </value>
 public bool DisableTracing { get; set; }

 /// <summary>
 /// Gets or sets a boolean value that indicates whether the
OpenTelemetry metrics are disabled or not.
 /// </summary>
 /// <value>
 /// The default value is <see langword="false"/>.
 /// </value>
 public bool DisableMetrics { get; set; }

 internal void ParseConnectionString(string? connectionString)
 {
 if (string.IsNullOrWhiteSpace(connectionString))
 {
 throw new InvalidOperationException($"""
 ConnectionString is missing.
 It should be provided in 'ConnectionStrings:

The preceding code defines the MailKitClientSettings class with:

Endpoint property that represents the connection string to the SMTP server.
DisableHealthChecks property that determines whether health checks are enabled.
DisableTracing property that determines whether tracing is enabled.
DisableMetrics property that determines whether metrics are enabled.

<connectionName>'
 or '{DefaultConfigSectionName}:Endpoint' key.'
 configuration section.
 """);
 }

 if (Uri.TryCreate(connectionString, UriKind.Absolute, out var uri))
 {
 Endpoint = uri;
 }
 else
 {
 var builder = new DbConnectionStringBuilder
 {
 ConnectionString = connectionString
 };

 if (builder.TryGetValue("Endpoint", out var endpoint) is false)
 {
 throw new InvalidOperationException($"""
 The 'ConnectionStrings:<connectionName>' (or
'Endpoint' key in
 '{DefaultConfigSectionName}') is missing.
 """);
 }

 if (Uri.TryCreate(endpoint.ToString(), UriKind.Absolute, out
uri) is false)
 {
 throw new InvalidOperationException($"""
 The 'ConnectionStrings:<connectionName>' (or
'Endpoint' key in
 '{DefaultConfigSectionName}') isn't a valid URI.
 """);
 }

 Endpoint = uri;
 }
 }
}

Parse connection string logic

The settings class also contains a ParseConnectionString method that parses the
connection string into a valid Uri . The configuration is expected to be provided in the
following format:

ConnectionStrings:<connectionName> : The connection string to the SMTP server.
MailKit:Client:ConnectionString : The connection string to the SMTP server.

If neither of these values are provided, an exception is thrown.

The goal of .NET Aspire integrations is to expose the underlying client library to
consumers through dependency injection. With MailKit and for this example, the
SmtpClient class is what you want to expose. You're not wrapping any functionality, but
rather mapping configuration settings to an SmtpClient class. It's common to expose
both standard and keyed-service registrations for integrations. Standard registrations
are used when there's only one instance of a service, and keyed-service registrations are
used when there are multiple instances of a service. Sometimes, to achieve multiple
registrations of the same type you use a factory pattern. Add the following code to the
MailKit.Client project in a file named MailKitClientFactory.cs:

The MailKitClientFactory class is a factory that creates an ISmtpClient instance based
on the configuration settings. It's responsible for returning an ISmtpClient
implementation that has an active connection to a configured SMTP server. Next, you
need to expose the functionality for the consumers to register this factory with the
dependency injection container. Add the following code to the MailKit.Client project
in a file named MailKitExtensions.cs:

C#

 /// <remarks>
 /// Since both the connection and authentication are considered
expensive operations,
 /// the <see cref="ISmtpClient"/> returned is intended to be used for
the duration of a request
 /// (registered as 'Scoped') and is automatically disposed of.
 /// </remarks>
 public async Task<ISmtpClient> GetSmtpClientAsync(
 CancellationToken cancellationToken = default)
 {
 var client = new SmtpClient();
 try
 {
 if (settings.Endpoint is not null)
 {
 await client.ConnectAsync(settings.Endpoint,
cancellationToken)
 .ConfigureAwait(false);
 }
 return client;
 }
 catch
 {
 await client.DisconnectAsync(true, cancellationToken)
 client.Dispose();
 throw;
 }
 }
}

using MailKit;
using MailKit.Client;
using MailKit.Net.Smtp;
using Microsoft.Extensions.Configuration;
using Microsoft.Extensions.DependencyInjection;

namespace Microsoft.Extensions.Hosting;

/// <summary>
/// Provides extension methods for registering a <see cref="SmtpClient"/> as
a
/// scoped-lifetime service in the services provided by the <see

cref="IHostApplicationBuilder"/>.
/// </summary>
public static class MailKitExtensions
{
 /// <summary>
 /// Registers 'Scoped' <see cref="MailKitClientFactory" /> for creating
 /// connected <see cref="SmtpClient"/> instance for sending emails.
 /// </summary>
 /// <param name="builder">
 /// The <see cref="IHostApplicationBuilder" /> to read config from and
add services to.
 /// </param>
 /// <param name="connectionName">
 /// A name used to retrieve the connection string from the
ConnectionStrings configuration section.
 /// </param>
 /// <param name="configureSettings">
 /// An optional delegate that can be used for customizing options.
 /// It's invoked after the settings are read from the configuration.
 /// </param>
 public static void AddMailKitClient(
 this IHostApplicationBuilder builder,
 string connectionName,
 Action<MailKitClientSettings>? configureSettings = null) =>
 AddMailKitClient(
 builder,
 MailKitClientSettings.DefaultConfigSectionName,
 configureSettings,
 connectionName,
 serviceKey: null);

 /// <summary>
 /// Registers 'Scoped' <see cref="MailKitClientFactory" /> for creating
 /// connected <see cref="SmtpClient"/> instance for sending emails.
 /// </summary>
 /// <param name="builder">
 /// The <see cref="IHostApplicationBuilder" /> to read config from and
add services to.
 /// </param>
 /// <param name="name">
 /// The name of the component, which is used as the <see
cref="ServiceDescriptor.ServiceKey"/> of the
 /// service and also to retrieve the connection string from the
ConnectionStrings configuration section.
 /// </param>
 /// <param name="configureSettings">
 /// An optional method that can be used for customizing options. It's
invoked after the settings are
 /// read from the configuration.
 /// </param>
 public static void AddKeyedMailKitClient(
 this IHostApplicationBuilder builder,
 string name,
 Action<MailKitClientSettings>? configureSettings = null)
 {

 ArgumentNullException.ThrowIfNull(name);

 AddMailKitClient(
 builder,
 $"{MailKitClientSettings.DefaultConfigSectionName}:{name}",
 configureSettings,
 connectionName: name,
 serviceKey: name);
 }

 private static void AddMailKitClient(
 this IHostApplicationBuilder builder,
 string configurationSectionName,
 Action<MailKitClientSettings>? configureSettings,
 string connectionName,
 object? serviceKey)
 {
 ArgumentNullException.ThrowIfNull(builder);

 var settings = new MailKitClientSettings();

 builder.Configuration
 .GetSection(configurationSectionName)
 .Bind(settings);

 if (builder.Configuration.GetConnectionString(connectionName) is
string connectionString)
 {
 settings.ParseConnectionString(connectionString);
 }

 configureSettings?.Invoke(settings);

 if (serviceKey is null)
 {
 builder.Services.AddScoped(CreateMailKitClientFactory);
 }
 else
 {
 builder.Services.AddKeyedScoped(serviceKey, (sp, key) =>
CreateMailKitClientFactory(sp));
 }

 MailKitClientFactory CreateMailKitClientFactory(IServiceProvider _)
 {
 return new MailKitClientFactory(settings);
 }

 if (settings.DisableHealthChecks is false)
 {
 builder.Services.AddHealthChecks()
 .AddCheck<MailKitHealthCheck>(
 name: serviceKey is null ? "MailKit" :
$"MailKit_{connectionName}",
 failureStatus: default,

The preceding code adds two extension methods on the IHostApplicationBuilder type,
one for the standard registration of MailKit and another for keyed-registration of
MailKit.

Both extensions ultimately rely on the private AddMailKitClient method to register the
MailKitClientFactory with the dependency injection container as a scoped service. The
reason for registering the MailKitClientFactory as a scoped service is because the
connection operations are considered expensive and should be reused within the same
scope where possible. In other words, for a single request, the same ISmtpClient
instance should be used. The factory holds on to the instance of the SmtpClient that it
creates and disposes of it.

 tags: []);
 }

 if (settings.DisableTracing is false)
 {
 builder.Services.AddOpenTelemetry()
 .WithTracing(
 traceBuilder => traceBuilder.AddSource(
 Telemetry.SmtpClient.ActivitySourceName));
 }

 if (settings.DisableMetrics is false)
 {
 // Required by MailKit to enable metrics
 Telemetry.SmtpClient.Configure();

 builder.Services.AddOpenTelemetry()
 .WithMetrics(
 metricsBuilder => metricsBuilder.AddMeter(
 Telemetry.SmtpClient.MeterName));
 }
 }
}

 Tip

Extension methods for .NET Aspire integrations should extend the
IHostApplicationBuilder type and follow the Add<MeaningfulName> naming
convention where the <MeaningfulName> is the type or functionality you're adding.
For this article, the AddMailKitClient extension method is used to add the MailKit
client. It's likely more in-line with the official guidance to use AddMailKitSmtpClient
instead of AddMailKitClient , since this only registers the SmtpClient and not the
entire MailKit library.

https://learn.microsoft.com/en-us/dotnet/core/extensions/dependency-injection#scoped

One of the first things that the private implementation of the AddMailKitClient
methods does, is to bind the configuration settings to the MailKitClientSettings class.
The settings class is instantiated and then Bind is called with the specific section of
configuration. Then the optional configureSettings delegate is invoked with the current
settings. This allows the consumer to further configure the settings, ensuring that
manual code settings are honored over configuration settings. After that, depending on
whether the serviceKey value was provided, the MailKitClientFactory should be
registered with the dependency injection container as either a standard or keyed service.

The registration of health checks, and telemetry are described in a bit more detail in the
following sections.

Health checks are a way to monitor the health of an integration. With MailKit, you can
check if the connection to the SMTP server is healthy. Add the following code to the
MailKit.Client project in a file named MailKitHealthCheck.cs:

C#

Configuration binding

） Important

It's intentional that the implementationFactory overload is called when registering
services. The CreateMailKitClientFactory method throws when the configuration is
invalid. This ensures that creation of the MailKitClientFactory is deferred until it's
needed and it prevents the app from erroring out before logging is available.

Add health checks

using Microsoft.Extensions.Diagnostics.HealthChecks;

namespace MailKit.Client;

internal sealed class MailKitHealthCheck(MailKitClientFactory factory) :
IHealthCheck
{
 public async Task<HealthCheckResult> CheckHealthAsync(
 HealthCheckContext context,
 CancellationToken cancellationToken = default)
 {
 try
 {
 // The factory connects (and authenticates).
 _ = await factory.GetSmtpClientAsync(cancellationToken);

The preceding health check implementation:

Implements the IHealthCheck interface.
Accepts the MailKitClientFactory as a primary constructor parameter.
Satisfies the CheckHealthAsync method by:

Attempting to get an ISmtpClient instance from the factory . If successful, it
returns HealthCheckResult.Healthy .
If an exception is thrown, it returns HealthCheckResult.Unhealthy .

As previously shared in the registration of the MailKitClientFactory , the
MailKitHealthCheck is conditionally registered with the IHeathChecksBuilder :

C#

The consumer could choose to omit health checks by setting the DisableHealthChecks
property to true in the configuration. A common pattern for integrations is to have
optional features and .NET Aspire integrations strongly encourages these types of
configurations. For more information on health checks and a working sample that
includes a user interface, see .NET Aspire ASP.NET Core HealthChecksUI sample.

As a best practice, the MailKit client library exposes telemetry . .NET Aspire can take
advantage of this telemetry and display it in the .NET Aspire dashboard. Depending on

 return HealthCheckResult.Healthy();
 }
 catch (Exception ex)
 {
 return HealthCheckResult.Unhealthy(exception: ex);
 }
 }
}

if (settings.DisableHealthChecks is false)
{
 builder.Services.AddHealthChecks()
 .AddCheck<MailKitHealthCheck>(
 name: serviceKey is null ? "MailKit" :
$"MailKit_{connectionName}",
 failureStatus: default,
 tags: []);
}

Wire up telemetry

https://learn.microsoft.com/en-us/samples/dotnet/aspire-samples/aspire-health-checks-ui/
https://github.com/jstedfast/MailKit/blob/master/Telemetry.md
https://github.com/jstedfast/MailKit/blob/master/Telemetry.md

whether or not tracing and metrics are enabled, telemetry is wired up as shown in the
following code snippet:

C#

With the integration library created, you can now update the Newsletter service to use
the MailKit client. The first step is to add a reference to the MailKit.Client project. Add
the MailKit.Client.csproj project reference to the MailDevResource.NewsletterService
project:

.NET CLI

Next, add a reference to the ServiceDefaults project:

.NET CLI

if (settings.DisableTracing is false)
{
 builder.Services.AddOpenTelemetry()
 .WithTracing(
 traceBuilder => traceBuilder.AddSource(
 Telemetry.SmtpClient.ActivitySourceName));
}

if (settings.DisableMetrics is false)
{
 // Required by MailKit to enable metrics
 Telemetry.SmtpClient.Configure();

 builder.Services.AddOpenTelemetry()
 .WithMetrics(
 metricsBuilder => metricsBuilder.AddMeter(
 Telemetry.SmtpClient.MeterName));
}

Update the Newsletter service

dotnet add
./MailDevResource.NewsletterService/MailDevResource.NewsletterService.csproj
reference MailKit.Client/MailKit.Client.csproj

dotnet add
./MailDevResource.NewsletterService/MailDevResource.NewsletterService.csproj
reference
MailDevResource.ServiceDefaults/MailDevResource.ServiceDefaults.csproj

The final step is to replace the existing Program.cs file in the
MailDevResource.NewsletterService project with the following C# code:

C#

using System.Net.Mail;
using MailKit.Client;
using MailKit.Net.Smtp;
using MimeKit;

var builder = WebApplication.CreateBuilder(args);

builder.AddServiceDefaults();

builder.Services.AddEndpointsApiExplorer();
builder.Services.AddSwaggerGen();

// Add services to the container.
builder.AddMailKitClient("maildev");

var app = builder.Build();

app.MapDefaultEndpoints();

// Configure the HTTP request pipeline.

app.UseSwagger();
app.UseSwaggerUI();
app.UseHttpsRedirection();

app.MapPost("/subscribe",
 async (MailKitClientFactory factory, string email) =>
{
 ISmtpClient client = await factory.GetSmtpClientAsync();

 using var message = new MailMessage("newsletter@yourcompany.com", email)
 {
 Subject = "Welcome to our newsletter!",
 Body = "Thank you for subscribing to our newsletter!"
 };

 await client.SendAsync(MimeMessage.CreateFromMailMessage(message));
});

app.MapPost("/unsubscribe",
 async (MailKitClientFactory factory, string email) =>
{
 ISmtpClient client = await factory.GetSmtpClientAsync();

 using var message = new MailMessage("newsletter@yourcompany.com", email)
 {
 Subject = "You are unsubscribed from our newsletter!",
 Body = "Sorry to see you go. We hope you will come back soon!"
 };

The most notable changes in the preceding code are:

The updated using statements that include the MailKit.Client , MailKit.Net.Smtp ,
and MimeKit namespaces.
The replacement of the registration for the official .NET SmtpClient with the call to
the AddMailKitClient extension method.
The replacement of both /subscribe and /unsubscribe map post calls to instead
inject the MailKitClientFactory and use the ISmtpClient instance to send the
email.

Now that you've created the MailKit client integration and updated the Newsletter
service to use it, you can run the sample. From your IDE, select F5 or run dotnet run
from the root directory of the solution to start the application—you should see the .NET
Aspire dashboard:

Once the application is running, navigate to the Swagger UI at
https://localhost:7251/swagger and test the /subscribe and /unsubscribe endpoints.
Select the down arrow to expand the endpoint:

 await client.SendAsync(MimeMessage.CreateFromMailMessage(message));
});

app.Run();

Run the sample



https://localhost:7251/swagger
https://learn.microsoft.com/en-us/dotnet/aspire/docs/extensibility/media/maildev-with-newsletterservice-dashboard.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/extensibility/media/maildev-with-newsletterservice-dashboard.png#lightbox

Then select the Try it out button. Enter an email address, and then select the Execute
button.

Repeat this several times, to add multiple email addresses. You should see the email sent
to the MailDev inbox:

Stop the application by selecting Ctrl + C in the terminal window where the application
is running, or by selecting the stop button in your IDE.





https://learn.microsoft.com/en-us/dotnet/aspire/docs/extensibility/media/swagger-ui.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/extensibility/media/swagger-ui.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/extensibility/media/swagger-ui-try.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/extensibility/media/swagger-ui-try.png#lightbox

The MailKit client library exposes telemetry that can be viewed in the .NET Aspire
dashboard. To view the telemetry, navigate to the .NET Aspire dashboard at
https://localhost:7251. Select the newsletter resource to view the telemetry on the
Metrics page:

Open up the Swagger UI again, and make some requests to the /subscribe and
/unsubscribe endpoints. Then, navigate back to the .NET Aspire dashboard and select
the newsletter resource. Select a metric under the mailkit.net.smtp node, such as
mailkit.net.smtp.client.operation.count . You should see the telemetry for the MailKit
client:

In this article, you learned how to create a .NET Aspire integration that uses MailKit to
send emails. You also learned how to integrate this integration into the Newsletter app
you previously built. You learned about the core principles of .NET Aspire integrations,

View MailKit telemetry





Summary

https://localhost:7251/
https://learn.microsoft.com/en-us/dotnet/aspire/docs/extensibility/media/mailkit-metrics-dashboard.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/extensibility/media/mailkit-metrics-dashboard.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/extensibility/media/mailkit-metrics-graph-dashboard.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/extensibility/media/mailkit-metrics-graph-dashboard.png#lightbox

such as exposing the underlying client library to consumers through dependency
injection, and how to add health checks and telemetry to the integration. You also
learned how to update the Newsletter service to use the MailKit client.

Go forth and build your own .NET Aspire integrations. If you believe that there's enough
community value in the integration you're building, consider publishing it as a NuGet
package for others to use. Furthermore, consider submitting a pull request to the .NET
Aspire GitHub repository for consideration to be included in the official .NET Aspire
integrations.

Next steps
Secure communication between hosting and client integrations

https://learn.microsoft.com/en-us/dotnet/standard/library-guidance/nuget
https://learn.microsoft.com/en-us/dotnet/standard/library-guidance/nuget
https://github.com/dotnet/aspire
https://github.com/dotnet/aspire
https://github.com/dotnet/aspire

Secure communication between hosting
and client integrations
Article • 09/24/2024

This article is a continuation of two previous articles demonstrating the creation of
custom hosting integrations and custom client integrations.

One of the primary benefits to .NET Aspire is how it simplifies the configurability of
resources and consuming clients (or integrations). This article demonstrates how to
share authentication credentials from a custom resource in a hosting integration, to the
consuming client in a custom client integration. The custom resource is a MailDev
container that allows for either incoming or outgoing credentials. The custom client
integration is a MailKit client that sends emails.

Since this article continues from previous content, you should have already created the
resulting solution as a starting point for this article. If you haven't already, complete the
following articles:

Create custom .NET Aspire hosting integrations
Create custom .NET Aspire client integrations

The resulting solution from these previous articles contains the following projects:

MailDev.Hosting: Contains the custom resource type for the MailDev container.
MailDevResource.AppHost: The app host that uses the custom resource and defines
it as a dependency for a Newsletter service.
MailDevResource.NewsletterService: An ASP.NET Core Web API project that sends
emails using the MailDev container.
MailDevResource.ServiceDefaults: Contains the default service configurations
intended for sharing.
MailKit.Client: Contains the custom client integration that exposes the MailKit
SmtpClient through a factory.

To flow authentication credentials from the MailDev resource to the MailKit integration,
you need to update the MailDev resource to include the username and password
parameters.

Prerequisites

Update the MailDev resource

The MailDev container supports basic authentication for both incoming and outgoing
simple mail transfer protocol (SMTP). To configure the credentials for incoming, you
need to set the MAILDEV_INCOMING_USER and MAILDEV_INCOMING_PASS environment
variables. For more information, see MailDev: Usage . Update the MailDevResource.cs
file in the MailDev.Hosting project, by replacing its contents with the following C# code:

C#

// For ease of discovery, resource types should be placed in
// the Aspire.Hosting.ApplicationModel namespace. If there is
// likelihood of a conflict on the resource name consider using
// an alternative namespace.
namespace Aspire.Hosting.ApplicationModel;

public sealed class MailDevResource(
 string name,
 ParameterResource? username,
 ParameterResource password)
 : ContainerResource(name), IResourceWithConnectionString
{
 // Constants used to refer to well known-endpoint names, this is
specific
 // for each resource type. MailDev exposes an SMTP and HTTP endpoints.
 internal const string SmtpEndpointName = "smtp";
 internal const string HttpEndpointName = "http";

 private const string DefaultUsername = "mail-dev";

 // An EndpointReference is a core .NET Aspire type used for keeping
 // track of endpoint details in expressions. Simple literal values
cannot
 // be used because endpoints are not known until containers are
launched.
 private EndpointReference? _smtpReference;

 /// <summary>
 /// Gets the parameter that contains the MailDev SMTP server username.
 /// </summary>
 public ParameterResource? UsernameParameter { get; } = username;

 internal ReferenceExpression UserNameReference =>
 UsernameParameter is not null ?
 ReferenceExpression.Create($"{UsernameParameter}") :
 ReferenceExpression.Create($"{DefaultUsername}");

 /// <summary>
 /// Gets the parameter that contains the MailDev SMTP server password.
 /// </summary>
 public ParameterResource PasswordParameter { get; } = password;

 public EndpointReference SmtpEndpoint =>
 _smtpReference ??= new(this, SmtpEndpointName);

https://maildev.github.io/maildev/#usage
https://maildev.github.io/maildev/#usage

These updates add a UsernameParameter and PasswordParameter property. These
properties are used to store the parameters for the MailDev username and password.
The ConnectionStringExpression property is updated to include the username and
password parameters in the connection string. Next, update the
MailDevResourceBuilderExtensions.cs file in the MailDev.Hosting project with the
following C# code:

C#

 // Required property on IResourceWithConnectionString. Represents a
connection
 // string that applications can use to access the MailDev server. In
this case
 // the connection string is composed of the SmtpEndpoint endpoint
reference.
 public ReferenceExpression ConnectionStringExpression =>
 ReferenceExpression.Create(

$"Endpoint=smtp://{SmtpEndpoint.Property(EndpointProperty.Host)}:
{SmtpEndpoint.Property(EndpointProperty.Port)};Username=
{UserNameReference};Password={PasswordParameter}"
);
}

using Aspire.Hosting.ApplicationModel;

// Put extensions in the Aspire.Hosting namespace to ease discovery as
referencing
// the .NET Aspire hosting package automatically adds this namespace.
namespace Aspire.Hosting;

public static class MailDevResourceBuilderExtensions
{
 private const string UserEnvVarName = "MAILDEV_INCOMING_USER";
 private const string PasswordEnvVarName = "MAILDEV_INCOMING_PASS";

 /// <summary>
 /// Adds the <see cref="MailDevResource"/> to the given
 /// <paramref name="builder"/> instance. Uses the "2.1.0" tag.
 /// </summary>
 /// <param name="builder">The <see
cref="IDistributedApplicationBuilder"/>.</param>
 /// <param name="name">The name of the resource.</param>
 /// <param name="httpPort">The HTTP port.</param>
 /// <param name="smtpPort">The SMTP port.</param>
 /// <returns>
 /// An <see cref="IResourceBuilder{MailDevResource}"/> instance that
 /// represents the added MailDev resource.
 /// </returns>
 public static IResourceBuilder<MailDevResource> AddMailDev(

 this IDistributedApplicationBuilder builder,
 string name,
 int? httpPort = null,
 int? smtpPort = null,
 IResourceBuilder<ParameterResource>? userName = null,
 IResourceBuilder<ParameterResource>? password = null)
 {
 var passwordParameter = password?.Resource ??

ParameterResourceBuilderExtensions.CreateDefaultPasswordParameter(
 builder, $"{name}-password");

 // The AddResource method is a core API within .NET Aspire and is
 // used by resource developers to wrap a custom resource in an
 // IResourceBuilder<T> instance. Extension methods to customize
 // the resource (if any exist) target the builder interface.
 var resource = new MailDevResource(
 name, userName?.Resource, passwordParameter);

 return builder.AddResource(resource)
 .WithImage(MailDevContainerImageTags.Image)
 .WithImageRegistry(MailDevContainerImageTags.Registry)
 .WithImageTag(MailDevContainerImageTags.Tag)
 .WithHttpEndpoint(
 targetPort: 1080,
 port: httpPort,
 name: MailDevResource.HttpEndpointName)
 .WithEndpoint(
 targetPort: 1025,
 port: smtpPort,
 name: MailDevResource.SmtpEndpointName)
 .WithEnvironment(context =>
 {
 context.EnvironmentVariables[UserEnvVarName] =
resource.UserNameReference;
 context.EnvironmentVariables[PasswordEnvVarName] =
resource.PasswordParameter;
 });
 }
}

// This class just contains constant strings that can be updated
periodically
// when new versions of the underlying container are released.
internal static class MailDevContainerImageTags
{
 internal const string Registry = "docker.io";

 internal const string Image = "maildev/maildev";

 internal const string Tag = "2.1.0";
}

The preceding code updates the AddMailDev extension method to include the userName
and password parameters. The WithEnvironment method is updated to include the
UserEnvVarName and PasswordEnvVarName environment variables. These environment
variables are used to set the MailDev username and password.

Now that the resource is updated to include the username and password parameters,
you need to update the app host to include these parameters. Update the Program.cs
file in the MailDevResource.AppHost project with the following C# code:

C#

The preceding code adds two parameters for the MailDev username and password. It
assigns these parameters to the MAILDEV_INCOMING_USER and MAILDEV_INCOMING_PASS
environment variables. The AddMailDev method has two chained calls to
WithEnvironment which includes these environment variables. For more information on
parameters, see External parameters.

Next, configure the secrets for these parameters. Right-click on the
MailDevResource.AppHost project and select Manage User Secrets . Add the following
JSON to the secrets.json file:

JSON

Update the app host

var builder = DistributedApplication.CreateBuilder(args);

var mailDevUsername = builder.AddParameter("maildev-username");
var mailDevPassword = builder.AddParameter("maildev-password");

var maildev = builder.AddMailDev(
 name: "maildev",
 userName: mailDevUsername,
 password: mailDevPassword);

builder.AddProject<Projects.MailDevResource_NewsletterService>
("newsletterservice")
 .WithReference(maildev);

builder.Build().Run();

{
 "Parameters:maildev-username": "@admin",
 "Parameters:maildev-password": "t3st1ng"
}

It's good practice for client integrations to expect connection strings to contain various
key/value pairs, and to parse these pairs into the appropriate properties. Update the
MailKitClientSettings.cs file in the MailKit.Client project with the following C# code:

C#

２ Warning

These credentials are for demonstration purposes only and MailDev is intended for
local development. These credentials are fictitious and shouldn't be used in a
production environment.

Update the MailKit integration

using System.Data.Common;
using System.Net;

namespace MailKit.Client;

/// <summary>
/// Provides the client configuration settings for connecting MailKit to an
SMTP server.
/// </summary>
public sealed class MailKitClientSettings
{
 internal const string DefaultConfigSectionName = "MailKit:Client";

 /// <summary>
 /// Gets or sets the SMTP server <see cref="Uri"/>.
 /// </summary>
 /// <value>
 /// The default value is <see langword="null"/>.
 /// </value>
 public Uri? Endpoint { get; set; }

 /// <summary>
 /// Gets or sets the network credentials that are optionally
configurable for SMTP
 /// server's that require authentication.
 /// </summary>
 /// <value>
 /// The default value is <see langword="null"/>.
 /// </value>
 public NetworkCredential? Credentials { get; set; }

 /// <summary>
 /// Gets or sets a boolean value that indicates whether the database
health check is disabled or not.
 /// </summary>

 /// <value>
 /// The default value is <see langword="false"/>.
 /// </value>
 public bool DisableHealthChecks { get; set; }

 /// <summary>
 /// Gets or sets a boolean value that indicates whether the
OpenTelemetry tracing is disabled or not.
 /// </summary>
 /// <value>
 /// The default value is <see langword="false"/>.
 /// </value>
 public bool DisableTracing { get; set; }

 /// <summary>
 /// Gets or sets a boolean value that indicates whether the
OpenTelemetry metrics are disabled or not.
 /// </summary>
 /// <value>
 /// The default value is <see langword="false"/>.
 /// </value>
 public bool DisableMetrics { get; set; }

 internal void ParseConnectionString(string? connectionString)
 {
 if (string.IsNullOrWhiteSpace(connectionString))
 {
 throw new InvalidOperationException($"""
 ConnectionString is missing.
 It should be provided in 'ConnectionStrings:
<connectionName>'
 or '{DefaultConfigSectionName}:Endpoint' key.'
 configuration section.
 """);
 }

 if (Uri.TryCreate(connectionString, UriKind.Absolute, out var uri))
 {
 Endpoint = uri;
 }
 else
 {
 var builder = new DbConnectionStringBuilder
 {
 ConnectionString = connectionString
 };

 if (builder.TryGetValue("Endpoint", out var endpoint) is false)
 {
 throw new InvalidOperationException($"""
 The 'ConnectionStrings:<connectionName>' (or
'Endpoint' key in
 '{DefaultConfigSectionName}') is missing.
 """);
 }

The preceding settings class, now includes a Credentials property of type
NetworkCredential . The ParseConnectionString method is updated to parse the
Username and Password keys from the connection string. If the Username and Password
keys are present, a NetworkCredential is created and assigned to the Credentials
property.

With the settings class updated to understand and populate the credentials, update the
factory to conditionally use the credentials if they're configured. Update the
MailKitClientFactory.cs file in the MailKit.Client project with the following C# code:

C#

 if (Uri.TryCreate(endpoint.ToString(), UriKind.Absolute, out
uri) is false)
 {
 throw new InvalidOperationException($"""
 The 'ConnectionStrings:<connectionName>' (or
'Endpoint' key in
 '{DefaultConfigSectionName}') isn't a valid URI.
 """);
 }

 Endpoint = uri;

 if (builder.TryGetValue("Username", out var username) &&
 builder.TryGetValue("Password", out var password))
 {
 Credentials = new(
 username.ToString(), password.ToString());
 }
 }
 }
}

using System.Net;
using MailKit.Net.Smtp;

namespace MailKit.Client;

/// <summary>
/// A factory for creating <see cref="ISmtpClient"/> instances
/// given a <paramref name="smtpUri"/> (and optional <paramref
name="credentials"/>).
/// </summary>
/// <param name="settings">
/// The <see cref="MailKitClientSettings"/> settings for the SMTP server
/// </param>
public sealed class MailKitClientFactory(MailKitClientSettings settings) :
IDisposable

{
 private readonly SemaphoreSlim _semaphore = new(1, 1);

 private SmtpClient? _client;

 /// <summary>
 /// Gets an <see cref="ISmtpClient"/> instance in the connected state
 /// (and that's been authenticated if configured).
 /// </summary>
 /// <param name="cancellationToken">Used to abort client creation and
connection.</param>
 /// <returns>A connected (and authenticated) <see cref="ISmtpClient"/>
instance.</returns>
 /// <remarks>
 /// Since both the connection and authentication are considered
expensive operations,
 /// the <see cref="ISmtpClient"/> returned is intended to be used for
the duration of a request
 /// (registered as 'Scoped') and is automatically disposed of.
 /// </remarks>
 public async Task<ISmtpClient> GetSmtpClientAsync(
 CancellationToken cancellationToken = default)
 {
 await _semaphore.WaitAsync(cancellationToken);

 try
 {
 if (_client is null)
 {
 _client = new SmtpClient();

 await _client.ConnectAsync(settings.Endpoint,
cancellationToken)
 .ConfigureAwait(false);

 if (settings.Credentials is not null)
 {
 await _client.AuthenticateAsync(settings.Credentials,
cancellationToken)
 .ConfigureAwait(false);
 }
 }
 }
 finally
 {
 _semaphore.Release();
 }

 return _client;
 }

 public void Dispose()
 {
 _client?.Dispose();
 _semaphore.Dispose();

When the factory determines that credentials have been configured, it authenticates
with the SMTP server after connecting before returning the SmtpClient .

Now that you've updated the resource, corresponding integration projects, and the app
host, you're ready to run the sample app. To run the sample from your IDE, select F5 or
use dotnet run from the root directory of the solution to start the application—you
should see the .NET Aspire dashboard. Navigate to the maildev container resource and
view the details. You should see the username and password parameters in the resource
details, under the Environment Variables section:

Likewise, you should see the connection string in the newsletterservice resource
details, under the Environment Variables section:

 }
}

Run the sample



https://learn.microsoft.com/en-us/dotnet/aspire/docs/extensibility/media/maildev-details.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/extensibility/media/maildev-details.png#lightbox

Validate that everything is working as expected.

This article demonstrated how to flow authentication credentials from a custom
resource to a custom client integration. The custom resource is a MailDev container that
allows for either incoming or outgoing credentials. The custom client integration is a
MailKit client that sends emails. By updating the resource to include the username and
password parameters, and updating the integration to parse and use these parameters,
authentication flows credentials from the hosting integration to the client integration.



Summary

https://learn.microsoft.com/en-us/dotnet/aspire/docs/extensibility/media/newsletter-details.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/extensibility/media/newsletter-details.png#lightbox

.NET Aspire deployments
Article • 06/15/2024

.NET Aspire projects are built with cloud-agnostic principles, allowing deployment
flexibility across various platforms supporting .NET and containers. Users can adapt the
provided guidelines for deployment on other cloud environments or local hosting. The
manual deployment process, while feasible, involves exhaustive steps prone to errors.
Users prefer leveraging CI/CD pipelines and cloud-specific tooling for a more
streamlined deployment experience tailored to their chosen infrastructure.

To enable deployment tools from Microsoft and other cloud providers to understand the
structure of .NET Aspire projects, specialized targets of the AppHost project can be
executed to generate a manifest file describing the projects/services used by the app
and the properties necessary for deployment, such as environment variables.

For more information on the schema of the manifest and how to run app host project
targets, see .NET Aspire manifest format for deployment tool builders.

.NET Aspire enables deployment to Azure Container Apps. The number of environments

.NET Aspire can deploy to will grow over time.

.NET Aspire projects are designed to run in containerized environments. Azure Container
Apps is a fully managed environment that enables you to run microservices and
containerized applications on a serverless platform. The Azure Container Apps topic
describes how to deploy Aspire apps to ACA manually, using bicep, or using the Azure
Developer CLI (azd).

.NET Aspire projects are designed to emit telemetry using OpenTelemetry which uses a
provider model. .NET Aspire projects can direct their telemetry to Azure Monitor /
Application Insights using the Azure Monitor telemetry distro. For more information, see
Use Application Insights for .NET Aspire telemetry for step-by-step instructions.

Deployment manifest

Deploy to Azure

Azure Container Apps

Use Application Insights for .NET Aspire telemetry

Kubernetes is a popular container orchestration platform that can run .NET Aspire
projects. To deploy .NET Aspire projects to Kubernetes clusters, you need to map the
.NET Aspire JSON manifest to a Kubernetes YAML manifest file. There are two ways to
do this: by using the Aspir8 project, or by manually creating Kubernetes manifests.

Aspir8, an open-source project, handles the generation of deployment YAML based on
the .NET Aspire app host manifest. The project outputs a .NET global tool that can be
used to perform a series of tasks, resulting in the generation of Kubernetes manifests:

aspirate init : Initializes the Aspir8 project in the current directory.
aspirate generate : Generates Kubernetes manifests based on the .NET Aspire app
host manifest.
aspirate apply : Applies the generated Kubernetes manifests to the Kubernetes
cluster.
aspirate destroy : Deletes the resources created by the apply command.

With these commands, you can build your apps, containerize them, and deploy them to
Kubernetes clusters. For more information, see Aspir8 .

Alternatively, the Kubernetes manifests can be created manually. This involves more
effort and is more time consuming. For more information, see Deploy a .NET
microservice to Kubernetes.

Deploy to Kubernetes

The Aspir8 project

Manually create Kubernetes manifests

https://prom3theu5.github.io/aspirational-manifests/getting-started.html
https://prom3theu5.github.io/aspirational-manifests/getting-started.html
https://learn.microsoft.com/en-us/training/modules/dotnet-deploy-microservices-kubernetes/
https://learn.microsoft.com/en-us/training/modules/dotnet-deploy-microservices-kubernetes/

Deploy a .NET Aspire project to Azure
Container Apps
Article • 06/21/2024

.NET Aspire projects are designed to run in containerized environments. Azure Container
Apps is a fully managed environment that enables you to run microservices and
containerized applications on a serverless platform. This article will walk you through
creating a new .NET Aspire solution and deploying it to Microsoft Azure Container Apps
using the Azure Developer CLI (azd). You'll learn how to complete the following tasks:

To work with .NET Aspire, you need the following installed locally:

.NET 8.0 or .NET 9.0
An OCI compliant container runtime, such as:

Docker Desktop or Podman . For more information, see Container runtime.
An Integrated Developer Environment (IDE) or code editor, such as:

Visual Studio 2022 version 17.9 or higher (Optional)
Visual Studio Code (Optional)

C# Dev Kit: Extension (Optional)
JetBrains Rider with .NET Aspire plugin (Optional)

For more information, see .NET Aspire setup and tooling, and .NET Aspire SDK.

As an alternative to this tutorial and for a more in-depth guide, see Deploy a .NET Aspire
project to Azure Container Apps using azd (in-depth guide).

With .NET Aspire and Azure Container Apps (ACA), you have a great hosting scenario for
building out your cloud-native apps with .NET. We built some great new features into
the Azure Developer CLI (azd) specific for making .NET Aspire development and

Provision an Azure resource group and Container Registry＂

Publish the .NET Aspire projects as container images in Azure Container Registry＂

Provision a Redis container in Azure＂

Deploy the apps to an Azure Container Apps environment＂

View application console logs to troubleshoot application issues＂

Prerequisites

Deploy .NET Aspire projects with azd

https://dotnet.microsoft.com/download/dotnet/8.0
https://dotnet.microsoft.com/download/dotnet/8.0
https://dotnet.microsoft.com/download/dotnet/9.0
https://dotnet.microsoft.com/download/dotnet/9.0
https://www.docker.com/products/docker-desktop
https://www.docker.com/products/docker-desktop
https://podman.io/
https://podman.io/
https://visualstudio.microsoft.com/vs/
https://visualstudio.microsoft.com/vs/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://marketplace.visualstudio.com/items?itemName=ms-dotnettools.csdevkit
https://marketplace.visualstudio.com/items?itemName=ms-dotnettools.csdevkit
https://blog.jetbrains.com/dotnet/2024/02/19/jetbrains-rider-and-the-net-aspire-plugin/
https://blog.jetbrains.com/dotnet/2024/02/19/jetbrains-rider-and-the-net-aspire-plugin/

deployment to Azure a friction-free experience. You can still use the Azure CLI and/or
Bicep options when you need a granular level of control over your deployments. But for
new projects, you won't find an easier path to success for getting a new microservice
topology deployed into the cloud.

As a starting point, this article assumes that you've created a .NET Aspire project from
the .NET Aspire Starter Application template. For more information, see Quickstart:
Build your first .NET Aspire project.

When you create new Azure resources, it's important to follow the naming
requirements. For Azure Container Apps, the name must be 2-32 characters long and
consist of lowercase letters, numbers, and hyphens. The name must start with a letter
and end with an alphanumeric character.

For more information, see Naming rules and restrictions for Azure resources.

The process for installing azd varies based on your operating system, but it is widely
available via winget , brew , apt , or directly via curl . To install azd , see Install Azure
Developer CLI.

1. Open a new terminal window and cd into the directory of your .NET Aspire
solution.

2. Execute the azd init command to initialize your project with azd , which will
inspect the local directory structure and determine the type of app.

Azure Developer CLI

For more information on the azd init command, see azd init.

Create a .NET Aspire project

Resource naming

Install the Azure Developer CLI

Initialize the template

azd init

https://learn.microsoft.com/en-us/azure/azure-resource-manager/management/resource-name-rules#microsoftapp
https://learn.microsoft.com/en-us/azure/developer/azure-developer-cli/install-azd
https://learn.microsoft.com/en-us/azure/developer/azure-developer-cli/install-azd
https://learn.microsoft.com/en-us/azure/developer/azure-developer-cli/reference#azd-init

3. Select Use code in the current directory when azd prompts you with two app
initialization options.

Output

4. After scanning the directory, azd prompts you to confirm that it found the correct
.NET Aspire AppHost project. Select the Confirm and continue initializing my app
option.

Output

5. Enter an environment name, which is used to name provisioned resources in Azure
and managing different environments such as dev and

azure.yaml: Describes the services of the app, such as .NET Aspire AppHost project,
and maps them to Azure resources.
.azure/config.json: Configuration file that informs azd what the current active
environment is.
.azure/aspireazddev/.env: Contains environment specific overrides.

1. Once an azd template is initialized, the provisioning and deployment process can
be executed as a single command from the AppHost project directory using azd
up:

Azure Developer CLI

2. Select the subscription you'd like to deploy to from the list of available options:

Output

3. Select the desired Azure location to use from the list of available options:

Output

After you make your selections, azd executes the provisioning and deployment process.

Output

Deploy the template

azd up

Select an Azure Subscription to use: [Use arrows to move, type to
filter]
 1. SampleSubscription01 (xxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxx)
 2. SamepleSubscription02 (xxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxx)

Select an Azure location to use: [Use arrows to move, type to filter]
 42. (US) Central US (centralus)
 43. (US) East US (eastus)
> 44. (US) East US 2 (eastus2)
 46. (US) North Central US (northcentralus)
 47. (US) South Central US (southcentralus)

By default, a service can only be reached from inside the Azure Container
Apps environment it is running in. Selecting a service here will also allow
it to be reached from the Internet.
? Select which services to expose to the Internet webfrontend
? Select an Azure Subscription to use: 1. <YOUR SUBSCRIPTION>

https://learn.microsoft.com/en-us/azure/developer/azure-developer-cli/reference#azd-up
https://learn.microsoft.com/en-us/azure/developer/azure-developer-cli/reference#azd-up

The azd up command acts as wrapper for the following individual azd commands to
provision and deploy your resources in a single step:

1. azd package: The app projects and their dependencies are packaged into
containers.

2. azd provision: The Azure resources the app will need are provisioned.
3. azd deploy: The projects are pushed as containers into an Azure Container Registry

instance, and then used to create new revisions of Azure Container Apps in which
the code will be hosted.

When the azd up stages complete, your app will be available on Azure, and you can
open the Azure portal to explore the resources. azd also outputs URLs to access the
deployed apps directly.

? Select an Azure location to use: 1. <YOUR LOCATION>

Packaging services (azd package)

Provisioning Azure resources (azd provision)
Provisioning Azure resources can take some time.

Subscription: <YOUR SUBSCRIPTION>
Location: <YOUR LOCATION>

 You can view detailed progress in the Azure Portal:
 <LINK TO DEPLOYMENT>

 (✓) Done: Resource group: <YOUR RESOURCE GROUP>
 (✓) Done: Container Registry: <ID>
 (✓) Done: Log Analytics workspace: <ID>
 (✓) Done: Container Apps Environment: <ID>
SUCCESS: Your application was provisioned in Azure in 1 minute 13 seconds.
You can view the resources created under the resource group <YOUR RESOURCE
GROUP> in Azure Portal:
<LINK TO RESOURCE GROUP OVERVIEW>

Deploying services (azd deploy)

 (✓) Done: Deploying service apiservice
 - Endpoint: <YOUR UNIQUE apiservice APP>.azurecontainerapps.io/

 (✓) Done: Deploying service webfrontend
 - Endpoint: <YOUR UNIQUE webfrontend APP>.azurecontainerapps.io/

Aspire Dashboard: <LINK TO DEPLOYED .NET ASPIRE DASHBOARD>

SUCCESS: Your up workflow to provision and deploy to Azure completed in 3
minutes 50 seconds.

https://learn.microsoft.com/en-us/azure/developer/azure-developer-cli/reference#azd-package
https://learn.microsoft.com/en-us/azure/developer/azure-developer-cli/reference#azd-provision
https://learn.microsoft.com/en-us/azure/developer/azure-developer-cli/reference#azd-deploy

Now that the app has been provisioned and deployed, you can browse to the Azure
portal. In the resource group where you deployed the app, you'll see the three container
apps and other resources.

Click on the web Container App to open it up in the portal.

Click the Application URL link to open the front end in the browser.

Test the deployed app





https://learn.microsoft.com/en-us/dotnet/aspire/docs/deployment/azure/media/azd-azure-portal-deployed-resources.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/deployment/azure/media/azd-azure-portal-deployed-resources.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/media/portal-screens-web-container-app.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/media/portal-screens-web-container-app.png#lightbox

When you click the "Weather" node in the navigation bar, the front end web container
app makes a call to the apiservice container app to get data. The front end's output
will be cached using the redis container app and the .NET Aspire Redis Output Caching
integration. As you refresh the front end a few times, you'll notice that the weather data
is cached. It will update after a few seconds.

You can deploy the .NET Aspire dashboard as part of your hosted app. This feature is
now fully supported. When deploying, the azd output logs print an additional URL to
the deployed dashboard.

You can run azd monitor to automatically launch the dashboard.

Azure Developer CLI

Run the following Azure CLI command to delete the resource group when you no longer
need the Azure resources you created. Deleting the resource group also deletes the
resources contained inside of it.

Azure CLI

For more information, see Clean up resources in Azure.



Deploy the .NET Aspire Dashboard

azd monitor

Clean up resources

az group delete --name <your-resource-group-name>

https://learn.microsoft.com/en-us/cli/azure/group?view=azure-cli-latest#az-group-delete
https://learn.microsoft.com/en-us/dotnet/aspire/docs/media/front-end-open.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/media/front-end-open.png#lightbox

Deploy a .NET Aspire project to Azure
Container Apps using Visual Studio
Article • 06/21/2024

.NET Aspire projects are designed to run in containerized environments. Azure Container
Apps is a fully managed environment that enables you to run microservices and
containerized applications on a serverless platform. This article will walk you through
creating a new .NET Aspire solution and deploying it to Microsoft Azure Container Apps
using the Visual Studio. You'll learn how to complete the following tasks:

To work with .NET Aspire, you need the following installed locally:

.NET 8.0 or .NET 9.0
An OCI compliant container runtime, such as:

Docker Desktop or Podman . For more information, see Container runtime.
An Integrated Developer Environment (IDE) or code editor, such as:

Visual Studio 2022 version 17.9 or higher (Optional)
Visual Studio Code (Optional)

C# Dev Kit: Extension (Optional)
JetBrains Rider with .NET Aspire plugin (Optional)

For more information, see .NET Aspire setup and tooling, and .NET Aspire SDK.

As a starting point, this article assumes that you've created a .NET Aspire project from
the .NET Aspire Starter Application template. For more information, see Quickstart:
Build your first .NET Aspire project.

Provision an Azure resource group and Container Registry＂

Publish the .NET Aspire projects as container images in Azure Container Registry＂

Provision a Redis container in Azure＂

Deploy the apps to an Azure Container Apps environment＂

View application console logs to troubleshoot application issues＂

Prerequisites

Create a .NET Aspire project

Resource naming

https://dotnet.microsoft.com/download/dotnet/8.0
https://dotnet.microsoft.com/download/dotnet/8.0
https://dotnet.microsoft.com/download/dotnet/9.0
https://dotnet.microsoft.com/download/dotnet/9.0
https://www.docker.com/products/docker-desktop
https://www.docker.com/products/docker-desktop
https://podman.io/
https://podman.io/
https://visualstudio.microsoft.com/vs/
https://visualstudio.microsoft.com/vs/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://marketplace.visualstudio.com/items?itemName=ms-dotnettools.csdevkit
https://marketplace.visualstudio.com/items?itemName=ms-dotnettools.csdevkit
https://blog.jetbrains.com/dotnet/2024/02/19/jetbrains-rider-and-the-net-aspire-plugin/
https://blog.jetbrains.com/dotnet/2024/02/19/jetbrains-rider-and-the-net-aspire-plugin/

When you create new Azure resources, it's important to follow the naming
requirements. For Azure Container Apps, the name must be 2-32 characters long and
consist of lowercase letters, numbers, and hyphens. The name must start with a letter
and end with an alphanumeric character.

For more information, see Naming rules and restrictions for Azure resources.

1. In the solution explorer, right-click on the .AppHost project and select Publish to
open the Publish dialog.

2. Select Azure Container Apps for .NET Aspire as the publishing target.

3. On the AzDev Environment step, select your desired Subscription and Location
values and then enter an Environment name such as aspire-vs. The environment
name determines the naming of Azure Container Apps environment resources.

4. Select Finish to close the dialog workflow and view the deployment environment
summary.

5. Select Publish to provision and deploy the resources on Azure. This process may
take several minutes to complete. Visual Studio provides status updates on the

Deploy the app

https://learn.microsoft.com/en-us/azure/azure-resource-manager/management/resource-name-rules#microsoftapp

deployment progress.

6. When the publish completes, Visual Studio displays the resource URLs at the
bottom of the environment screen. Use these links to view the various deployed
resources. Select the webfrontend URL to open a browser to the deployed app.

Now that the app has been provisioned and deployed, you can browse to the Azure
portal. In the resource group where you deployed the app, you'll see the three container
apps and other resources.

Test the deployed app

Click on the web Container App to open it up in the portal.

Click the Application URL link to open the front end in the browser.







https://learn.microsoft.com/en-us/dotnet/aspire/docs/deployment/azure/media/azd-azure-portal-deployed-resources.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/deployment/azure/media/azd-azure-portal-deployed-resources.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/media/portal-screens-web-container-app.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/media/portal-screens-web-container-app.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/media/front-end-open.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/media/front-end-open.png#lightbox

When you click the "Weather" node in the navigation bar, the front end web container
app makes a call to the apiservice container app to get data. The front end's output
will be cached using the redis container app and the .NET Aspire Redis Output Caching
integration. As you refresh the front end a few times, you'll notice that the weather data
is cached. It will update after a few seconds.

You can deploy the .NET Aspire dashboard as part of your hosted app. This feature is
now fully supported. When deploying, the azd output logs print an additional URL to
the deployed dashboard.

You can run azd monitor to automatically launch the dashboard.

Azure Developer CLI

To delete the azd environment, the More actions dropdown and then choose Delete
environment.

Deploy the .NET Aspire Dashboard

azd monitor

Clean up resources

Deploy a .NET Aspire project to Azure
Container Apps using the Azure
Developer CLI (in-depth guide)
Article • 06/15/2024

The Azure Developer CLI (azd) has been extended to support deploying .NET Aspire
projects. Use this guide to walk through the process of creating and deploying a .NET
Aspire project to Azure Container Apps using the Azure Developer CLI. In this tutorial,
you'll learn the following concepts:

To work with .NET Aspire, you need the following installed locally:

.NET 8.0 or .NET 9.0
An OCI compliant container runtime, such as:

Docker Desktop or Podman . For more information, see Container runtime.
An Integrated Developer Environment (IDE) or code editor, such as:

Visual Studio 2022 version 17.9 or higher (Optional)
Visual Studio Code (Optional)

C# Dev Kit: Extension (Optional)
JetBrains Rider with .NET Aspire plugin (Optional)

For more information, see .NET Aspire setup and tooling, and .NET Aspire SDK.

You will also need to have the Azure Developer CLI installed locally. Common install
options include the following:

PowerShell

Explore how azd integration works with .NET Aspire projects＂

Provision and deploy resources on Azure for a .NET Aspire project using azd＂

Generate Bicep infrastructure and other template files using azd＂

Prerequisites

Windows

winget install microsoft.azd

https://dotnet.microsoft.com/download/dotnet/8.0
https://dotnet.microsoft.com/download/dotnet/8.0
https://dotnet.microsoft.com/download/dotnet/9.0
https://dotnet.microsoft.com/download/dotnet/9.0
https://www.docker.com/products/docker-desktop
https://www.docker.com/products/docker-desktop
https://podman.io/
https://podman.io/
https://visualstudio.microsoft.com/vs/
https://visualstudio.microsoft.com/vs/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://marketplace.visualstudio.com/items?itemName=ms-dotnettools.csdevkit
https://marketplace.visualstudio.com/items?itemName=ms-dotnettools.csdevkit
https://blog.jetbrains.com/dotnet/2024/02/19/jetbrains-rider-and-the-net-aspire-plugin/
https://blog.jetbrains.com/dotnet/2024/02/19/jetbrains-rider-and-the-net-aspire-plugin/
https://learn.microsoft.com/en-us/azure/developer/azure-developer-cli/install-azd

The azd init workflow provides customized support for .NET Aspire projects. The
following diagram illustrates how this flow works conceptually and how azd and .NET
Aspire are integrated:

1. When azd targets a .NET Aspire project it starts the AppHost with a special
command (dotnet run --project AppHost.csproj --output-path manifest.json --
publisher manifest), which produces the Aspire manifest file.

2. The manifest file is interrogated by the azd provision sub-command logic to
generate Bicep files in-memory only (by default).

3. After generating the Bicep files, a deployment is triggered using Azure's ARM APIs
targeting the subscription and resource group provided earlier.

4. Once the underlying Azure resources are configured, the azd deploy sub-
command logic is executed which uses the same Aspire manifest file.

5. As part of deployment azd makes a call to dotnet publish using .NET's built in
container publishing support to generate container images.

6. Once azd has built the container images it pushes them to the ACR registry that
was created during the provisioning phase.

7. Finally, once the container image is in ACR, azd updates the resource using ARM
to start using the new version of the container image.

How Azure Developer CLI integration works

７ Note

The steps in this section demonstrate how to create a .NET Aspire start app and handle
provisioning and deploying the app resources to Azure using azd .

Create a new .NET Aspire project using the dotnet new command. You can also create
the project using Visual Studio.

.NET CLI

The previous commands create a new .NET Aspire project based on the aspire-starter
template which includes a dependency on Redis cache. It runs the .NET Aspire project
which verifies that everything is working correctly.

1. Open a new terminal window and cd into the directory of your .NET Aspire
solution.

2. Execute the azd init command to initialize your project with azd , which will
inspect the local directory structure and determine the type of app.

Azure Developer CLI

For more information on the azd init command, see azd init.

3. Select Use code in the current directory when azd prompts you with two app
initialization options.

azd also enables you to output the generated Bicep to an infra folder in your
project, which you can read more about in the Generating Bicep from .NET Aspire
app model section.

Provision and deploy a .NET Aspire starter app

Create the .NET Aspire starter app

dotnet new aspire-starter --use-redis-cache -o AspireSample
cd AspireSample
dotnet run --project AspireSample.AppHost\AspireSample.AppHost.csproj

Initialize the template

azd init

https://learn.microsoft.com/en-us/azure/developer/azure-developer-cli/reference#azd-init
https://learn.microsoft.com/en-us/dotnet/aspire/deployment/azure/aca-deployment-azd-in-depth?branch=main#generate-bicep-from-net-aspire-app-model
https://learn.microsoft.com/en-us/dotnet/aspire/deployment/azure/aca-deployment-azd-in-depth?branch=main#generate-bicep-from-net-aspire-app-model

Output

4. After scanning the directory, azd prompts you to confirm that it found the correct
.NET Aspire AppHost project. Select the Confirm and continue initializing my app
option.

Output

5. Enter an environment name, which is used to name provisioned resources in Azure
and managing different environments such as dev and prod .

Output

azd generates a number of files and places them into the working directory. These files
are:

azure.yaml: Describes the services of the app, such as .NET Aspire AppHost project,
and maps them to Azure resources.

? How do you want to initialize your app? [Use arrows to move, type to
filter]
> Use code in the current directory
 Select a template

Detected services:

 .NET (Aspire)
 Detected in:
D:\source\repos\AspireSample\AspireSample.AppHost\AspireSample.AppHost.
csproj

azd will generate the files necessary to host your app on Azure using
Azure Container Apps.

? Select an option [Use arrows to move, type to filter]
> Confirm and continue initializing my app
 Cancel and exit

Generating files to run your app on Azure:

 (✓) Done: Generating ./azure.yaml
 (✓) Done: Generating ./next-steps.md
SUCCESS: Your app is ready for the cloud!
You can provision and deploy your app to Azure by running the azd up
command in this directory. For more information on configuring your
app, see ./next-steps.md

.azure/config.json: Configuration file that informs azd what the current active
environment is.
.azure/aspireazddev/.env: Contains environment specific overrides.

The azure.yaml file has the following contents:

yml

When you create new Azure resources, it's important to follow the naming
requirements. For Azure Container Apps, the name must be 2-32 characters long and
consist of lowercase letters, numbers, and hyphens. The name must start with a letter
and end with an alphanumeric character.

For more information, see Naming rules and restrictions for Azure resources.

1. In order to deploy the .NET Aspire project, authenticate to Azure AD to call the
Azure resource management APIs.

Azure Developer CLI

The previous command will launch a browser to authenticate the command-line
session.

2. Once authenticated, run the following command from the AppHost project
directory to provision and deploy the application.

Azure Developer CLI

yaml-language-server:
$schema=https://raw.githubusercontent.com/Azure/azure-
dev/main/schemas/v1.0/azure.yaml.json

name: AspireSample
services:
 app:
 language: dotnet
 project: .\AspireSample.AppHost\AspireSample.AppHost.csproj
 host: containerapp

Resource naming

Initial deployment

azd auth login

https://learn.microsoft.com/en-us/azure/azure-resource-manager/management/resource-name-rules#microsoftapp

3. When prompted, select the subscription and location the resources should be
deployed to. Once these options are selected the .NET Aspire project will be
deployed.

Output

azd up

） Important

To push container images to the Azure Container Registry (ACR), you need to
have Microsoft.Authorization/roleAssignments/write access. This can be
achieved by enabling an Admin user on the registry. Open the Azure Portal,
navigate to the ACR resource / Settings / Access keys, and then select the
Admin user checkbox. For more information, see Enable admin user.

By default, a service can only be reached from inside the Azure
Container Apps environment it is running in. Selecting a service here
will also allow it to be reached from the Internet.
? Select which services to expose to the Internet webfrontend
? Select an Azure Subscription to use: 1. <YOUR SUBSCRIPTION>
? Select an Azure location to use: 1. <YOUR LOCATION>

Packaging services (azd package)

Provisioning Azure resources (azd provision)
Provisioning Azure resources can take some time.

Subscription: <YOUR SUBSCRIPTION>
Location: <YOUR LOCATION>

 You can view detailed progress in the Azure Portal:
 <LINK TO DEPLOYMENT>

 (✓) Done: Resource group: <YOUR RESOURCE GROUP>
 (✓) Done: Container Registry: <ID>
 (✓) Done: Log Analytics workspace: <ID>
 (✓) Done: Container Apps Environment: <ID>
SUCCESS: Your application was provisioned in Azure in 1 minute 13
seconds.
You can view the resources created under the resource group <YOUR
RESOURCE GROUP> in Azure Portal:
<LINK TO RESOURCE GROUP OVERVIEW>

Deploying services (azd deploy)

https://learn.microsoft.com/en-us/azure/container-registry/container-registry-authentication#admin-account

The final line of output from the azd command is a link to the Azure Portal that
shows all of the Azure resources that were deployed:

Three containers are deployed within this application:

webfrontend : Contains code from the web project in the starter template.
apiservice : Contains code from the API service project in the starter template.
cache : A Redis container image to supply a cache to the front-end.

Just like in local development, the configuration of connection strings has been handled
automatically. In this case, azd was responsible for interpreting the application model
and translating it to the appropriate deployment steps. As an example, consider the

 (✓) Done: Deploying service apiservice
 - Endpoint: <YOUR UNIQUE apiservice APP>.azurecontainerapps.io/

 (✓) Done: Deploying service webfrontend
 - Endpoint: <YOUR UNIQUE webfrontend APP>.azurecontainerapps.io/

Aspire Dashboard: <LINK TO DEPLOYED .NET ASPIRE DASHBOARD>

SUCCESS: Your up workflow to provision and deploy to Azure completed in
3 minutes 50 seconds.



https://learn.microsoft.com/en-us/dotnet/aspire/docs/deployment/azure/media/azd-azure-portal-deployed-resources.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/deployment/azure/media/azd-azure-portal-deployed-resources.png#lightbox

connection string and service discovery variables that are injected into the webfrontend
container so that it knows how to connect to the Redis cache and apiservice .

For more information on how .NET Aspire projects handle connection strings and service
discovery, see .NET Aspire orchestration overview.

When the azd up command is executed the underlying Azure resources are provisioned
and a container image is built and deployed to the container apps hosting the .NET
Aspire project. Typically once development is underway and Azure resources are
deployed it won't be necessary to provision Azure resources every time code is updated
—this is especially true for the developer inner loop.

To speed up deployment of code changes, azd supports deploying code updates in the
container image. This is done using the azd deploy command:

Azure Developer CLI

Output



Deploy application updates

azd deploy

https://learn.microsoft.com/en-us/dotnet/aspire/docs/deployment/azure/media/azd-aca-variables.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/deployment/azure/media/azd-aca-variables.png#lightbox

It's not necessary to deploy all services each time. azd understands the .NET Aspire
project model, it's possible to deploy just one of the services specified using the
following command:

Azure Developer CLI

For more information, see Azure Developer CLI reference: azd deploy.

Whenever the dependency structure within a .NET Aspire project changes, azd must re-
provision the underlying Azure resources. The azd provision command is used to apply
these changes to the infrastructure.

To see this in action, update the Program.cs file in the AppHost project to the following:

C#

Deploying services (azd deploy)

 (✓) Done: Deploying service apiservice
 - Endpoint: <YOUR UNIQUE apiservice APP>.azurecontainerapps.io/

 (✓) Done: Deploying service webfrontend
 - Endpoint: <YOUR UNIQUE webfrontend APP>.azurecontainerapps.io/

Aspire Dashboard: <LINK TO DEPLOYED .NET ASPIRE DASHBOARD>

azd deploy webfrontend

Deploy infrastructure updates

var builder = DistributedApplication.CreateBuilder(args);

var cache = builder.AddRedis("cache");

// Add the locations database.
var locationsdb = builder.AddPostgres("db").AddDatabase("locations");

// Add the locations database reference to the API service.
var apiservice = builder.AddProject<Projects.AspireSample_ApiService>
("apiservice")
 .WithReference(locationsdb);

builder.AddProject<Projects.AspireSample_Web>("webfrontend")
 .WithReference(cache)
 .WithReference(apiservice);

https://learn.microsoft.com/en-us/azure/developer/azure-developer-cli/reference#azd-deploy

Save the file and issue the following command:

Azure Developer CLI

The azd provision command updates the infrastructure by creating a container app to
host the Postgres database. The azd provision command didn't update the connection
strings for the apiservice container. In order to have connection strings updated to
point to the newly provisioned Postgres database the azd deploy command needs to be
invoked again. When in doubt, use azd up to both provision and deploy.

Remember to clean up the Azure resources that you've created during this walkthrough.
Because `azd knows the resource group in which it created the resources it can be used
to spin down the environment using the following command:

Azure Developer CLI

The previous command may take some time to execute, but when completed the
resource group and all its resources should be deleted.

Output

builder.Build().Run();

azd provision

Clean up resources

azd down

Deleting all resources and deployed code on Azure (azd down)
Local application code is not deleted when running 'azd down'.

 Resource group(s) to be deleted:

 • <YOUR RESOURCE GROUP>: <LINK TO RESOURCE GROUP OVERVIEW>

? Total resources to delete: 7, are you sure you want to continue? Yes
Deleting your resources can take some time.

 (✓) Done: Deleting resource group: <YOUR RESOURCE GROUP>
SUCCESS: Your application was removed from Azure in 9 minutes 59 seconds.

Although development teams are free to use azd up (or azd provision and azd deploy)
commands for their deployments both for development and production purposes, some
teams may choose to generate Bicep files that they can review and manage as part of
version control (this also allows these Bicep files to be referenced as part of a larger
more complex Azure deployment).

azd includes the ability to output the Bicep it uses for provisioning via following
command:

Azure Developer CLI

After this command is executed in the starter template example used in this guide, the
following files are created in the AppHost project directory:

infra/main.bicep: Represents the main entry point for the deployment.
infra/main.parameters.json: Used as the parameters for main Bicep (maps to
environment variables defined in .azure folder).
infra/resources.bicep: Defines the Azure resources required to support the .NET
Aspire project model.
AspireSample.Web/manifests/containerApp.tmpl.yaml: The container app definition
for webfrontend .
AspireSample.ApiService/manifests/containerApp.tmpl.yaml: The container app
definition for apiservice .

The infra\resources.bicep file doesn't contain any definition of the container apps
themselves (with the exception of container apps which are dependencies such as Redis
and Postgres):

Bicep

Generate Bicep from .NET Aspire project model

azd config set alpha.infraSynth on
azd infra synth

@description('The location used for all deployed resources')
param location string = resourceGroup().location

@description('Tags that will be applied to all resources')
param tags object = {}

var resourceToken = uniqueString(resourceGroup().id)

resource managedIdentity
'Microsoft.ManagedIdentity/userAssignedIdentities@2023-01-31' = {

 name: 'mi-${resourceToken}'
 location: location
 tags: tags
}

resource containerRegistry 'Microsoft.ContainerRegistry/registries@2023-07-
01' = {
 name: replace('acr-${resourceToken}', '-', '')
 location: location
 sku: {
 name: 'Basic'
 }
 tags: tags
}

resource caeMiRoleAssignment 'Microsoft.Authorization/roleAssignments@2022-
04-01' = {
 name: guid(containerRegistry.id, managedIdentity.id,
subscriptionResourceId('Microsoft.Authorization/roleDefinitions', '7f951dda-
4ed3-4680-a7ca-43fe172d538d'))
 scope: containerRegistry
 properties: {
 principalId: managedIdentity.properties.principalId
 principalType: 'ServicePrincipal'
 roleDefinitionId:
subscriptionResourceId('Microsoft.Authorization/roleDefinitions', '7f951dda-
4ed3-4680-a7ca-43fe172d538d')
 }
}

resource logAnalyticsWorkspace
'Microsoft.OperationalInsights/workspaces@2022-10-01' = {
 name: 'law-${resourceToken}'
 location: location
 properties: {
 sku: {
 name: 'PerGB2018'
 }
 }
 tags: tags
}

resource containerAppEnvironment 'Microsoft.App/managedEnvironments@2023-05-
01' = {
 name: 'cae-${resourceToken}'
 location: location
 properties: {
 appLogsConfiguration: {
 destination: 'log-analytics'
 logAnalyticsConfiguration: {
 customerId: logAnalyticsWorkspace.properties.customerId
 sharedKey: logAnalyticsWorkspace.listKeys().primarySharedKey
 }
 }
 }

 tags: tags
}

resource cache 'Microsoft.App/containerApps@2023-05-02-preview' = {
 name: 'cache'
 location: location
 properties: {
 environmentId: containerAppEnvironment.id
 configuration: {
 service: {
 type: 'redis'
 }
 }
 template: {
 containers: [
 {
 image: 'redis'
 name: 'redis'
 }
]
 }
 }
 tags: union(tags, {'aspire-resource-name': 'cache'})
}

resource locations 'Microsoft.App/containerApps@2023-05-02-preview' = {
 name: 'locations'
 location: location
 properties: {
 environmentId: containerAppEnvironment.id
 configuration: {
 service: {
 type: 'postgres'
 }
 }
 template: {
 containers: [
 {
 image: 'postgres'
 name: 'postgres'
 }
]
 }
 }
 tags: union(tags, {'aspire-resource-name': 'locations'})
}
output MANAGED_IDENTITY_CLIENT_ID string =
managedIdentity.properties.clientId
output AZURE_CONTAINER_REGISTRY_ENDPOINT string =
containerRegistry.properties.loginServer
output AZURE_CONTAINER_REGISTRY_MANAGED_IDENTITY_ID string =
managedIdentity.id
output AZURE_CONTAINER_APPS_ENVIRONMENT_ID string =
containerAppEnvironment.id

For more information on using Bicep to automate deployments to Azure see, What is
Bicep?

The definition of the container apps from the .NET service projects is contained within
the containerApp/tmpl.yaml files in the manifests directory in each project respectively.
Here is an example from the webfrontend project:

yml

output AZURE_CONTAINER_APPS_ENVIRONMENT_DEFAULT_DOMAIN string =
containerAppEnvironment.properties.defaultDomain

location: {{ .Env.AZURE_LOCATION }}
identity:
 type: UserAssigned
 userAssignedIdentities:
 ? "{{ .Env.AZURE_CONTAINER_REGISTRY_MANAGED_IDENTITY_ID }}"
 : {}
properties:
 environmentId: {{ .Env.AZURE_CONTAINER_APPS_ENVIRONMENT_ID }}
 configuration:
 activeRevisionsMode: single
 ingress:
 external: true
 targetPort: 8080
 transport: http
 allowInsecure: false
 registries:
 - server: {{ .Env.AZURE_CONTAINER_REGISTRY_ENDPOINT }}
 identity: {{ .Env.AZURE_CONTAINER_REGISTRY_MANAGED_IDENTITY_ID }}
 template:
 containers:
 - image: {{ .Env.SERVICE_WEBFRONTEND_IMAGE_NAME }}
 name: webfrontend
 env:
 - name: AZURE_CLIENT_ID
 value: {{ .Env.MANAGED_IDENTITY_CLIENT_ID }}
 - name: ConnectionStrings__cache
 value: {{ connectionString "cache" }}
 - name: OTEL_DOTNET_EXPERIMENTAL_OTLP_EMIT_EVENT_LOG_ATTRIBUTES
 value: "true"
 - name: OTEL_DOTNET_EXPERIMENTAL_OTLP_EMIT_EXCEPTION_LOG_ATTRIBUTES
 value: "true"
 - name: services__apiservice__0
 value: http://apiservice.internal.{{
.Env.AZURE_CONTAINER_APPS_ENVIRONMENT_DEFAULT_DOMAIN }}
 - name: services__apiservice__1
 value: https://apiservice.internal.{{
.Env.AZURE_CONTAINER_APPS_ENVIRONMENT_DEFAULT_DOMAIN }}
tags:

https://learn.microsoft.com/en-us/azure/azure-resource-manager/bicep/overview?tabs=bicep
https://learn.microsoft.com/en-us/azure/azure-resource-manager/bicep/overview?tabs=bicep

After executing the azd infra synth command, when azd provision and azd deploy
are called they use the Bicep and supporting generated files.

Because azd makes it easy to provision new environments, it's possible for each team
member to have an isolated cloud-hosted environment for debugging code in a setting
that closely matches production. When doing this each team member should create
their own environment using the following command:

Azure Developer CLI

This will prompt the user for subscription and resource group information again and
subsequent azd up , azd provision , and azd deploy invocations will use this new
environment by default. The --environment switch can be applied to these commands
to switch between environments.

Run the following Azure CLI command to delete the resource group when you no longer
need the Azure resources you created. Deleting the resource group also deletes the
resources contained inside of it.

Azure CLI

For more information, see Clean up resources in Azure.

 azd-service-name: webfrontend
 aspire-resource-name: webfrontend

） Important

If azd infra synth is called again, it replaces any modified files with freshly
generated ones and prompts you for confirmation before doing so.

Isolated environments for debugging

azd env new

Clean up resources

az group delete --name <your-resource-group-name>

https://learn.microsoft.com/en-us/cli/azure/group?view=azure-cli-latest#az-group-delete

Tutorial: Deploy a .NET Aspire project
using the Azure Developer CLI
Article • 01/26/2025

The Azure Developer CLI (azd) enables you to deploy .NET Aspire projects using GitHub
Actions or Azure Devops pipelines by automatically configuring the required
authentication and environment settings. This article walks you through the process of
creating and deploying a .NET Aspire project on Azure Container Apps using azd . You
learn the following concepts:

To work with .NET Aspire, you need the following installed locally:

.NET 8.0 or .NET 9.0
An OCI compliant container runtime, such as:

https://dotnet.microsoft.com/download/dotnet/8.0
https://dotnet.microsoft.com/download/dotnet/8.0
https://dotnet.microsoft.com/download/dotnet/9.0
https://dotnet.microsoft.com/download/dotnet/9.0
https://www.docker.com/products/docker-desktop
https://www.docker.com/products/docker-desktop
https://podman.io/
https://podman.io/
https://visualstudio.microsoft.com/vs/
https://visualstudio.microsoft.com/vs/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://marketplace.visualstudio.com/items?itemName=ms-dotnettools.csdevkit
https://marketplace.visualstudio.com/items?itemName=ms-dotnettools.csdevkit
https://blog.jetbrains.com/dotnet/2024/02/19/jetbrains-rider-and-the-net-aspire-plugin/
https://blog.jetbrains.com/dotnet/2024/02/19/jetbrains-rider-and-the-net-aspire-plugin/
https://learn.microsoft.com/en-us/azure/developer/azure-developer-cli/install-azd

As a starting point, this article assumes that you've created a .NET Aspire solution from
the .NET Aspire Starter Application template. For more information, see Quickstart:
Build your first .NET Aspire app.

1. Open a new terminal window and cd into the directory of your .NET Aspire
solution.

2. Execute the azd init command to initialize your project with azd , which will
inspect the local directory structure and determine the type of app.

Azure Developer CLI

For more information on the azd init command, see azd init.

3. Select Use code in the current directory when azd prompts you with two app
initialization options.

Output

4. After scanning the directory, azd prompts you to confirm that it found the correct
.NET Aspire AppHost project. Select the Confirm and continue initializing my app
option.

Output

Create a .NET Aspire solution

Initialize the template

azd init

? How do you want to initialize your app? [Use arrows to move, type to
filter]
> Use code in the current directory
 Select a template

Detected services:

 .NET (Aspire)
 Detected in:
D:\source\repos\AspireSample\AspireSample.AppHost\AspireSample.AppHost.
csproj

azd will generate the files necessary to host your app on Azure using
Azure Container Apps.

https://learn.microsoft.com/en-us/azure/developer/azure-developer-cli/reference#azd-init

5. Enter an environment name, which is used to name provisioned resources in Azure
and managing different environments such as dev and prod .

Output

azd generates a number of files and places them into the working directory. These files
are:

azure.yaml: Describes the services of the app, such as .NET Aspire AppHost project,
and maps them to Azure resources.
.azure/config.json: Configuration file that informs azd what the current active
environment is.
.azure/aspireazddev/.env: Contains environment specific overrides.

The Azure Developer CLI enables you to automatically create CI/CD pipelines with the
correct configurations and permissions to provision and deploy resources to Azure. azd
can also create a GitHub repository for your app if it doesn't exist already.

1. Run the azd pipeline config command to configure your deployment pipeline
and securely connect it to Azure:

Azure Developer CLI

2. Select the subscription to provision and deploy the app resources to.

? Select an option [Use arrows to move, type to filter]
> Confirm and continue initializing my app
 Cancel and exit

Generating files to run your app on Azure:

 (✓) Done: Generating ./azure.yaml
 (✓) Done: Generating ./next-steps.md
SUCCESS: Your app is ready for the cloud!
You can provision and deploy your app to Azure by running the azd up
command in this directory. For more information on configuring your
app, see ./next-steps.md

Create the GitHub repository and pipeline

azd pipeline config

3. Select the Azure location to use for the resources.

4. When prompted whether to create a new Git repository in the directory, enter y
and press Enter .

5. Select Create a new private GitHub repository to configure the git remote.

6. Enter a name of your choice for the new GitHub repository or press enter to use
the default name. azd creates a new repository in GitHub and configures it with
the necessary secrets required to authenticate to Azure.

7. Enter y to proceed when azd prompts you to commit and push your local
changes to start the configured pipeline.

1. Navigate to your new GitHub repository using the link output by azd .

2. Select the Actions tab to view the repository workflows. You should see the new
workflow either running or already completed. Select the workflow to view the job
steps and details in the logs of the run. For example, you can expand steps such as
Install .NET Aspire Workload or Deploy application to see the details of the
completed action.

７ Note

Creating a GitHub repository required you being logged into GitHub. There
are a few selections that vary based on your preferences. After logging in, you
will be prompted to create a new repository in the current directory.

Explore the GitHub Actions workflow and
deployment

3. Select Deploy Application to expand the logs for that step. You should see two
endpoint urls printed out for the apiservice and webfrontend . Select either of
these links to open them in another browser tab and explore the deployed
application.

Congratulations! You successfully deployed a .NET Aspire project using the Azure
Developer CLI and GitHub Actions.

Run the following Azure CLI command to delete the resource group when you no longer
need the Azure resources you created. Deleting the resource group also deletes the
resources contained inside of it.

Azure CLI

For more information, see Clean up resources in Azure.

Clean up resources

az group delete --name <your-resource-group-name>

https://learn.microsoft.com/en-us/cli/azure/group?view=azure-cli-latest#az-group-delete

Use Application Insights for .NET Aspire
telemetry
Article • 04/12/2024

Azure Application Insights, a feature of Azure Monitor, excels in Application
Performance Management (APM) for live web applications. .NET Aspire projects are
designed to use OpenTelemetry for application telemetry. OpenTelemetry supports an
extension model to support sending data to different APMs. .NET Aspire uses OTLP by
default for telemetry export, which is used by the dashboard during development. Azure
Monitor doesn't (yet) support OTLP, so the applications need to be modified to use the
Azure Monitor exporter, and configured with the connection string.

To use Application insights, you specify its configuration in the app host project and use
the Azure Monitor distro in the service defaults project.

.NET Aspire has the capability to provision cloud resources as part of cloud deployment,
including Application Insights. In your .NET Aspire project, you can decide if you want
.NET Aspire to provision an Application Insights resource when deploying to Azure. You
can also select to use an existing Application Insights resource by providing its
connection string. The connection information is managed by the resource
configuration in the app host project.

With this option, an instance of Application Insights will be created for you when the
application is deployed using the Azure Developer CLI (azd).

To use automatic provisioning, you specify a dependency in the app host project, and
reference it in each project/resource that needs to send telemetry to Application
Insights. The steps include:

Add a Nuget package reference to Aspire.Hosting.Azure.ApplicationInsights in
the app host project.

Choosing how Application Insights is
provisioned

Provisioning Application insights during Azure
deployment

https://nuget.org/packages/Aspire.Hosting.Azure.ApplicationInsights
https://nuget.org/packages/Aspire.Hosting.Azure.ApplicationInsights

Update the app host code to use the Application Insights resource, and reference
it from each project:

C#

Follow the steps in Deploy a .NET Aspire project to Azure Container Apps using the
Azure Developer CLI (in-depth guide) to deploy the application to Azure Container
Apps. azd will create an Application Insights resource as part of the same resource
group, and configure the connection string for each container.

Application Insights uses a connection string to tell the OpenTelemetry exporter where
to send the telemetry data. The connection string is specific to the instance of
Application Insights you want to send the telemetry to. It can be found in the Overview
page for the application insights instance.

If you wish to use an instance of Application Insights that you have provisioned
manually, then you should use the AddConnectionString API in the app host project to
tell the projects/containers where to send the telemetry data. The Azure Monitor distro
expects the environment variable to be APPLICATIONINSIGHTS_CONNECTION_STRING , so that
needs to be explicitly set when defining the connection string.

var builder = DistributedApplication.CreateBuilder(args);

// Automatically provision an Application Insights resource
var insights = builder.AddAzureApplicationInsights("MyApplicationInsights");

// Reference the resource from each project
var apiService = builder.AddProject<Projects.ApiService>("apiservice")
 .WithReference(insights);

builder.AddProject<Projects.Web>("webfrontend")
 .WithReference(apiService)
 .WithReference(insights);

builder.Build().Run();

Manual provisioning of Application Insights resource



https://learn.microsoft.com/en-us/dotnet/aspire/docs/deployment/media/app-insights-connection-string.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/deployment/media/app-insights-connection-string.png#lightbox

C#

When running the .NET Aspire project locally, the preceding code reads the connection
string from configuration. As this is a secret, you should store the value in app secrets.
Right click on the app host project and choose Manage Secrets from the context menu
to open the secrets file for the app host project. In the file add the key and your specific
connection string, the example below is for illustration purposes.

JSON

When deploying an Aspire application with Azure Developer CLI (azd), it will recognize
the connection string resource and prompt for a value. This enables a different resource

var builder = DistributedApplication.CreateBuilder(args);

var insights = builder.AddConnectionString(
 "myInsightsResource",
 "APPLICATIONINSIGHTS_CONNECTION_STRING");

var apiService = builder.AddProject<Projects.ApiService>("apiservice")
 .WithReference(insights);

builder.AddProject<Projects.Web>("webfrontend")
 .WithReference(apiService)
 .WithReference(insights);

builder.Build().Run();

Resource usage during development

{
 "ConnectionStrings": {
 "myInsightsResource": "InstrumentationKey=12345678-abcd-1234-abcd-
1234abcd5678;IngestionEndpoint=https://westus3-
1.in.applicationinsights.azure.com"
 }
}

７ Note

The name specified in the app host code needs to match a key inside the
ConnectionStrings section in the settings file.

Resource usage during deployment

https://learn.microsoft.com/en-us/aspnet/core/security/app-secrets

to be used for the deployment from the value used for local development.

If you wish to use a different deployment mechanism per execution context, use the
appropriate API conditionally. For example, the following code uses a pre-supplied
connection at development time, and an automatically provisioned resource at
deployment time.

C#

To make exporting to Azure Monitor simpler, this example uses the Azure Monitor
Exporter Repo. This is a wrapper package around the Azure Monitor OpenTelemetry
Exporter package that makes it easier to export to Azure Monitor with a set of common
defaults.

Add the following package to the ServiceDefaults project, so that it will be included in
each of the .NET Aspire services. For more information, see .NET Aspire service defaults.

XML

Mixed deployment

var builder = DistributedApplication.CreateBuilder(args);

var insights = builder.ExecutionContext.IsPublishMode
 ? builder.AddAzureApplicationInsights("myInsightsResource")
 : builder.AddConnectionString("myInsightsResource",
"APPLICATIONINSIGHTS_CONNECTION_STRING");

var apiService = builder.AddProject<Projects.ApiService>("apiservice")
 .WithReference(insights);

builder.AddProject<Projects.Web>("webfrontend")
 .WithReference(apiService)
 .WithReference(insights);

builder.Build().Run();

 Tip

The preceding code requires you to supply the connection string information in
app secrets for development time usage, and will be prompted for the connection
string by azd at deployment time.

Use the Azure Monitor distro

Add a using statement to the top of the project.

C#

Uncomment the line in AddOpenTelemetryExporters to use the Azure Monitor exporter:

C#

It's possible to further customize the Azure Monitor exporter, including customizing the
resource name and changing the sampling. For more information, see Customize the
Azure Monitor exporter. Using the parameterless version of UseAzureMonitor() , will
pickup the connection string from the APPLICATIONINSIGHTS_CONNECTION_STRING
environment variable, we configured via the app host project.

<PackageReference Include="Azure.Monitor.OpenTelemetry.AspNetCore"
 Version="*" />

using Azure.Monitor.OpenTelemetry.AspNetCore;

private static IHostApplicationBuilder AddOpenTelemetryExporters(
 this IHostApplicationBuilder builder)
{
 // Omitted for brevity...

 // Uncomment the following lines to enable the Azure Monitor exporter
 // (requires the Azure.Monitor.OpenTelemetry.AspNetCore package)
 if
(!string.IsNullOrEmpty(builder.Configuration["APPLICATIONINSIGHTS_CONNECTION
_STRING"]))
 {
 builder.Services.AddOpenTelemetry().UseAzureMonitor();
 }
 return builder;
}

https://learn.microsoft.com/en-us/azure/azure-monitor/app/opentelemetry-configuration?tabs=aspnetcore
https://learn.microsoft.com/en-us/azure/azure-monitor/app/opentelemetry-configuration?tabs=aspnetcore

Tutorial: Deploy a .NET Aspire project with
a SQL Server Database to Azure
Article • 04/04/2025

In this tutorial, you learn to configure an ASP.NET Core app with a SQL Server Database for
deployment to Azure. .NET Aspire provides multiple SQL Server integration configurations that
provision different database services in Azure. You'll learn how to:

Prerequisites
To work with .NET Aspire, you need the following installed locally:

.NET 8.0 or .NET 9.0
An OCI compliant container runtime, such as:

Docker Desktop or Podman . For more information, see Container runtime.
An Integrated Developer Environment (IDE) or code editor, such as:

p塈d 〮〳㌱㈶㘰iodman

https://dotnet.microsoft.com/download/dotnet/8.0
https://dotnet.microsoft.com/download/dotnet/8.0
https://dotnet.microsoft.com/download/dotnet/9.0
https://dotnet.microsoft.com/download/dotnet/9.0
https://www.docker.com/products/docker-desktop
https://www.docker.com/products/docker-desktop
https://podman.io/
https://podman.io/
https://visualstudio.microsoft.com/vs/
https://visualstudio.microsoft.com/vs/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://marketplace.visualstudio.com/items?itemName=ms-dotnettools.csdevkit
https://marketplace.visualstudio.com/items?itemName=ms-dotnettools.csdevkit
https://blog.jetbrains.com/dotnet/2024/02/19/jetbrains-rider-and-the-net-aspire-plugin/
https://blog.jetbrains.com/dotnet/2024/02/19/jetbrains-rider-and-the-net-aspire-plugin/
https://learn.microsoft.com/en-us/dotnet/aspire/deployment/azure/aca-deployment?branch=pr-en-us-532&tabs=visual-studio%2Clinux%2Cpowershell&pivots=azure-azd

2. In the dialog window, search for Aspire and select .NET Aspire Starter App. Choose
Next.

3. On the Configure your new project screen:

Enter a Solution name of AspireSql.
Leave the rest of the values at their defaults and select Next.

4. On the Additional information screen:

In the Framework list, verify that .NET 9.0 is selected.
In the .NET Aspire version list, verify that 9.1 is selected.
Choose Create.

Visual Studio creates a new ASP.NET Core solution that is structured to use .NET Aspire.
The solution consists of the following projects:

AspireSql.ApiService: An API project that depends on service defaults.
AspireSql.AppHost: An orchestrator project designed to connect and configure the
different projects and services of your app. The orchestrator should be set as the
startup project.
AspireSql.ServiceDefaults: A shared class library to hold configurations that can be
reused across the projects in your solution.
AspireSql.Web: A Blazor project that depends on service defaults.

Configure the app for SQL Server deployment
.NET Aspire provides two built-in configuration options to streamline SQL Server deployment
on Azure:

Provision a containerized SQL Server database using Azure Container Apps
Provision an Azure SQL Database instance

Add the .NET Aspire integration to the app
Add the appropriate .NET Aspire integration to the AspireSql.AppHost project for your desired
hosting service.

Open a command prompt and add the 📦 Aspire.Hosting.Azure.Sql NuGet package to
the AspireSql.AppHost project:

Azure SQL Database

https://www.nuget.org/packages/Aspire.Hosting.Azure.Sql
https://www.nuget.org/packages/Aspire.Hosting.Azure.Sql

.NET CLI

Configure the AppHost project
Configure the AspireSql.AppHost project for your desired SQL database service.

Replace the contents of the Program.cs file in the AspireSql.AppHost project with the
following code:

C#

The preceding code adds an Azure SQL Server resource to your app and configures a
connection to a database called sqldb . The AddAzureSqlServer method ensures that tools
such as the Azure Developer CLI or Visual Studio create an Azure SQL Database resource
during the deployment process.

Deploy the app
Tools such as the Azure Developer CLI (azd) support .NET Aspire SQL Server integration
configurations to streamline deployments. azd consumes these settings and provisions
properly configured resources for you.

cd AspireSql.AppHost
dotnet add package Aspire.Hosting.Azure.Sql

Azure SQL Database

var builder = DistributedApplication.CreateBuilder(args);

var apiService = builder.AddProject<Projects.AspireSql_ApiService>
("apiservice");

// Provisions an Azure SQL Database when published
var sqlServer = builder.AddAzureSqlServer("sqlserver")
 .AddDatabase("sqldb");

builder.AddProject<Projects.AspireSql_Web>("webfrontend")
 .WithExternalHttpEndpoints()
 .WithReference(apiService)
 .WaitFor(apiService);

builder.Build().Run();

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azuresqlextensions.addazuresqlserver
https://learn.microsoft.com/en-us/azure/developer/azure-developer-cli/overview

Initialize the template
1. Open a new terminal window and cd into the directory of your .NET Aspire solution.

2. Execute the azd init command to initialize your project with azd , which will inspect the
local directory structure and determine the type of app.

Azure Developer CLI

For more information on the azd init command, see azd init.

3. Select Use code in the current directory when azd prompts you with three app
initialization options.

Output

4. After scanning the directory, azd prompts you to confirm that it found the correct .NET
Aspire AppHost project. Select the Confirm and continue initializing my app option.

Output

5. Enter an environment name, which is used to name provisioned resources in Azure and
managing different environments such as dev and prod .

Output

azd init

? How do you want to initialize your app? [Use arrows to move, type to
filter]
> Use code in the current directory
 Select a template
 Create a minimal project

Detected services:

 .NET (Aspire)
 Detected in:
D:\source\repos\AspireSample\AspireSample.AppHost\AspireSample.AppHost.csproj

azd will generate the files necessary to host your app on Azure using Azure
Container Apps.

? Select an option [Use arrows to move, type to filter]
> Confirm and continue initializing my app
 Cancel and exit

https://learn.microsoft.com/en-us/azure/developer/azure-developer-cli/reference#azd-init

azd generates a number of files and places them into the working directory. These files are:

azure.yaml: Describes the services of the app, such as .NET Aspire AppHost project, and
maps them to Azure resources.
.azure/config.json: Configuration file that informs azd what the current active environment
is.
.azure/aspireazddev/.env: Contains environment specific overrides.

Deploy the template
1. Once an azd template is initialized, the provisioning and deployment process can be

executed as a single command from the AppHost project directory using azd up:

Azure Developer CLI

2. Select the subscription you'd like to deploy to from the list of available options:

Output

3. Select the desired Azure location to use from the list of available options:

Output

Generating files to run your app on Azure:

 (✓) Done: Generating ./azure.yaml
 (✓) Done: Generating ./next-steps.md
SUCCESS: Your app is ready for the cloud!
You can provision and deploy your app to Azure by running the azd up command
in this directory. For more information on configuring your app, see ./next-
steps.md

azd up

Select an Azure Subscription to use: [Use arrows to move, type to filter]
 1. SampleSubscription01 (xxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxx)
 2. SampleSubscription02 (xxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxx)

Select an Azure location to use: [Use arrows to move, type to filter]
 42. (US) Central US (centralus)
 43. (US) East US (eastus)
> 44. (US) East US 2 (eastus2)

https://learn.microsoft.com/en-us/azure/developer/azure-developer-cli/reference#azd-up

After you make your selections, azd executes the provisioning and deployment process.

Output

The azd up command acts as wrapper for the following individual azd commands to provision
and deploy your resources in a single step:

 46. (US) North Central US (northcentralus)
 47. (US) South Central US (southcentralus)

By default, a service can only be reached from inside the Azure Container Apps
environment it is running in. Selecting a service here will also allow it to be
reached from the Internet.
? Select which services to expose to the Internet webfrontend
? Select an Azure Subscription to use: 1. <YOUR SUBSCRIPTION>
? Select an Azure location to use: 1. <YOUR LOCATION>

Packaging services (azd package)

Provisioning Azure resources (azd provision)
Provisioning Azure resources can take some time.

Subscription: <YOUR SUBSCRIPTION>
Location: <YOUR LOCATION>

 You can view detailed progress in the Azure Portal:
 <LINK TO DEPLOYMENT>

 (✓) Done: Resource group: <YOUR RESOURCE GROUP>
 (✓) Done: Container Registry: <ID>
 (✓) Done: Log Analytics workspace: <ID>
 (✓) Done: Container Apps Environment: <ID>
SUCCESS: Your application was provisioned in Azure in 1 minute 13 seconds.
You can view the resources created under the resource group <YOUR RESOURCE GROUP>
in Azure Portal:
<LINK TO RESOURCE GROUP OVERVIEW>

Deploying services (azd deploy)

 (✓) Done: Deploying service apiservice
 - Endpoint: <YOUR UNIQUE apiservice APP>.azurecontainerapps.io/

 (✓) Done: Deploying service webfrontend
 - Endpoint: <YOUR UNIQUE webfrontend APP>.azurecontainerapps.io/

Aspire Dashboard: <LINK TO DEPLOYED .NET ASPIRE DASHBOARD>

SUCCESS: Your up workflow to provision and deploy to Azure completed in 3 minutes
50 seconds.

1. azd package: The app projects and their dependencies are packaged into containers.
2. azd provision: The Azure resources the app will need are provisioned.
3. azd deploy: The projects are pushed as containers into an Azure Container Registry

instance, and then used to create new revisions of Azure Container Apps in which the
code will be hosted.

When the azd up stages complete, your app will be available on Azure, and you can open the
Azure portal to explore the resources. azd also outputs URLs to access the deployed apps
directly.

The deployment process provisioned an Azure SQL Database resource due to the
.AppHost configuration you provided.

Clean up resources
Run the following Azure CLI command to delete the resource group when you no longer need
the Azure resources you created. Deleting the resource group also deletes the resources
contained inside of it.

Azure CLI

For more information, see Clean up resources in Azure.

See also

Azure SQL Database

az group delete --name <your-resource-group-name>

https://learn.microsoft.com/en-us/azure/developer/azure-developer-cli/reference#azd-package
https://learn.microsoft.com/en-us/azure/developer/azure-developer-cli/reference#azd-provision
https://learn.microsoft.com/en-us/azure/developer/azure-developer-cli/reference#azd-deploy
https://learn.microsoft.com/en-us/cli/azure/group?view=azure-cli-latest#az-group-delete

Deploy a .NET Aspire project to Azure Container Apps
Deploy a .NET Aspire project to Azure Container Apps using the Azure Developer CLI (in-
depth guide)
Tutorial: Deploy a .NET Aspire project using the Azure Developer CLI

Tutorial: Deploy a .NET Aspire project
with a Redis Cache to Azure
Article • 11/12/2024

In this tutorial, you learn to configure a .NET Aspire project with a Redis Cache for
deployment to Azure. .NET Aspire provides multiple caching integration configurations
that provision different Redis services in Azure. You'll learn how to:

To work with .NET Aspire, you need the following installed locally:

.NET 8.0 or .NET 9.0
An OCI compliant container runtime, such as:

Docker Desktop or Podman . For more information, see Container runtime.
An Integrated Developer Environment (IDE) or code editor, such as:

Visual Studio 2022 version 17.9 or higher (Optional)
Visual Studio Code (Optional)

C# Dev Kit: Extension (Optional)
JetBrains Rider with .NET Aspire plugin (Optional)

For more information, see .NET Aspire setup and tooling, and .NET Aspire SDK.

Follow the Tutorial: Implement caching with .NET Aspire integrations to create the
sample project.

Configure the app to provision an Azure Cache for Redis＂

Configure the app to provision a containerized Redis Cache＂

７ Note

This document focuses specifically on .NET Aspire configurations to provision and
deploy Redis Cache resources in Azure. For more information and to learn more
about the full .NET Aspire deployment process, see the Azure Container Apps
deployment tutorial.

Prerequisites

Create the sample solution

https://dotnet.microsoft.com/download/dotnet/8.0
https://dotnet.microsoft.com/download/dotnet/8.0
https://dotnet.microsoft.com/download/dotnet/9.0
https://dotnet.microsoft.com/download/dotnet/9.0
https://www.docker.com/products/docker-desktop
https://www.docker.com/products/docker-desktop
https://podman.io/
https://podman.io/
https://visualstudio.microsoft.com/vs/
https://visualstudio.microsoft.com/vs/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://marketplace.visualstudio.com/items?itemName=ms-dotnettools.csdevkit
https://marketplace.visualstudio.com/items?itemName=ms-dotnettools.csdevkit
https://blog.jetbrains.com/dotnet/2024/02/19/jetbrains-rider-and-the-net-aspire-plugin/
https://blog.jetbrains.com/dotnet/2024/02/19/jetbrains-rider-and-the-net-aspire-plugin/
https://learn.microsoft.com/en-us/dotnet/aspire/deployment/azure/aca-deployment?pivots=azure-azd
https://learn.microsoft.com/en-us/dotnet/aspire/deployment/azure/aca-deployment?pivots=azure-azd

.NET Aspire provides two built-in configuration options to streamline Redis Cache
deployment on Azure:

Provision a containerized Redis Cache using Azure Container Apps
Provision an Azure Cache for Redis instance

Add the appropriate .NET Aspire integration to the AspireRedis.AppHost project for your
desired hosting service.

Add the 📦 Aspire.Hosting.Azure.Redis NuGet package to the
AspireRedis.AppHost project:

.NET CLI

Configure the AspireRedis.AppHost project for your desired Redis service.

Replace the contents of the Program.cs file in the AspireRedis.AppHost project with
the following code:

C#

Configure the app for Redis cache deployment

Add the .NET Aspire integration to the app

Azure Cache for Redis

dotnet add package Aspire.Hosting.Azure.Redis

Configure the AppHost project

Azure Cache for Redis

var builder = DistributedApplication.CreateBuilder(args);

var cache = builder.AddAzureRedis("cache");

var apiService = builder.AddProject<Projects.AspireRedis_ApiService>
("apiservice")
 .WithReference(cache);

builder.AddProject<Projects.AspireRedis_Web>("webfrontend")
 .WithExternalHttpEndpoints()
 .WithReference(cache)

https://www.nuget.org/packages/Aspire.Hosting.Azure.Redis
https://www.nuget.org/packages/Aspire.Hosting.Azure.Redis

The preceding code adds an Azure Cache for Redis resource to your app and
configures a connection called cache . The AddAzureRedis method ensures that
tools such as the Azure Developer CLI or Visual Studio create an Azure Cache for
Redis resource during the deployment process.

Tools such as the Azure Developer CLI (azd) support .NET Aspire Redis integration
configurations to streamline deployments. azd consumes these settings and provisions
properly configured resources for you.

1. Open a terminal window in the root of your .NET Aspire project.

2. Run the azd init command to initialize the project with azd .

Azure Developer CLI

3. When prompted for an environment name, enter docs-aspireredis.

4. Run the azd up command to begin the deployment process:

Azure Developer CLI

5. Select the Azure subscription that should host your app resources.

 .WaitFor(cache)
 .WithReference(apiService)
 .WaitFor(apiService);

builder.Build().Run();

https://learn.microsoft.com/en-us/azure/developer/azure-developer-cli/overview
https://learn.microsoft.com/en-us/dotnet/aspire/deployment/azure/aca-deployment?pivots=azure-cli
https://learn.microsoft.com/en-us/dotnet/aspire/deployment/azure/aca-deployment?pivots=azure-bicep

6. Select the Azure location to use.

The Azure Developer CLI provisions and deploys your app resources. The process
may take a few minutes to complete.

7. When the deployment finishes, click the resource group link in the output to view
the created resources in the Azure portal.

The deployment process provisioned an Azure Cache for Redis resource due to the
.AppHost configuration you provided.

Run the following Azure CLI command to delete the resource group when you no longer
need the Azure resources you created. Deleting the resource group also deletes the
resources contained inside of it.

Azure CLI

For more information, see Clean up resources in Azure.

.NET Aspire deployment via Azure Container Apps

Azure Cache for Redis

Clean up resources

az group delete --name <your-resource-group-name>

See also

https://learn.microsoft.com/en-us/cli/azure/group?view=azure-cli-latest#az-group-delete

.NET Aspire Azure Container Apps deployment deep dive
Deploy a .NET Aspire project using GitHub Actions

.NET Aspire manifest format for
deployment tool builders
Article • 03/29/2024

In this article, you learn about the .NET Aspire manifest format. This article serves as a
reference guide for deployment tool builders, aiding in the creation of tooling to deploy
.NET Aspire projects on specific hosting platforms, whether on-premises or in the cloud.

.NET Aspire simplifies the local development experience by helping to manage
interdependencies between application integrations. To help simplify the deployment of
applications, .NET Aspire projects can generate a manifest of all the resources defined as
a JSON formatted file.

A valid .NET Aspire project is required to generate a manifest. To get started, create a
.NET Aspire project using the aspire-starter .NET template:

.NET CLI

Manifest generation is achieved by running dotnet build with a special target:

.NET CLI

For more information, see dotnet run. The previous command produces the following
output:

Generate a manifest

dotnet new aspire-starter --use-redis-cache `
 -o AspireApp && `
 cd AspireApp

dotnet run --project AspireApp.AppHost\AspireApp.AppHost.csproj `
 --publisher manifest `
 --output-path ../aspire-manifest.json

 Tip

The --output-path supports relative paths. The previous command uses ../aspire-
manifest.json to place the manifest file in the root of the project directory.

https://learn.microsoft.com/en-us/dotnet/core/tools/dotnet-run

Output

The file generated is the .NET Aspire manifest and is used by tools to support deploying
into target cloud environments.

Publishing the manifest from the default starter template for .NET Aspire produces the
following JSON output:

JSON

Building...
info: Aspire.Hosting.Publishing.ManifestPublisher[0]
 Published manifest to: .\AspireApp.AppHost\aspire-manifest.json

７ Note

You can also generate a manifest as part of the launch profile. Consider the
following launchSettings.json:

JSON

{
 "$schema": "http://json.schemastore.org/launchsettings.json",
 "profiles": {
 "generate-manifest": {
 "commandName": "Project",
 "launchBrowser": false,
 "dotnetRunMessages": true,
 "commandLineArgs": "--publisher manifest --output-path aspire-
manifest.json"
 }
 }
}

Basic manifest format

{
 "resources": {
 "cache": {
 "type": "container.v0",
 "connectionString": "{cache.bindings.tcp.host}:
{cache.bindings.tcp.port}",
 "image": "redis:7.2.4",
 "bindings": {
 "tcp": {
 "scheme": "tcp",

 "protocol": "tcp",
 "transport": "tcp",
 "containerPort": 6379
 }
 }
 },
 "apiservice": {
 "type": "project.v0",
 "path": "../AspireApp.ApiService/AspireApp.ApiService.csproj",
 "env": {
 "OTEL_DOTNET_EXPERIMENTAL_OTLP_EMIT_EXCEPTION_LOG_ATTRIBUTES":
"true",
 "OTEL_DOTNET_EXPERIMENTAL_OTLP_EMIT_EVENT_LOG_ATTRIBUTES": "true"
 },
 "bindings": {
 "http": {
 "scheme": "http",
 "protocol": "tcp",
 "transport": "http"
 },
 "https": {
 "scheme": "https",
 "protocol": "tcp",
 "transport": "http"
 }
 }
 },
 "webfrontend": {
 "type": "project.v0",
 "path": "../AspireApp.Web/AspireApp.Web.csproj",
 "env": {
 "OTEL_DOTNET_EXPERIMENTAL_OTLP_EMIT_EXCEPTION_LOG_ATTRIBUTES":
"true",
 "OTEL_DOTNET_EXPERIMENTAL_OTLP_EMIT_EVENT_LOG_ATTRIBUTES": "true",
 "ConnectionStrings__cache": "{cache.connectionString}",
 "services__apiservice__0": "{apiservice.bindings.http.url}",
 "services__apiservice__1": "{apiservice.bindings.https.url}"
 },
 "bindings": {
 "http": {
 "scheme": "http",
 "protocol": "tcp",
 "transport": "http"
 },
 "https": {
 "scheme": "https",
 "protocol": "tcp",
 "transport": "http"
 }
 }
 }
 }
}

The manifest format JSON consists of a single object called resources , which contains a
property for each resource specified in Program.cs (the name argument for each name is
used as the property for each of the child resource objects in JSON).

In the previous example, there are two project resources and one Redis cache resource.
The webfrontend depends on both the apiservice (project) and cache (Redis) resources.

This dependency is known because the environment variables for the webfrontend
contain placeholders that reference the two other resources:

JSON

The apiservice resource is referenced by webfrontend using the call
WithReference(apiservice) in the app host Program.cs file and redis is referenced
using the call WithReference(cache) :

C#

References between project resource types result in service discovery variables being
injected into the referencing project. References to well known reference types such as
Redis result in connection strings being injected.

Connection string and binding references

"env": {
 // ... other environment variables omitted for clarity
 "ConnectionStrings__cache": "{cache.connectionString}",
 "services__apiservice__0": "{apiservice.bindings.http.url}",
 "services__apiservice__1": "{apiservice.bindings.https.url}"
},

var builder = DistributedApplication.CreateBuilder(args);

var cache = builder.AddRedis("cache");

var apiService = builder.AddProject<Projects.AspireApp_ApiService>
("apiservice");

builder.AddProject<Projects.AspireApp_Web>("webfrontend")
 .WithReference(cache)
 .WithReference(apiService);

builder.Build().Run();

For more information on how resources in the app model and references between them
work, see, .NET Aspire orchestration overview.

Placeholder strings reference the structure of the .NET Aspire manifest:

The final segment of the placeholder string (url in this case) is generated by the tool
processing the manifest. There are several suffixes that could be used on the
placeholder string:

connectionString : For well-known resource types such as Redis. Deployment tools
translate the resource in the most appropriate infrastructure for the target cloud
environment and then produce a .NET Aspire compatible connection string for the



Placeholder string structure



https://learn.microsoft.com/en-us/dotnet/aspire/docs/deployment/media/manifest-placeholder-strings.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/deployment/media/manifest-placeholder-strings.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/deployment/media/placeholder-mappings.png#lightbox
https://learn.microsoft.com/en-us/dotnet/aspire/docs/deployment/media/placeholder-mappings.png#lightbox

consuming application to use. On container.v0 resources the connectionString
field may be present and specified explicitly. This is to support scenarios where a
container resource type is referenced using the WithReference extension but is
desired to be hosted explicitly as a container.
url : For service-to-service references where a well-formed URL is required. The
deployment tool produces the url based on the scheme, protocol, and transport
defined in the manifest and the underlying compute/networking topology that was
deployed.
host : The host segment of the URL.
port : The port segment of the URL.

Each resource has a type field. When a deployment tool reads the manifest, it should
read the type to verify whether it can correctly process the manifest. During the .NET
Aspire preview period, all resource types have a v0 suffix to indicate that they're subject
to change. As .NET Aspire approaches release a v1 suffix will be used to signify that the
structure of the manifest for that resource type should be considered stable (subsequent
updates increment the version number accordingly).

The type field is the only field that is common across all resource types, however, the
project.v0 , container.v0 , and executable.v0 resource types also share the env and
bindings fields.

The env field type is a basic key/value mapping where the values might contain
placeholder strings.

Bindings are specified in the bindings field with each binding contained within its own
field under the bindings JSON object. The fields omitted by the .NET Aspire manifest in
the bindings node include:

Resource types

Common resource fields

７ Note

The executable.v0 resource type isn't fully implemented in the manifest due to its
lack of utility in deployment scenarios. For more information on containerizing
executables, see Dockerfile resource types.

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.resourcebuilderextensions.withreference

scheme : One of the following values tcp , udp , http , or https .
protocol : One of the following values tcp or udp
transport : Same as scheme , but used to disambiguate between http and http2 .
containerPort : Optional, if omitted defaults to port 80.

Some resources generate an inputs field. This field is used to specify input parameters
for the resource. The inputs field is a JSON object where each property is an input
parameter that's used in placeholder structure resolution. Resources that have a
connectionString , for example, might use the inputs field to specify a password for the
connection string:

JSON

The connection string placeholder references the password input parameter from the
inputs field:

JSON

The preceding JSON snippet shows the inputs field for a resource that has a
connectionString field. The password input parameter is a string type and is marked as
a secret. The default field is used to specify a default value for the input parameter. In
this case, the default value is generated using the generate field, with random string of
a minimum length.

The inputs field

"connectionString": "Host={<resourceName>.bindings.tcp.host};Port=
{<resourceName>.bindings.tcp.port};Username=admin;Password=
{<resourceName>.inputs.password};"

"inputs": {
 "password": {
 "type": "string",
 "secret": true,
 "default": {
 "generate": {
 "minLength": 10
 }
 }
 }
}

Built-in resources

The following table is a list of resource types that are explicitly generated by .NET Aspire
and extensions developed by the .NET Aspire team:

These resources are available in the 📦 Aspire.Hosting NuGet package.

App model usage Manifest resource type Heading link

AddContainer container.v0 Container resource type

PublishAsDockerFile dockerfile.v0 Dockerfile resource types

AddDatabase value.v0 MongoDB Server resource types

AddMongoDB container.v0 MongoDB resource types

AddDatabase value.v0 MySQL Server resource types

AddMySql container.v0 MySQL resource types

AddDatabase value.v0 Postgres resource types

AddPostgres container.v0 Postgres resource types

AddProject project.v0 Project resource type

AddRabbitMQ container.v0 RabbitMQ resource types

AddRedis container.v0 Redis resource type

AddDatabase value.v0 SQL Server resource types

AddSqlServer container.v0 SQL Server resource types

Example code:

C#

Example manifest:

Cloud-agnostic resource types

ﾉ Expand table

Project resource type

var builder = DistributedApplication.CreateBuilder(args);
var apiservice = builder.AddProject<Projects.AspireApp_ApiService>
("apiservice");

https://www.nuget.org/packages/Aspire.Hosting
https://www.nuget.org/packages/Aspire.Hosting
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.containerresourcebuilderextensions.addcontainer
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.mongodbbuilderextensions.adddatabase
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.mongodbbuilderextensions.addmongodb
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.mysqlbuilderextensions.adddatabase
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.mysqlbuilderextensions.addmysql
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.postgresbuilderextensions.adddatabase
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.postgresbuilderextensions.addpostgres
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.projectresourcebuilderextensions.addproject
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.rabbitmqbuilderextensions.addrabbitmq
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.redisbuilderextensions.addredis
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.sqlserverbuilderextensions.adddatabase
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.sqlserverbuilderextensions.addsqlserver

JSON

Example code:

C#

Example manifest:

JSON

"apiservice": {
 "type": "project.v0",
 "path": "../AspireApp.ApiService/AspireApp.ApiService.csproj",
 "env": {
 "OTEL_DOTNET_EXPERIMENTAL_OTLP_EMIT_EXCEPTION_LOG_ATTRIBUTES": "true",
 "OTEL_DOTNET_EXPERIMENTAL_OTLP_EMIT_EVENT_LOG_ATTRIBUTES": "true"
 },
 "bindings": {
 "http": {
 "scheme": "http",
 "protocol": "tcp",
 "transport": "http"
 },
 "https": {
 "scheme": "https",
 "protocol": "tcp",
 "transport": "http"
 }
 }
}

Container resource type

var builder = DistributedApplication.CreateBuilder(args);

builder.AddContainer("mycontainer", "myimage")
 .WithEnvironment("LOG_LEVEL", "WARN")
 .WithHttpEndpoint(3000);

{
 "resources": {
 "mycontainer": {
 "type": "container.v0",
 "image": "myimage:latest",
 "env": {
 "LOG_LEVEL": "WARN"
 },
 "bindings": {
 "http": {
 "scheme": "http",

Example code:

C#

Example manifest:

JSON

 "protocol": "tcp",
 "transport": "http",
 "containerPort": 3000
 }
 }
 }
 }
}

Dockerfile resource types

var builder = DistributedApplication.CreateBuilder(args);

builder.AddNodeApp("nodeapp", "../nodeapp/app.js")
 .WithHttpEndpoint(hostPort: 5031, env: "PORT")
 .PublishAsDockerFile();

 Tip

The PublishAsDockerFile call is required to generate the Dockerfile resource type
in the manifest, and this extension method is only available on the
ExecutableResource type.

{
 "resources": {
 "nodeapp": {
 "type": "dockerfile.v0",
 "path": "../nodeapp/Dockerfile",
 "context": "../nodeapp",
 "env": {
 "NODE_ENV": "development",
 "PORT": "{nodeapp.bindings.http.port}"
 },
 "bindings": {
 "http": {
 "scheme": "http",
 "protocol": "tcp",
 "transport": "http",
 "containerPort": 5031

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.applicationmodel.executableresource

Example code:

C#

Example manifest:

JSON

 }
 }
 }
 }
}

Postgres resource types

var builder = DistributedApplication.CreateBuilder(args);

builder.AddPostgres("postgres1")
 .AddDatabase("shipping");

{
 "resources": {
 "postgres1": {
 "type": "container.v0",
 "connectionString": "Host={postgres1.bindings.tcp.host};Port=
{postgres1.bindings.tcp.port};Username=postgres;Password=
{postgres1.inputs.password}",
 "image": "postgres:16.2",
 "env": {
 "POSTGRES_HOST_AUTH_METHOD": "scram-sha-256",
 "POSTGRES_INITDB_ARGS": "--auth-host=scram-sha-256 --auth-
local=scram-sha-256",
 "POSTGRES_PASSWORD": "{postgres1.inputs.password}"
 },
 "bindings": {
 "tcp": {
 "scheme": "tcp",
 "protocol": "tcp",
 "transport": "tcp",
 "containerPort": 5432
 }
 },
 "inputs": {
 "password": {
 "type": "string",
 "secret": true,
 "default": {
 "generate": {
 "minLength": 10

RabbitMQ is modeled as a container resource container.v0 . The following sample
shows how they're added to the app model.

C#

The previous code produces the following manifest:

JSON

 }
 }
 }
 }
 },
 "shipping": {
 "type": "value.v0",
 "connectionString": "{postgres1.connectionString};Database=shipping"
 }
 }
}

RabbitMQ resource types

var builder = DistributedApplication.CreateBuilder(args);

builder.AddRabbitMQ("rabbitmq1");

{
 "resources": {
 "rabbitmq1": {
 "type": "container.v0",
 "connectionString": "amqp://guest:
{rabbitmq1.inputs.password}@{rabbitmq1.bindings.tcp.host}:
{rabbitmq1.bindings.tcp.port}",
 "image": "rabbitmq:3",
 "env": {
 "RABBITMQ_DEFAULT_USER": "guest",
 "RABBITMQ_DEFAULT_PASS": "{rabbitmq1.inputs.password}"
 },
 "bindings": {
 "tcp": {
 "scheme": "tcp",
 "protocol": "tcp",
 "transport": "tcp",
 "containerPort": 5672
 }
 },
 "inputs": {
 "password": {
 "type": "string",

Example code:

C#

Example manifest:

JSON

Example code:

 "secret": true,
 "default": {
 "generate": {
 "minLength": 10
 }
 }
 }
 }
 }
 }
}

Redis resource type

var builder = DistributedApplication.CreateBuilder(args);

builder.AddRedis("redis1");

{
 "resources": {
 "redis1": {
 "type": "container.v0",
 "connectionString": "{redis1.bindings.tcp.host}:
{redis1.bindings.tcp.port}",
 "image": "redis:7.2.4",
 "bindings": {
 "tcp": {
 "scheme": "tcp",
 "protocol": "tcp",
 "transport": "tcp",
 "containerPort": 6379
 }
 }
 }
 }
}

SQL Server resource types

C#

Example manifest:

JSON

var builder = DistributedApplication.CreateBuilder(args);

builder.AddSqlServer("sql1")
 .AddDatabase("shipping");

{
 "resources": {
 "sql1": {
 "type": "container.v0",
 "connectionString": "Server={sql1.bindings.tcp.host},
{sql1.bindings.tcp.port};User ID=sa;Password=
{sql1.inputs.password};TrustServerCertificate=true",
 "image": "mcr.microsoft.com/mssql/server:2022-latest",
 "env": {
 "ACCEPT_EULA": "Y",
 "MSSQL_SA_PASSWORD": "{sql1.inputs.password}"
 },
 "bindings": {
 "tcp": {
 "scheme": "tcp",
 "protocol": "tcp",
 "transport": "tcp",
 "containerPort": 1433
 }
 },
 "inputs": {
 "password": {
 "type": "string",
 "secret": true,
 "default": {
 "generate": {
 "minLength": 10
 }
 }
 }
 }
 },
 "shipping": {
 "type": "value.v0",
 "connectionString": "{sql1.connectionString};Database=shipping"
 }
 }
}

Example code:

C#

Example manifest:

JSON

Example code:

C#

MongoDB resource types

var builder = DistributedApplication.CreateBuilder(args);

builder.AddMongoDB("mongodb1")
 .AddDatabase("shipping");

{
 "resources": {
 "mongodb1": {
 "type": "container.v0",
 "connectionString": "mongodb://{mongodb1.bindings.tcp.host}:
{mongodb1.bindings.tcp.port}",
 "image": "mongo:7.0.5",
 "bindings": {
 "tcp": {
 "scheme": "tcp",
 "protocol": "tcp",
 "transport": "tcp",
 "containerPort": 27017
 }
 }
 },
 "shipping": {
 "type": "value.v0",
 "connectionString": "{mongodb1.connectionString}/shipping"
 }
 }
}

MySQL resource types

var builder = DistributedApplication.CreateBuilder(args);

builder.AddMySql("mysql1")
 .AddDatabase("shipping");

Example manifest:

JSON

The following resources are available in the 📦 Aspire.Hosting.Azure NuGet package.

{
 "resources": {
 "mysql1": {
 "type": "container.v0",
 "connectionString": "Server={mysql1.bindings.tcp.host};Port=
{mysql1.bindings.tcp.port};User ID=root;Password={mysql1.inputs.password}",
 "image": "mysql:8.3.0",
 "env": {
 "MYSQL_ROOT_PASSWORD": "{mysql1.inputs.password}"
 },
 "bindings": {
 "tcp": {
 "scheme": "tcp",
 "protocol": "tcp",
 "transport": "tcp",
 "containerPort": 3306
 }
 },
 "inputs": {
 "password": {
 "type": "string",
 "secret": true,
 "default": {
 "generate": {
 "minLength": 10
 }
 }
 }
 }
 },
 "shipping": {
 "type": "value.v0",
 "connectionString": "{mysql1.connectionString};Database=shipping"
 }
 }
}

Azure-specific resource types

ﾉ Expand table

https://www.nuget.org/packages/Aspire.Hosting.Azure
https://www.nuget.org/packages/Aspire.Hosting.Azure

App Model usage Manifest
resource type

Heading link

AddAzureAppConfiguration azure.bicep.v0 Azure App
Configuration
resource types

AddAzureKeyVault azure.bicep.v0 Azure Key Vault
resource type

AddAzureRedis azure.bicep.v0 Azure Redis
resource types

AddAzureServiceBus azure.bicep.v0 Azure Service Bus
resource type

AddAzureSqlServer(...) azure.bicep.v0 Azure SQL
resource types

AddAzureSqlServer(...).AddDatabase(...) value.v0 Azure SQL
resource types

AddAzurePostgresFlexibleServer(...) azure.bicep.v0 Azure Postgres
resource types

AddAzurePostgresFlexibleServer(...).AddDatabase(...) value.v0 Azure Postgres
resource types

AddAzureStorage azure.storage.v0 Azure Storage
resource types

AddBlobs value.v0 Azure Storage
resource types

AddQueues value.v0 Azure Storage
resource types

AddTables value.v0 Azure Storage
resource types

Example code:

C#

Azure Key Vault resource type

var builder = DistributedApplication.CreateBuilder(args);

builder.AddAzureKeyVault("keyvault1");

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azureappconfigurationextensions.addazureappconfiguration
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azurekeyvaultresourceextensions.addazurekeyvault
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azureservicebusextensions.addazureservicebus
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azurestorageextensions.addazurestorage
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azurestorageextensions.addblobs
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azurestorageextensions.addqueues
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.azurestorageextensions.addtables

Example manifest:

JSON

Example code:

C#

Example manifest:

JSON

{
 "resources": {
 "keyvault1": {
 "type": "azure.bicep.v0",
 "connectionString": "{keyvault1.outputs.vaultUri}",
 "path": "aspire.hosting.azure.bicep.keyvault.bicep",
 "params": {
 "principalId": "",
 "principalType": "",
 "vaultName": "keyvault1"
 }
 }
 }
}

Azure Service Bus resource type

var builder = DistributedApplication.CreateBuilder(args);

builder.AddAzureServiceBus("sb1")
 .AddTopic("topic1", [])
 .AddTopic("topic2", [])
 .AddQueue("queue1")
 .AddQueue("queue2");

{
 "resources": {
 "sb1": {
 "type": "azure.bicep.v0",
 "connectionString": "{sb1.outputs.serviceBusEndpoint}",
 "path": "aspire.hosting.azure.bicep.servicebus.bicep",
 "params": {
 "serviceBusNamespaceName": "sb1",
 "principalId": "",
 "principalType": "",
 "queues": [
 "queue1",
 "queue2"

Example code:

C#

Example manifest:

JSON

],
 "topics": [
 {
 "name": "topic1",
 "subscriptions": []
 },
 {
 "name": "topic2",
 "subscriptions": []
 }
]
 }
 }
 }
}

Azure Storage resource types

var builder = DistributedApplication.CreateBuilder(args);

var storage = builder.AddAzureStorage("images");

storage.AddBlobs("blobs");
storage.AddQueues("queues");
storage.AddTables("tables");

{
 "resources": {
 "images": {
 "type": "azure.bicep.v0",
 "path": "aspire.hosting.azure.bicep.storage.bicep",
 "params": {
 "principalId": "",
 "principalType": "",
 "storageName": "images"
 }
 },
 "blobs": {
 "type": "value.v0",
 "connectionString": "{images.outputs.blobEndpoint}"
 },
 "queues": {

Example code:

C#

Example manifest:

JSON

Example code:

C#

 "type": "value.v0",
 "connectionString": "{images.outputs.queueEndpoint}"
 },
 "tables": {
 "type": "value.v0",
 "connectionString": "{images.outputs.tableEndpoint}"
 }
 }
}

Azure Redis resource type

var builder = DistributedApplication.CreateBuilder(args);

builder.AddAzureRedis("azredis1");

{
 "resources": {
 "azredis": {
 "type": "azure.bicep.v0",
 "connectionString": "{azredis.outputs.connectionString}",
 "path": "azredis.module.bicep",
 "params": {
 "principalId": "",
 "principalName": ""
 }
 }
 }
}

Azure App Configuration resource type

var builder = DistributedApplication.CreateBuilder(args);

builder.AddAzureAppConfiguration("appconfig1");

Example manifest:

JSON

Example code:

C#

Example manifest:

JSON

{
 "resources": {
 "appconfig1": {
 "type": "azure.bicep.v0",
 "connectionString": "{appconfig1.outputs.appConfigEndpoint}",
 "path": "aspire.hosting.azure.bicep.appconfig.bicep",
 "params": {
 "configName": "appconfig1",
 "principalId": "",
 "principalType": ""
 }
 }
 }
}

Azure SQL resource types

var builder = DistributedApplication.CreateBuilder(args);

builder.AddAzureSqlServer("sql")
 .AddDatabase("inventory");

{
 "resources": {
 "sql": {
 "type": "azure.bicep.v0",
 "connectionString": "Server=tcp:
{sql.outputs.sqlServerFqdn},1433;Encrypt=True;Authentication=\u0022Active
Directory Default\u0022",
 "path": "sql.module.bicep",
 "params": {
 "principalId": "",
 "principalName": ""
 }
 },
 "inventory": {
 "type": "value.v0",
 "connectionString": "{sql.connectionString};Database=inventory"

Example code:

C#

Example manifest:

JSON

The Azure Developer CLI (azd) is a tool that can be used to deploy .NET Aspire projects
to Azure Container Apps. With the azure.bicep.v0 resource type, cloud-agnostic
resource container types can be mapped to Azure-specific resources. The following
table lists the resource types that are supported in the Azure Developer CLI:

 }
 }
}

Azure Postgres resource types

var builder = DistributedApplication.CreateBuilder(args);

builder.AddAzurePostgresFlexibleServer("postgres")
 .AddDatabase("db");

{
 "resources": {
 "postgres": {
 "type": "azure.bicep.v0",
 "connectionString": "{postgres.outputs.connectionString}",
 "path": "postgres.module.bicep",
 "params": {
 "principalId": "",
 "principalType": "",
 "principalName": ""
 }
 },
 "db": {
 "type": "value.v0",
 "connectionString": "{postgres.connectionString};Database=db"
 }
 }
}

Resource types supported in the Azure Developer CLI

https://learn.microsoft.com/en-us/azure/developer/azure-developer-cli/

Name Cloud-agnostic API Azure API

Redis AddRedis AddAzureRedis

Postgres AddPostgres AddAzurePostgresFlexibleServer

SQL Server AddSqlServer AddAzureSqlServer

When resources as configured as Azure resources, the azure.bicep.v0 resource type is
generated in the manifest. For more information, see Deploy a .NET Aspire project to
Azure Container Apps using the Azure Developer CLI (in-depth guide).

.NET Aspire overview

.NET Aspire orchestration overview

.NET Aspire integrations overview
Service discovery in .NET Aspire

ﾉ Expand table

See also

https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.redisbuilderextensions.addredis
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.postgresbuilderextensions.addpostgres
https://learn.microsoft.com/en-us/dotnet/api/aspire.hosting.sqlserverbuilderextensions.addsqlserver

Allow unsecure transport in .NET Aspire
Article • 06/15/2024

Starting with .NET Aspire preview 5, the app host will crash if an applicationUrl is
configured with an unsecure transport (non-TLS http) protocol. This is a security feature
to prevent accidental exposure of sensitive data. However, there are scenarios where
you might need to allow unsecure transport. This article explains how to allow unsecure
transport in .NET Aspire projects.

When you run a .NET Aspire project with an applicationUrl configured with an
unsecure transport protocol, you might see the following error message:

Output

To allow an unsecure transport in .NET Aspire, set the ASPIRE_ALLOW_UNSECURED_TRANSPORT
environment variable to true . This environment variable is used to control the behavior
of the app host when an applicationUrl is configured with an insecure transport
protocol:

PowerShell

Alternatively, you can control this via the launch profile as it exposes the ability to
configure environment variables per profile. To do this, consider the following example
settings in the launchSettings.json file:

JSON

Symptoms

The 'applicationUrl' setting must be an https address unless the
'ASPIRE_ALLOW_UNSECURED_TRANSPORT' environment variable is set to true.

This configuration is commonly set in the launch profile.

How to allow unsecure transport

Windows

$env:ASPIRE_ALLOW_UNSECURED_TRANSPORT = "true"

The preceding example shows two profiles, https and http . The https profile is
configured with a secure transport protocol, while the http profile is configured with an
insecure transport protocol. The ASPIRE_ALLOW_UNSECURED_TRANSPORT environment
variable is set to true in the http profile to allow unsecure transport.

{
 "$schema": "http://json.schemastore.org/launchsettings.json",
 "profiles": {
 "https": {
 "commandName": "Project",
 "dotnetRunMessages": true,
 "launchBrowser": true,
 "applicationUrl": "https://localhost:15015;http://localhost:15016",
 "environmentVariables": {
 "ASPNETCORE_ENVIRONMENT": "Development",
 "DOTNET_ENVIRONMENT": "Development",
 "DOTNET_DASHBOARD_OTLP_ENDPOINT_URL": "https://localhost:16099",
 "DOTNET_RESOURCE_SERVICE_ENDPOINT_URL": "https://localhost:17037"
 }
 },
 "http": {
 "commandName": "Project",
 "dotnetRunMessages": true,
 "launchBrowser": true,
 "applicationUrl": "http://localhost:15016",
 "environmentVariables": {
 "ASPNETCORE_ENVIRONMENT": "Development",
 "DOTNET_ENVIRONMENT": "Development",
 "DOTNET_DASHBOARD_OTLP_ENDPOINT_URL": "http://localhost:16099",
 "DOTNET_RESOURCE_SERVICE_ENDPOINT_URL": "http://localhost:17038",
 "ASPIRE_ALLOW_UNSECURED_TRANSPORT": "true"
 }
 }
 }
}

Troubleshoot untrusted localhost
certificate in .NET Aspire
Article • 10/16/2024

This article provides guidance on how to troubleshoot issues that you might encounter
when working with untrusted localhost certificates in .NET Aspire.

Several .NET Aspire templates include ASP.NET Core projects that are configured to use
HTTPS by default. If this is the first time you're running the project, and you're using
Visual Studio, you're prompted to install a localhost certificate.

There are situations in which you trust/install the development certificate, but you
don't close all your browser windows. In these cases, your browser might indicate
that the certificate isn't trusted.

There are also situations where you don't trust the certificate at all. In these cases,
your browser might indicate that the certificate isn't trusted.

Additionally, there are warning messages from Kestrel written to the console that
indicate that the certificate is not trusted.

1. Close all browser windows and try again.

2. If you're still experiencing the issue, then attempt to resolve this by trusting the
self-signed development certificate with the .NET CLI. To trust the certificate, run
the following commands. First, remove the existing certificates.

.NET CLI

Symptoms

Possible solutions

７ Note

This will remove all existing development certificates on the local machine.

dotnet dev-certs https --clean

To trust the certificate:

.NET CLI

For more troubleshooting, see Troubleshoot certificate problems such as certificate
not trusted.

Trust the ASP.NET Core HTTPS development certificate on Windows and macOS
Trust HTTPS certificate on Linux
.NET CLI: dotnet dev-certs
Trust localhost certificate on Linux

dotnet dev-certs https --trust

See also

https://learn.microsoft.com/en-us/aspnet/core/security/enforcing-ssl#troubleshoot-certificate-problems-such-as-certificate-not-trusted
https://learn.microsoft.com/en-us/aspnet/core/security/enforcing-ssl#troubleshoot-certificate-problems-such-as-certificate-not-trusted
https://learn.microsoft.com/en-us/aspnet/core/security/enforcing-ssl#trust-the-aspnet-core-https-development-certificate-on-windows-and-macos
https://learn.microsoft.com/en-us/aspnet/core/security/enforcing-ssl##trust-https-certificate-on-linux
https://learn.microsoft.com/en-us/dotnet/core/tools/dotnet-dev-certs
https://github.com/dotnet/aspnetcore/issues/32842
https://github.com/dotnet/aspnetcore/issues/32842

Troubleshoot installing the .NET Aspire
workload
Article • 05/21/2024

This article provides guidance on how to troubleshoot issues that you might encounter
when installing the .NET Aspire workload from the .NET CLI.

When you install the .NET Aspire workload, you might encounter an installation error.
The error message might indicate that the installation failed, or that the workload
couldn't be installed. The error message might also indicate that a package source is
unavailable, or that a package source isn't found often similar to:

Output

One common issue is that your SDK is aware of some workload manifest or workload
pack versions that are not present in any of the feeds configured when you are trying to
run the dotnet workload commands. This can happen if the SDK, during its daily check
for updates, finds a new version of a workload manifest in a feed that isn't used when
running dotnet workload commands. This discrepancy can cause errors during
installation.

A less common issue, even when using the correct feeds, is that a workload manifest
may have a dependency on a workload pack that is not published on the same feed.
This can also lead to errors during installation as the required pack cannot be found.

Ensure that any recursive Nuget.config files are configured to specify the correct package
sources and NuGet feeds. For example, if you have a Nuget.config file in your user profile
directory, ensure that it doesn't specify a package source that is no longer available.

If you encounter errors related to the SDK being aware of workload manifest or
workload pack versions not present in your configured feeds, you may need to adjust

Symptoms

Workload update failed: One or more errors ocurred: (Version X.Y.00Z of
package A.B.C is not found in NuGet feeds.

Possible solution

your feeds or find the feed where the new version of the manifest or required pack is
located.

In the case where a workload manifest has a dependency on a workload pack not
published on the same feed, you will need to find and add the feed where that pack is
located to your NuGet configuration.

.NET SDK: Diagnosing issues with .NET SDK Workloads

.NET CLI: dotnet workload install
NuGet: nuget.config reference

） Important

Some development environments may depend on private feeds that provide newer
versions of the workload manifest or workload pack. In these situations, you may
want to disable the daily SDK check for updates to avoid encountering errors
during installation.

To disable the daily SDK check for updates, set the
DOTNET_CLI_WORKLOAD_UPDATE_NOTIFY_DISABLE environment variable to true .

See also

https://github.com/dotnet/sdk/pull/40912
https://github.com/dotnet/sdk/pull/40912
https://learn.microsoft.com/en-us/dotnet/core/tools/dotnet-workload-install
https://learn.microsoft.com/en-us/nuget/reference/nuget-config-file

The specified name is already in use
Article • 06/15/2024

When deploying to Azure initial deployments may fail with an error similar to the
following:

"The specified name is already in use"

This article describes several techniques to avoid this problem.

When deploying a .NET Aspire project to Azure, the resources in the app model are
transformed into Azure resources. Some Azure resources have globally scoped names,
such as Azure App Configuration, where all instances are in the [name].azconfig.io
global namespace.

The value of [name] is derived from the .NET Aspire resource name, along with random
characters based on the resource group name. However, the generated string may
exceed the allowable length for the resource name in App Configuration. As a result,
some characters are truncated to ensure compliance.

When a conflict occurs in the global namespace, the resource fails to deploy because
the combination of [name]+[truncated hash] isn't unique enough.

One workaround is to avoid using common names like appconfig or storage for
resources. Instead, choose a more meaningful and specific name. This reduces the
potential for conflict, but does not completely eliminate it. In such cases, you can use
callback methods to set a specific name and avoid using the computed string
altogether.

Consider the following example:

C#

Symptoms

Possible solutions

var appConfig = builder.AddAzureAppConfiguration(
 "appConfig",
 (resource, construct, store) =>
{

 store.AssignProperty(p => p.Name, "'noncalculatedname'");
});

Container runtime appears to be
unhealthy
Article • 07/08/2024

.NET Aspire requires Docker (or Podman) to be running and healthy. This topic describes
a possible symptom you may see if Docker isn’t in a healthy state.

When starting the AppHost the dashboard doesn't show up and an exception stack
trace similar to this example is displayed in the console:

Output

Confirm that Docker is installed and running:

On Windows, check that in the system tray the Docker icon is present and marked
as "Running".
On Linux, check that docker ps -a returns success.

Symptoms

info: Aspire.Hosting.DistributedApplication[0]
 Aspire version: 8.1.0-dev
info: Aspire.Hosting.DistributedApplication[0]
 Distributed application starting.
info: Aspire.Hosting.DistributedApplication[0]
 Application host directory is:
D:\aspire\playground\PostgresEndToEnd\PostgresEndToEnd.AppHost
fail: Microsoft.Extensions.Hosting.Internal.Host[11]
 Hosting failed to start
 Aspire.Hosting.DistributedApplicationException: Container runtime
'docker' was found but appears to be unhealthy. The error from the container
runtime check was error during connect: this error may indicate that the
docker daemon is not running: Get
"http://%2F%2F.%2Fpipe%2Fdocker_engine/v1.45/containers/json?limit=1": open
//./pipe/docker_engine: The system cannot find the file specified..

Possible solutions

Connection string is missing
Article • 08/29/2024

In .NET Aspire, code identifies resources with an arbitrary string, such as "database".
Code that is consuming the resource elsewhere must use the same string or it will fail to
correctly configure their relationships.

When your app accesses a service that needs one of the integrations in your app, it may
fail with an exception similar to the following:

"InvalidOperationException: ConnectionString is missing."

Verify that the name of the resource, for instance a database resource, is the same in the
AppHost and the Service that fails.

For example, if the AppHost defines a PostgreSQL resource with the name db1 like this:

C#

Then the service needs to resolve the resource with the same name db1 .

C#

Any other value than the one provided in the AppHost will result in the exception
message described above.

Symptoms

Possible solutions

var db1 = builder.AddPostgres("pg1").AddDatabase("db1");

var builder = WebApplication.CreateBuilder(args);

builder.AddNpgsqlDbContext<MyDb1Context>("db1");

Breaking changes in .NET Aspire
Article • 11/12/2024

Use this reference section to find breaking changes that might apply to you if you're
upgrading your app to a newer version of .NET Aspire. You can navigate the table of
contents either by .NET Aspire version or by technology area.

If you're looking for breaking changes for .NET, see Breaking changes in .NET.

You can also view individual issues that detail the breaking changes introduced in .NET
in the following GitHub repositories:

For .NET Aspire issues tracking breaking changes, see dotnet/aspire .
For .NET Aspire pull requests introducing breaking changes, see dotnet/aspire .

API removal in .NET
.NET runtime compatibility

GitHub issues and announcements

See also

https://learn.microsoft.com/en-us/dotnet/core/compatibility/breaking-changes
https://github.com/dotnet/aspire/issues?q=is%3Aissue%20label%3Abreaking-change
https://github.com/dotnet/aspire/issues?q=is%3Aissue%20label%3Abreaking-change
https://github.com/dotnet/aspire/pulls?q=is%3Apr+label%3Abreaking-change
https://github.com/dotnet/aspire/pulls?q=is%3Apr+label%3Abreaking-change
https://learn.microsoft.com/en-us/dotnet/aspire/compatibility/api-removal
https://learn.microsoft.com/en-us/dotnet/core/versions/#net-runtime-compatibility

.NET Aspire diagnostics overview
Article • 02/25/2025

Several APIs of .NET Aspire are decorated with the ExperimentalAttribute. This attribute
indicates that the API is experimental and may be removed or changed in future
versions of .NET Aspire. The attribute is used to identify APIs that aren't yet stable and
may not be suitable for production use.

.NET Aspire provides various overloads for Azure Provisioning resource types (from the
Azure.Provisioning package). The overloads are used to create resources with different
configurations. The overloads are experimental and may be removed or changed in
future versions of .NET Aspire.

To suppress this diagnostic with the SuppressMessageAttribute , add the following code
to your project:

C#

Alternatively, you can suppress this diagnostic with preprocessor directive by adding the
following code to your project:

C#

.NET Aspire 9.0 introduces the ability to customize container app resources using the
PublishAsAzureContainerApp(...) extension method. When using this method the Azure
Developer CLI (azd) can no longer preserve custom domains. Instead use the
ConfigureCustomDomain method to configure a custom domain within the .NET Aspire

AZPROVISION001

using System.Diagnostics.CodeAnalysis;

[assembly: SuppressMessage("AZPROVISION001", "Justification")]

#pragma warning disable AZPROVISION001
 // API that is causing the warning.
#pragma warning restore AZPROVISION001

ASPIREACADOMAINS001

https://learn.microsoft.com/en-us/dotnet/api/system.diagnostics.codeanalysis.experimentalattribute

app host. The ConfigureCustomDomain(...) extension method is experimental. To
suppress the compiler error/warning use the following code:

To suppress this diagnostic with the SuppressMessageAttribute , add the following code
to your project:

C#

Alternatively, you can suppress this diagnostic with preprocessor directive by adding the
following code to your project:

C#

.NET Aspire provides a way to add Python executables or applications to the .NET Aspire
app host. Since the shape of this API is expected to change in the future, it has been
marked as Experimental. To suppress the compiler error/warning use the following code:

To suppress this diagnostic with the SuppressMessageAttribute , add the following code
to your project file:

XML

Alternatively, you can suppress this diagnostic with preprocessor directive by adding the
following code to your project:

C#

using System.Diagnostics.CodeAnalysis;

[assembly: SuppressMessage("ASPIREACADOMAINS001", "Justification")]

#pragma warning disable ASPIREACADOMAINS001
 // API that is causing the warning.
#pragma warning restore ASPIREACADOMAINS001

ASPIREHOSTINGPYTHON001

<PropertyGroup>
 <NoWarn>$(NoWarn);ASPIREHOSTINGPYTHON001</NoWarn>
<PropertyGroup>

#pragma warning disable ASPIREHOSTINGPYTHON001
 // API that is causing the warning.
#pragma warning restore ASPIREHOSTINGPYTHON001

.NET Aspire provides a way to use the CosmosDB Linux-based (preview) emulator. Since
this emulator is in preview and the shape of this API is expected to change in the future,
it has been marked as Experimental. To suppress the compiler error/warning use the
following code:

To suppress this diagnostic with the SuppressMessageAttribute , add the following code
to your project file:

XML

Alternatively, you can suppress this diagnostic with preprocessor directive by adding the
following code to your project:

C#

ASPIRECOSMOSDB001

<PropertyGroup>
 <NoWarn>$(NoWarn);ASPIRECOSMOSDB001</NoWarn>
<PropertyGroup>

#pragma warning disable ASPIRECOSMOSDB001
 // API that is causing the warning.
#pragma warning restore ASPIRECOSMOSDB001

Frequently asked questions about .NET
Aspire
FAQ

This article lists frequently asked questions about .NET Aspire. For a more
comprehensive overview, see .NET Aspire overview.

Docker Compose is excellent but is unproductive when all you want to do is run several
projects or executables. Docker Compose requires developers to build container images
and to run apps inside of containers. That's a barrier when you just want to run your
front end, back end, workers, and a database. With .NET Aspire, you don't need to learn
anything beyond what you already know.

Configuration through declarative code is better than through YAML. Docker Compose
gets complex once you attempt to do any form of abstraction or composition (for
example, see the old eshopOnContainers app). In addition, there are environment
variable replacements (and includes) and no types or IntelliSense, and it's hard to reason
about what exactly is running. Debugging is also difficult. .NET Aspire produces a better
experience that's easy to get started and scales up to an orchestrator like Compose
using a real programming language.

You can manually add projects to your .NET Aspire solution by using the
builder.AddProject("<name>", "<path/to/project.csproj>") API.

.NET Aspire doesn't constrain deployment of any existing project or solution. .NET
Aspire exposes a deployment manifest that's used by tool authors to produce artifacts
for deployment to any cloud provider. However, unfortunately, not all cloud providers
offer tooling for deployments based on this manifest. The manifest is a simple JSON file
that describes the resources of your app and the dependencies between them. The

Why choose .NET Aspire over Docker
Compose for orchestration?

How to add projects to .NET Aspire?

How to deploy .NET Aspire without
target cloud-provider tooling?

https://github.com/dotnet-architecture/eShopOnContainers/tree/dev/src
https://github.com/dotnet-architecture/eShopOnContainers/tree/dev/src

manifest is used by the Azure Developer CLI to deploy to Azure. Likewise, Aspir8 uses
the manifest to deploy to Kubernetes. You can use the manifest to deploy to any cloud
provider that supports the resources you're using.

.NET Aspire's client integrations simplify your development process. They're lightweight
wrappers around popular libraries like StackExchange.Redis and Npgsql, adding features
such as telemetry, health checks, and resilience.

Even if you use .NET Aspire only for local development, these integrations provide
reasonable defaults, seamless dependency injection, and consistent APIs.

You're not locked into .NET Aspire's ecosystem. These integrations are just libraries, and
you can configure them as you would with the underlying libraries, using environment
variables or your preferred methods.

Yes, you can build .NET Aspire apps without using any Azure-proprietary dependencies.
While .NET Aspire does offer a first-party solution to deploying to Azure, it's not a
requirement. .NET Aspire is a cloud-native stack that can be used to build applications
that run anywhere. All Azure-specific offerings are explicitly called out as such.

.NET Aspire service discovery APIs are an abstraction that works with various providers
(like Kubernetes and Consul). One of the big advantages is that it works locally and is
backed by .NET's IConfiguration abstraction. This means you can implement service
discovery across your compute fabric in a way that doesn't result in code changes. If you
have multiple Kubernetes clusters or services on Azure App Service or Azure Functions,

If .NET Aspire is mainly for local
development, why are client
integrations in my project?

Can .NET Aspire apps be built without
Azure dependencies and deployed
elsewhere?

Why use .NET Aspire service discovery
over Docker Compose with Kubernetes?

you don't have to fundamentally change your application code to make it work locally,
either in a single cluster or across multiple clusters. That's the benefit of the abstraction.

.NET Aspire takes a big bet on .NET's integration with OpenTelemetry. The .NET Aspire
dashboard is a standard OTLP server that visualizes various telemetry data. Leaning on
these open standards makes it easy to build these things without breaking compatibility
with the broader ecosystem.

.NET Aspire isn't a replacement for these tools, but rather a complementary technology.

.NET Aspire is a set of libraries and tools that make it easy to build applications that are
observable. For more information, see the Metrics example in the .NET Aspire sample
repository that shows Grafana and Prometheus.

.NET Aspire isn't a framework, it's an opinionated stack. Perhaps the most controversial
parts of it are the DistributedApplication APIs that you can use to build up the
orchestration model in any .NET-based language. While everything is possible today, it's
not easy. Using the Unix philosophy, the entire cloud-native ecosystem is built around
tying various pieces of CNCF software together to build a stack. .NET Aspire tries to do
the same thing using learnings from the cloud-native space and picks some opinions (in
ways that use the same building blocks). One novel thing about how .NET Aspire builds
various pieces of the stack is that it doesn't restrict the access or compatibility of other
applications, frameworks, or services. As people play with it more, they realize how
composable and extensible it is.

Why use .NET Aspire if OpenTelemetry
is available in .NET?

Why use .NET Aspire if Grafana, Jaeger,
and Prometheus work with .NET?

Why create another framework when
existing ones work well?

How does .NET Aspire differ from
Microsoft Orleans?

https://github.com/dotnet/aspire-samples/tree/main/samples/Metrics
https://github.com/dotnet/aspire-samples/tree/main/samples/Metrics
https://github.com/dotnet/aspire-samples/tree/main/samples/Metrics

Microsoft Orleans and .NET Aspire are complementary technologies.

Orleans is a distributed actor-based framework. .NET Aspire is a cloud-ready stack for
building observable, production-ready, distributed applications. It includes local
orchestration capabilities to simplify the developer inner loop and reusable opinionated
components for integrating with commonly used application dependencies. An Orleans-
based solution will still have external dependencies such as data stores and caches for
which .NET Aspire can be used for orchestration purposes.

For more information, see Use Orleans with .NET Aspire and the corresponding Orleans
voting app sample.

Dapr and .NET Aspire are complementary technologies.

Where Dapr abstracts some of the underlying cloud platform, .NET Aspire provides
opinionated configuration around the underlying cloud technologies without
abstracting them. A .NET-based application that uses Dapr can use .NET Aspire to
orchestrate the local developer inner loop and streamline deployment. .NET Aspire
includes extensions that support the launching of Dapr side-car processes during the
inner loop.

For more information, see Use Dapr with .NET Aspire and the corresponding Dapr
sample app in the .NET Aspire sample repository.

Project Tye was an experiment which explored the launching and orchestration of micro-
services and support deployment into orchestrators such as Kubernetes. .NET Aspire is a
superset of Tye which includes the orchestration and deployment capabilities along with
opinionated components for integrating common cloud-native dependencies. .NET
Aspire can be considered the evolution of the Project Tye experiment.

.NET Aspire provides components that rely on the Azure SDK for .NET, to expose
common functionality for storage (Azure Blob Storage, Azure Storage Queues, and

How does .NET Aspire differ from Dapr?

How does .NET Aspire differ from
Project Tye?

How are .NET Aspire and Azure SDK for
.NET related?

https://learn.microsoft.com/en-us/dotnet/orleans
https://learn.microsoft.com/en-us/samples/dotnet/aspire-samples/orleans-voting-sample-app-on-aspire/
https://learn.microsoft.com/en-us/samples/dotnet/aspire-samples/orleans-voting-sample-app-on-aspire/
https://github.com/dotnet/aspire-samples/tree/main/samples/AspireWithDapr
https://github.com/dotnet/aspire-samples/tree/main/samples/AspireWithDapr
https://github.com/dotnet/aspire-samples/tree/main/samples/AspireWithDapr
https://learn.microsoft.com/en-us/dotnet/azure/intro
https://learn.microsoft.com/en-us/dotnet/aspire/storage/azure-storage-blobs-component
https://learn.microsoft.com/en-us/dotnet/aspire/storage/azure-storage-queues-component

Azure Table Storage), databases (Azure Cosmos DB and Azure Cosmos DB with Entity
Framework Core), messaging, and security.

.NET Aspire makes it easy to develop distributed applications that can be orchestrated
on your local development environment as executables and containers. Kubernetes is a
technology that orchestrates and manages containers across multiple machines. .NET
Aspire projects can produce a manifest that tool authors can use to produce artifacts for
deployment to Kubernetes. In essence, Kubernetes is a deployment target for .NET
Aspire projects.

Yes, worker services are fully supported and there are docs and samples available to
help you get started. Worker services are a great way to run background tasks,
scheduled tasks, or long-running tasks in .NET Aspire. For more information, see
Database migrations with Entity Framework Core sample app.

Yes, .NET Aspire has preview support for integrating Azure Functions into your app.

No. .NET Aspire doesn't support running web apps on IIS or IIS Express.

How are .NET Aspire and Kubernetes
related?

Are worker services supported in .NET
Aspire?

Are Azure Functions supported in .NET
Aspire?

Does .NET Aspire support running web
apps locally on IIS or IIS Express?

Does .NET Aspire support deploying
apps to IIS?

https://learn.microsoft.com/en-us/dotnet/aspire/storage/azure-storage-tables-component
https://learn.microsoft.com/en-us/dotnet/aspire/database/azure-cosmos-db-component
https://learn.microsoft.com/en-us/dotnet/aspire/database/azure-cosmos-db-entity-framework-component
https://learn.microsoft.com/en-us/dotnet/aspire/database/azure-cosmos-db-entity-framework-component
https://learn.microsoft.com/en-us/dotnet/aspire/messaging/azure-service-bus-component
https://learn.microsoft.com/en-us/dotnet/aspire/security/azure-security-key-vault-component
https://learn.microsoft.com/en-us/samples/dotnet/aspire-samples/aspire-efcore-migrations/

No. .NET Aspire doesn't support deploying apps to IIS. However, it doesn't prevent you
from deploying your apps to IIS in the same way that you always have.

.NET Aspire integrations require specific configuration that must be provided manually.
The same is true for Service Discovery, ideally, you should deploy to something other
than IIS.

The goal of the project is to be a centralized home for extensions and integrations for
.NET Aspire, helping to provide consistency in the way that integrations are built and
maintained, as well as easier discoverability for users.

The .NET Aspire Community Toolkit is a community-driven project that's maintained by
the community and isn't officially supported by the .NET Aspire team. The toolkit is a
collection of integrations and extensions that are built on top of the .NET Aspire project.

Anyone can contribute to the .NET Aspire Community Toolkit and before you get
started, be sure to read the Contributing Guide to learn how to contribute to the
project.

How to fix integrations and Service
Discovery issues when deploying .NET
Aspire apps to IIS?

What is the purpose of the Community
Toolkit project?

How is the Community Toolkit project
different from the official .NET Aspire
project?

How can I contribute to the Community
Toolkit project?

https://learn.microsoft.com/en-us/dotnet/aspire
https://github.com/CommunityToolkit/Aspire/blob/main/CONTRIBUTING.md
https://github.com/CommunityToolkit/Aspire/blob/main/CONTRIBUTING.md

If you have an idea for a new integration, you should propose it on the .NET Aspire
Community Toolkit repository , rather than dotnet/aspire , as the official .NET Aspire
project is focused on the core functionality of the .NET Aspire project.

If you've proposed an integration on the dotnet/aspire repository, you can still propose
it in the Community Toolkit, but link to the existing issue on the dotnet/aspire
repository to provide context.

Integrations from the .NET Aspire Community Toolkit appear in the Add Aspire
Integration dialog in Visual Studio under the namespace CommunityToolkit.Aspire.* .

To learn more about networking and functions:

.NET Aspire overview
Build your first .NET Aspire project
.NET Aspire components

Should I propose a new integration on
the Community Toolkit or the
`dotnet/aspire` repo?

How can I find Community Toolkit
integrations?

Next steps

https://github.com/CommunityToolkit/Aspire
https://github.com/CommunityToolkit/Aspire
https://github.com/CommunityToolkit/Aspire
https://github.com/dotnet/aspire
https://github.com/dotnet/aspire
https://learn.microsoft.com/en-us/dotnet/aspire/fundamentals/components-overview

	.NET Aspire documentation
	Get Started
	.NET Aspire overview
	Quickstart - Build your first .NET Aspire project
	Tutorial - Add .NET Aspire to an existing .NET app
	Setup and tooling
	Overview
	.NET Aspire SDK
	.NET Aspire templates
	GitHub Codespaces
	Dev Containers

	What's new in .NET Aspire 9.1
	Upgrade to .NET Aspire 9.0

	App Host (Orchestration)
	Overview
	Orchestrate
	Node.js apps in .NET Aspire
	Python apps in .NET Aspire

	Configuration
	Custom resource commands
	Add Dockerfiles to the app model
	Networking overview
	Eventing in .NET Aspire
	Use external parameters
	Persist data using volumes

	Dashboard
	Overview
	Explore features
	Standalone mode
	Overview
	Tutorial — Use with Python

	Configuration
	Enable browser telemetry
	Security considerations

	Testing
	Overview
	Write your first .NET Aspire test
	Managing the app host
	Accessing resources in tests

	Fundamentals
	Service discovery
	Service defaults
	.NET Aspire and launch profiles
	Health checks
	Telemetry

	Integrations
	Overview
	Tutorials
	Caching using Redis integrations
	Connect to SQL Server with EF Core
	Connect to an existing SQL Server database
	Connect to storage
	Messaging using .NET Aspire integrations

	Apache Kafka
	Azure
	Overview
	Local Azure provisioning
	Azure AI Search
	Azure Cache for Redis
	Azure Cache for Redis
	Azure Cache for Redis distributed cache
	Azure Cache for Redis output caching

	Azure Cosmos DB
	Azure Event Hubs
	Azure Functions (Preview)
	Azure Key Vault
	Azure PostgreSQL
	Azure OpenAI (Preview)
	Azure SignalR Service
	Azure Service Bus
	Azure Storage
	Azure Blob Storage
	Azure Queue Storage
	Azure Table Storage

	Azure Web PubSub
	Aspire.Hosting.Azure API reference
	Aspire.Azure API reference

	Dapr
	Overview
	Dapr integration sample

	Elasticsearch
	Entity Framework Core
	Overview
	Apply migrations
	Seed data in a database
	Azure Cosmos DB
	Azure PostgreSQL
	MySQL Pomelo
	Oracle
	PostgreSQL
	SQL Server

	Keycloak (Preview)
	Milvus
	MongoDB
	MySQL
	NATS
	Orleans
	Overview
	Orleans voting sample

	PostgreSQL
	Qdrant
	RabbitMQ service broker
	Redis
	Overview
	Redis caching
	Redis distributed cache
	Redis output caching
	Redis caching (Garnet)
	Redis distributed cache (Garnet)
	Redis output caching (Garnet)
	Redis caching (Valkey)
	Redis distributed cache (Valkey)
	Redis output caching (Valkey)

	Seq
	SQL Server
	Community Toolkit
	Overview
	Azure Static Web Apps
	Bun apps
	Deno apps
	Go apps
	Java/Spring
	Node.js extensions
	Python extensions
	Ollama
	Meilisearch
	Rust apps
	SQL Database Projects
	Data API Builder
	EventStore
	SQLite
	SQLite - EF Core
	SQLite

	SQL Server Extensions
	MongoDB Extensions
	Redis Extensions
	PostgreSQL Extensions

	Aspire.Hosting API reference

	Custom integrations
	Create hosting integrations
	Create client integrations
	Secure communication between integrations

	Deployment
	Overview
	Azure
	Deploy to Azure Container Apps using azd
	Deploy to Azure Container Apps using Visual Studio
	Azure Container Apps with azd (In-depth)
	Deploy using azd and CI/CD
	Use .NET Aspire with Application Insights
	Deploy .NET Aspire + SQL Database
	Deploy .NET Aspire + Redis

	Tool-builder manifest schemas

	Troubleshooting
	Allow unsecure transport
	Untrusted localhost certificate
	Unable to install .NET Aspire workload
	The specified name is already in use
	Container runtime appears to be unhealthy
	The connection string is missing
	Ask questions on Discord
	Stack Overflow — .NET Aspire

	Reference
	Breaking changes
	Diagnostics overview
	.NET Aspire API reference
	.NET Aspire FAQ
	.NET Aspire NuGet profile

	Training
	Introduction to .NET Aspire
	Create a .NET Aspire project
	Use telemetry in a .NET Aspire project

	Resources
	.NET Aspire
	.NET Aspire samples
	.NET Aspire samples browser
	.NET Runtime
	.NET Platform Extensions
	ASP.NET Core

	Official support policy

